JPH02139023A - Selectively gas permeable multilayer membrane - Google Patents
Selectively gas permeable multilayer membraneInfo
- Publication number
- JPH02139023A JPH02139023A JP1134984A JP13498489A JPH02139023A JP H02139023 A JPH02139023 A JP H02139023A JP 1134984 A JP1134984 A JP 1134984A JP 13498489 A JP13498489 A JP 13498489A JP H02139023 A JPH02139023 A JP H02139023A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- layer
- support
- gas permeable
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 37
- 229920000642 polymer Polymers 0.000 claims abstract description 36
- 239000005062 Polybutadiene Substances 0.000 claims abstract description 9
- 229920002857 polybutadiene Polymers 0.000 claims abstract description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 6
- -1 polypropylene Polymers 0.000 claims abstract description 6
- 230000009477 glass transition Effects 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 18
- 229920001296 polysiloxane Polymers 0.000 claims description 7
- 150000001993 dienes Chemical class 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 229920001083 polybutene Polymers 0.000 claims description 2
- 229920001195 polyisoprene Polymers 0.000 claims description 2
- 229920000306 polymethylpentene Polymers 0.000 claims description 2
- 239000011116 polymethylpentene Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 23
- 230000035699 permeability Effects 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 5
- 239000004743 Polypropylene Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 229920001155 polypropylene Polymers 0.000 abstract description 4
- 229920001577 copolymer Polymers 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 abstract description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 abstract description 2
- 229920006254 polymer film Polymers 0.000 abstract description 2
- 239000002861 polymer material Substances 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 43
- 239000001301 oxygen Substances 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- 239000010408 film Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920005597 polymer membrane Polymers 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
- B01D71/701—Polydimethylsiloxane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は気体分離性が良く、かつ気体透過性も優れる選
択気体透過性複合膜に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a selective gas permeable composite membrane that has good gas separation properties and excellent gas permeability.
従来例の構成とその問題点
近年、膜による分離技術の進歩は8覚しく、いくつかの
分野、例えば海水の淡水化、工場廃液中の有用物の回収
等の分野ではすでに工業的規模で実用化されている。Structure of conventional examples and their problems In recent years, membrane separation technology has made remarkable progress, and it has already been put into practical use on an industrial scale in some fields, such as seawater desalination and recovery of useful substances from factory waste fluid. has been made into
一方、有機高分子膜を用いた混合ガスの分4は膜の選択
性が小さく、−段の分離では高純度の気体を選択的に得
るのがむずかしいこと、また透過量が小さいため大量の
ガスを生産できないこと等の理由から、膜を用いたガス
分離の実用化例は少ない。On the other hand, in the case of mixed gas using an organic polymer membrane, the selectivity of the membrane is low, and it is difficult to selectively obtain high-purity gas in -stage separation. There are few examples of practical use of gas separation using membranes due to reasons such as the inability to produce membranes.
しかし、ガスの最終用途として必ずしも高純度のガスを
必要としない分野も多々ある。例えば酸素の場合、高炉
送風用、燃料補助用、医療用における呼吸用等では高純
度酸素を必要としない。However, there are many fields where high purity gas is not necessarily required for the end use of gas. For example, in the case of oxygen, high purity oxygen is not required for blast furnace ventilation, fuel supplementation, medical breathing, etc.
むしろ高純度では燃焼温度があがりすぎるため炉の損傷
や火災の危険、あるいは医療用では未熟児の失明等がか
えって不都合な場合も多い。そのためこのような分野で
は膜による気体分離法が有利となる。On the contrary, when the purity is high, the combustion temperature rises too high, causing damage to the furnace and the risk of fire, and when used for medical purposes, it often causes inconveniences such as blindness in premature infants. Therefore, gas separation methods using membranes are advantageous in such fields.
膜による空気からの酸素の分離では、−段の分離で高純
度の酸素を有する空気を得ることは困難であるが、中程
度の酸素を富化した空気は比較的容易に得られる。すな
わち膜分離法は酸素濃度が約25〜50%の酸素富化空
気を空気より直接製造することができ、混合器やボンベ
の取扱いもなく、操作上簡単でありまた経済的にも有利
な方法である。In the separation of oxygen from air by a membrane, it is difficult to obtain air with high purity oxygen in the -stage separation, but air with moderate oxygen enrichment can be obtained relatively easily. In other words, the membrane separation method can directly produce oxygen-enriched air with an oxygen concentration of about 25 to 50% from air, does not require the handling of mixers or cylinders, is easy to operate, and is economically advantageous. It is.
現在まで高分子膜を用いての混合ガスの分離に関して既
にいくつかの文献、特許出願などで指摘されているごと
く、この場合は高分子膜のガスに対する透過係数の大小
、ならびに薄膜としての機械的強度、および薄膜化技術
が重要な問題となる。As has already been pointed out in several literatures and patent applications regarding the separation of mixed gases using polymer membranes, in this case, the permeability coefficient of the polymer membrane for gases, as well as the mechanical Strength and film thinning technology are important issues.
現在報告されている高分子材料で比較的気体透過能のす
ぐれている物質は天然ゴム、ポリブタジェンのごとき合
成ゴム、ポリオレフィン、更にすぐれたものではシリコ
ーンゴムが知られている。Among the currently reported polymer materials, substances with relatively excellent gas permeability include natural rubber, synthetic rubber such as polybutadiene, polyolefin, and silicone rubber, which is even more excellent.
シリコーンゴムはほとんど全ての気体に対して他のいか
なる高分子材料よりもすぐれる。しかし各気体の分離比
が小さくなり、空気の酸素富化に使用した場合23%か
ら30%までの低濃度酸素富化空気しか得られない。従
がって30%以上の酸素富化空気を得ようとする場合さ
らに分離比の大きな材料が必要となってくる。その1つ
として特開昭56−92925号公報に示されているポ
リオレフィンあるいはジエンポリマーを主体とする気体
分離膜がある。この公報に示されている材料の1つであ
るポリ−4−メチルペンテン−1は酸素透過係数が約2
.5 X 10−9cc −cm/ltl −SeC5
Hgでシリコーンゴムの10分の1以下になってしまう
が、酸素と窒素の分離比が高く約4.0の値を示す。従
がって、この材料を用いると約40%の酸素富化空気を
容易に得ることができる。しかし透過係数が小さいため
シリコーンゴムと同じ膜厚とした場合約10分の1以下
の酸素量しか得られないことKなる。この点からこの様
な材料を用いる場合薄膜化技術が非常に重要如なってく
る。Silicone rubber is better against almost all gases than any other polymeric material. However, the separation ratio of each gas becomes small, and when used to enrich air with oxygen, only air enriched with oxygen at a low concentration of 23% to 30% can be obtained. Therefore, in order to obtain oxygen-enriched air of 30% or more, a material with a higher separation ratio is required. One of them is a gas separation membrane mainly composed of polyolefin or diene polymer, which is disclosed in Japanese Patent Application Laid-Open No. 56-92925. One of the materials shown in this publication, poly-4-methylpentene-1, has an oxygen permeability coefficient of approximately 2.
.. 5 X 10-9cc-cm/ltl-SeC5
Although its Hg content is less than one-tenth that of silicone rubber, it has a high oxygen and nitrogen separation ratio of about 4.0. Therefore, approximately 40% oxygen enriched air can easily be obtained using this material. However, since the permeability coefficient is small, if the film thickness is the same as that of silicone rubber, the amount of oxygen obtained will be about one-tenth or less. From this point of view, thin film technology becomes very important when using such materials.
そこで我々はこの材料に関して薄膜化の実験を行ない気
体透過膜への応用を検討した。その結果ポリ−4−メチ
ルペンテン−1は溶剤への溶解性が悪くきわめて成膜性
が悪いことがわかった。またポリブタジェンの場合は非
常に成膜性が良好であることがわかった。しかし両者の
場合その気体の分離性は優れるが非常に透過性が悪くそ
れぞれの酸素透過流量は多孔質ポリプロピレンを支持体
として製膜した場合、前者が8.68X 10−5c
c/cd−sec 1市qで後者は6.20X 10−
” cc/d −sec・cm I(gであった。そし
て気体分離性は酸素と窒素でそれぞれ約3.7と約3.
0であった。この透過流量の値から有効膜厚を計算する
と両者とも約0.3μm となり比較的厚くなってしま
う。Therefore, we conducted experiments on thinning this material and considered its application to gas permeable membranes. As a result, it was found that poly-4-methylpentene-1 has poor solubility in solvents and extremely poor film-forming properties. It was also found that polybutadiene has very good film forming properties. However, in both cases, the gas separation property is excellent, but the permeability is very poor, and the oxygen permeation flow rate for each is 8.68X 10-5c when the film is formed using porous polypropylene as a support.
c/cd-sec 1 city q and the latter is 6.20X 10-
” cc/d -sec・cm I (g).The gas separation properties were approximately 3.7 and 3.7 for oxygen and nitrogen, respectively.
It was 0. When the effective film thickness is calculated from this value of permeation flow rate, it is approximately 0.3 μm in both cases, which is relatively thick.
この様に膜厚が厚くなる原因としては第1図に示すよう
に膜材料1が支持体2の孔3内へ含浸する現象が生じて
いるものと思われる。つまりガラス転移温度Tqが常温
以下にあるような高分子では常温で膜が屈曲性に富むた
め膜上面より圧力が加わると第1図に示すように支持体
孔3内への含浸が生じ結果的に膜厚が厚くなってしまう
ものと思われる。The reason for the increase in film thickness is thought to be the phenomenon in which the membrane material 1 impregnates into the pores 3 of the support 2, as shown in FIG. In other words, in the case of a polymer whose glass transition temperature Tq is below room temperature, the membrane is highly flexible at room temperature, so when pressure is applied from the top of the membrane, impregnation into the support pores 3 occurs as shown in Figure 1. It is thought that the film thickness will become thicker.
すなわち、Tqが常温以下である高分子は常温において
屈曲性に富むため、仮にラングミュア法により水面上で
高分子薄膜が形成できても、多孔質支持体2上に引き上
げると膜材料1は支持体孔3中へ入シ込んでしまい、高
分子は第1図に示すような状態になる。従がって膜厚が
厚くなり気体透過流量は非常に小さくなってしまう。In other words, since polymers with Tq below room temperature have high flexibility at room temperature, even if a thin polymer film can be formed on the water surface by the Langmuir method, when pulled up onto the porous support 2, the membrane material 1 will not form on the support. The polymer enters into the hole 3, and the polymer becomes in the state shown in FIG. Therefore, the film thickness becomes thick and the gas permeation flow rate becomes extremely small.
発明の目的
本発明はこのような欠点を克服し、気体透過性に優れ、
かつ分離性も良い選択気体透過性膜を得ることを目的と
する。Purpose of the Invention The present invention overcomes these drawbacks, has excellent gas permeability,
The purpose of the present invention is to obtain a selective gas permeable membrane that also has good separation properties.
発明の構成
本発明はTqが常温以下の高分子材料の層と支持体との
間にポリオルガノシロキサンを主成分とするシリコーン
系共重合体高分子からなる成膜性のすぐれた高気体透過
性高分子層を挿入して複合膜化した選択気体透過性複合
膜である。Structure of the Invention The present invention provides a highly gas-permeable, highly gas-permeable film with excellent film-forming property consisting of a silicone-based copolymer polymer containing polyorganosiloxane as a main component between a layer of a polymeric material with Tq below room temperature and a support. This is a selective gas permeable composite membrane created by inserting a molecular layer.
実施例の説明
以下本発明を実施例について図面とともに詳細に説明す
る。DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments and drawings.
第2図は本発明による選択気体透過性複合膜の実施例を
示す。図において、1はTqが常温以下で、気体分離性
は比較的よいが、気体透過性の悪い高分子材料Bより成
る薄膜である。高分子材料としては、ポリブテン、ポリ
ペンテン、ポリメチルペンテン、ポリヘキセン、ポリメ
チルヘキサンで示されるポリオレフィンおよびポリブタ
ジェン。FIG. 2 shows an embodiment of a selective gas permeable composite membrane according to the present invention. In the figure, reference numeral 1 indicates a thin film made of polymeric material B having a Tq below room temperature and relatively good gas separation but poor gas permeability. Examples of polymeric materials include polyolefins and polybutadiene such as polybutene, polypentene, polymethylpentene, polyhexene, and polymethylhexane.
ポリイソプレンで示されるジエンポリマーから成る群よ
り選ばれた少なくとも1種のポリマーが使用される。2
は多孔質支持体で、多孔質ポリプロピレンなどが使用さ
れる。3は多孔質支持体2の孔、4は成膜性に優れ、か
つ気体透過性の高い高分子Aの薄膜である。高分子Aと
してはポリオルガノシロキサンを主成分とするシリコー
ン系共重合体高分子が好適で、たとえばポリヒドロキシ
スチレン−ポリジメチルシロキサン共重合体が好適であ
る。高分子Aと高分子Bとから成る複合1漠は気体透過
性に優れる高分子A層4を支持体2側に配することによ
り高気体透過性で、かつ気体分離性の良い気体透過複合
膜を与える。つまり気体透過性の良い材料(高分子A)
の層4を高分子3層1と支持体2との間に設けているた
め、この層4が高分子3層1の支持体孔3への侵入を防
止するので、高分子3層1は非常に薄く構成することが
できる。At least one polymer selected from the group consisting of diene polymers represented by polyisoprene is used. 2
is a porous support such as porous polypropylene. 3 is the pore of the porous support 2, and 4 is a thin film of polymer A which has excellent film formability and high gas permeability. As the polymer A, a silicone copolymer polymer containing polyorganosiloxane as a main component is suitable, such as a polyhydroxystyrene-polydimethylsiloxane copolymer. The composite film consisting of polymer A and polymer B is a gas-permeable composite membrane that has high gas permeability and good gas separation property by arranging the polymer A layer 4, which has excellent gas permeability, on the support 2 side. give. In other words, a material with good gas permeability (polymer A)
Since the layer 4 is provided between the polymer 3 layer 1 and the support 2, this layer 4 prevents the polymer 3 layer 1 from entering the support pores 3. It can be constructed very thinly.
そして上記層4は主にシリコーン系共重合体高分子で構
成されるため非常に気体透過性に優れ、複合化した特高
分子B層1の特性をほとんど劣化させずに維持する。従
がって高分子Bを単独使用した場合に比較して、気体分
離性は高いまま維持され、変化はないが気体透過性が4
〜10倍すぐれる選択気体透過性複合膜を与える。Since the layer 4 is mainly composed of a silicone copolymer, it has excellent gas permeability, and maintains the properties of the composite special polymer B layer 1 with almost no deterioration. Therefore, compared to the case where Polymer B is used alone, the gas separation property remains high, and although there is no change, the gas permeability is 4.
Provides a composite membrane with ~10 times better selective gas permeability.
以下具体的な実施例について説明する。Specific examples will be described below.
〈実施例1〉
高分子Aとして特開昭54−101879号公報に示さ
れるポリヒドロキシスチレン(PH8)−ポリジメチル
シロキサン(PDMS)共重合体を用い、高分子Bとし
てポリブタジェン(日本合成ゴム(株)RB−810)
を用い、それぞれ2〜4重量%ベンゼン溶液を調整後ラ
ングミュア法により水面上に各高分子膜を展開した。支
持体は多孔質ポリプロピレン(ポリプラスチック社製ジ
ュラガード2400)を使用した。それぞれの高分子膜
をA、Eの順で支持体上にすくい上げて複合膜を作成し
た。この複合膜の気体透過特性を第3図aに示す。第3
図aに示すようにこの複合膜の気体透過特性は非常にす
ぐれ、酸素透過流量が2 X 10−’ cc/cj−
SeC・tynHgで酸素と窒素の分離比は約3.0で
あった。<Example 1> Polyhydroxystyrene (PH8)-polydimethylsiloxane (PDMS) copolymer shown in JP-A-54-101879 was used as polymer A, and polybutadiene (Japan Synthetic Rubber Co., Ltd.) was used as polymer B. )RB-810)
After preparing a 2 to 4% by weight benzene solution, each polymer membrane was spread on the water surface using the Langmuir method. The support used was porous polypropylene (Duraguard 2400 manufactured by Polyplastics). Each polymer membrane was scooped up onto a support in the order of A and E to create a composite membrane. The gas permeation characteristics of this composite membrane are shown in Figure 3a. Third
As shown in Figure a, the gas permeation properties of this composite membrane are very good, with an oxygen permeation flow rate of 2 x 10-' cc/cj-
The separation ratio of oxygen and nitrogen in SeC·tynHg was about 3.0.
第3図すは高分子Aを使用せず高分子Bとしてブタジェ
ン(日本合成ゴム(株)RB−alo)のみを実施例1
と同様の方法で支持体にすくい上げたときの特性であり
、従来例のものである。同図かられかるように、ポリブ
タジェンだけの場合は酸素透過量が非常に小さ(2,5
X 10−4cc/cd−set・cm Hgである。Figure 3 shows Example 1 using only butadiene (RB-alo, Japan Synthetic Rubber Co., Ltd.) as polymer B without using polymer A.
These are the characteristics when scooped onto a support using the same method as in the previous example. As can be seen from the figure, in the case of polybutadiene alone, the amount of oxygen permeation is very small (2,5
X 10-4cc/cd-set·cm Hg.
したがって実施例1に示した本発明による複合膜はポリ
ブタジェンだけの場合に比して酸素透過量が約8倍に上
昇する。Therefore, the composite membrane according to the present invention shown in Example 1 has an oxygen permeation rate that is approximately 8 times higher than that of the case where only polybutadiene is used.
以上の実施例では、高分子Bとしてポリブタジェンのみ
を示したが、前述したその他の高分子を利用した場合も
全く同様である。In the above examples, only polybutadiene was shown as the polymer B, but the same is true even if the other polymers mentioned above are used.
以上のような構成の複合膜は、燃焼機器、医療用、内燃
機関、廃棄物処理等に利用できる。The composite membrane having the above structure can be used for combustion equipment, medical use, internal combustion engines, waste treatment, etc.
発明の効果
以上のように本発明はTqが常温以下にある高分子Bと
多孔質支持体との間にシリコーン系共重合体高分子Aを
介在させて複合化した選択気体透過性複合膜であり、高
分子Bだけの膜特性に比較して気体分離性は高いまま変
化せず4〜10@の気体透過性をもつ選択気体透過性複
合膜を得ることができる。Effects of the Invention As described above, the present invention is a selective gas permeable composite membrane in which a silicone copolymer polymer A is interposed between a polymer B whose Tq is below room temperature and a porous support. , it is possible to obtain a selective gas permeable composite membrane having a gas permeability of 4 to 10@, with gas separation properties remaining high and unchanged compared to the membrane properties of polymer B alone.
第1図は従来の選択気体透過性膜の構造を示す断面図、
第2図は本発明の一実施例における選択気体透過性複合
膜を示す断面図、第3図は従来例および本発明による選
択気体透過性膜の酸素窒素分離比−酸素透過流量特性図
である。
1・・・・・・Tqが常温以下の高分子膜、2・・・・
・・支持体、3・・・・・・支持体孔、4・・・・・・
シリコーン系共重合体高分子膜。
代理人の氏名 弁理士 粟 野 重 孝 ほか1名酸、
氷先遣巳気量
C%m”、 sec、 cmHr。Figure 1 is a cross-sectional view showing the structure of a conventional selective gas permeable membrane.
FIG. 2 is a sectional view showing a selective gas permeable composite membrane according to an embodiment of the present invention, and FIG. 3 is a diagram showing the oxygen nitrogen separation ratio-oxygen permeation flow rate characteristic of the selective gas permeable membrane according to the conventional example and the present invention. . 1...Polymer membrane with Tq below room temperature, 2...
...Support, 3...Support hole, 4...
Silicone copolymer membrane. Name of agent: Patent attorney Shigetaka Awano and one other person
Ice advance air volume C%m”, sec, cmHr.
Claims (3)
第1の層を、ポリオルガノシロキサンを主成分とするシ
リコーン系共重合体高分子からなる第2の層を介して多
孔質支持体に支持させたことを特徴とする選択気体透過
性複合膜。(1) A first layer made of a polymer whose glass transition temperature is below room temperature is supported on a porous support via a second layer made of a silicone copolymer polymer whose main component is polyorganosiloxane. A selective gas permeable composite membrane characterized by:
チレン−ポリジメチルシロキサン共重合体である特許請
求の範囲第1項記載の選択気体透過性複合膜。(2) The selective gas permeable composite membrane according to claim 1, wherein the silicone copolymer polymer is a polyhydroxystyrene-polydimethylsiloxane copolymer.
テン、ポリペンテン、ポリメチルペンテン、ポリヘキサ
ン、ポリメチルヘキサンで示されるポリオレフィンおよ
びポリブタジエン、ポリイソプレンで示されるジエンポ
リマーから成る群より選ばれた少なくとも1種のポリマ
ーである特許請求の範囲第1項記載の選択気体透過性複
合膜。(3) The polymer having a glass transition temperature below room temperature is at least selected from the group consisting of polyolefins such as polybutene, polypentene, polymethylpentene, polyhexane, and polymethylhexane, and diene polymers such as polybutadiene and polyisoprene. The selective gas permeable composite membrane according to claim 1, which is one type of polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134984A JPH02139023A (en) | 1989-05-29 | 1989-05-29 | Selectively gas permeable multilayer membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134984A JPH02139023A (en) | 1989-05-29 | 1989-05-29 | Selectively gas permeable multilayer membrane |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57222408A Division JPS59111478A (en) | 1982-12-17 | 1982-12-17 | Fadar device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02139023A true JPH02139023A (en) | 1990-05-29 |
JPH0474047B2 JPH0474047B2 (en) | 1992-11-25 |
Family
ID=15141207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1134984A Granted JPH02139023A (en) | 1989-05-29 | 1989-05-29 | Selectively gas permeable multilayer membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02139023A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103831025A (en) * | 2014-03-03 | 2014-06-04 | 中山火炬职业技术学院 | Preparation method of carbon black-modified PDMS (Polydimethylsiloxane) pervaporation ethanol-permselective separation membrane |
US11617989B1 (en) | 2020-09-04 | 2023-04-04 | King Saud University | Extraction of benzene from benzene/cyclohexane mixture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874986A (en) * | 1974-05-20 | 1975-04-01 | Gen Electric | Laminated porous/non-porous membranes |
JPS5959214A (en) * | 1982-09-28 | 1984-04-05 | Asahi Glass Co Ltd | Gas separating composite membrane |
JPS6256775A (en) * | 1985-09-03 | 1987-03-12 | 大同特殊鋼株式会社 | Method of controlling pattern of quantity of suction of gas containing dust |
-
1989
- 1989-05-29 JP JP1134984A patent/JPH02139023A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874986A (en) * | 1974-05-20 | 1975-04-01 | Gen Electric | Laminated porous/non-porous membranes |
JPS5959214A (en) * | 1982-09-28 | 1984-04-05 | Asahi Glass Co Ltd | Gas separating composite membrane |
JPS6256775A (en) * | 1985-09-03 | 1987-03-12 | 大同特殊鋼株式会社 | Method of controlling pattern of quantity of suction of gas containing dust |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103831025A (en) * | 2014-03-03 | 2014-06-04 | 中山火炬职业技术学院 | Preparation method of carbon black-modified PDMS (Polydimethylsiloxane) pervaporation ethanol-permselective separation membrane |
CN103831025B (en) * | 2014-03-03 | 2015-10-28 | 中山火炬职业技术学院 | A kind of preparation method of carbon black modification PDMS pervaporation priority dealcoholization diffusion barrier |
US11617989B1 (en) | 2020-09-04 | 2023-04-04 | King Saud University | Extraction of benzene from benzene/cyclohexane mixture |
Also Published As
Publication number | Publication date |
---|---|
JPH0474047B2 (en) | 1992-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60161703A (en) | Gas permselective composite membrane | |
JPH0457372B2 (en) | ||
JPH0418889B2 (en) | ||
GB2138702B (en) | Composite membrane for gas separation | |
Li et al. | Multilayer ultrathin‐film composite membranes for oxygen enrichment | |
JPS59112802A (en) | Gas permselective composite membrane | |
JPH0224574B2 (en) | ||
JPH02139023A (en) | Selectively gas permeable multilayer membrane | |
JPH0413011B2 (en) | ||
JPH0194917A (en) | Permselective composite membrane for gas | |
JPH0155658B2 (en) | ||
JPS60114324A (en) | Gas permeable compound membrane | |
JPS6182823A (en) | Gas-permeable composite membrane | |
JPS63278525A (en) | Production of vapor-liquid separation membrane | |
JPS61120617A (en) | Composite membrane for separating gas | |
JPH0380925A (en) | Gas permselective membrane | |
JPS5959210A (en) | Gas permselective composite membrane | |
Suzuki et al. | Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation | |
JP3295144B2 (en) | Gas separation composite membrane | |
JPS62136224A (en) | Composite membrane for separating gas | |
Li et al. | Air separation through modified ethyl cellulose thin film supported on porous polyethersulfone | |
JPH0421528B2 (en) | ||
JPS60227804A (en) | Manufacture of separation membrane | |
JP3244091B2 (en) | Gas separation composite membrane | |
JPS61291018A (en) | Gas permeable laminated body |