JPH0474047B2 - - Google Patents

Info

Publication number
JPH0474047B2
JPH0474047B2 JP1134984A JP13498489A JPH0474047B2 JP H0474047 B2 JPH0474047 B2 JP H0474047B2 JP 1134984 A JP1134984 A JP 1134984A JP 13498489 A JP13498489 A JP 13498489A JP H0474047 B2 JPH0474047 B2 JP H0474047B2
Authority
JP
Japan
Prior art keywords
polymer
gas
composite membrane
oxygen
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1134984A
Other languages
Japanese (ja)
Other versions
JPH02139023A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1134984A priority Critical patent/JPH02139023A/en
Publication of JPH02139023A publication Critical patent/JPH02139023A/en
Publication of JPH0474047B2 publication Critical patent/JPH0474047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体分離性が良く、かつ気体透過性も
優れる選択気体透過性複合膜に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a selective gas permeable composite membrane that has good gas separation properties and excellent gas permeability.

従来例の構成とその問題点 近年、膜による分離技術の進歩は日覚しく、い
くつかの分野、例えば海水の淡水化、工場廃液中
の有用物の回収等の分野ではすでに工業的規模で
実用化されている。
Structure of conventional examples and their problems In recent years, membrane separation technology has made remarkable progress, and it has already been put into practical use on an industrial scale in some fields, such as seawater desalination and recovery of useful substances from factory waste liquid. has been made into

一方、有機高分子膜を用いた混合ガスの分離は
膜の選択性が小さく、一段の分離では高純度の気
体を選択的に得るのがむずかしいこと、また透過
量が小さいため大量のガスを生産できないこと等
の理由から、膜を用いたガス分離の実用化例は少
ない。
On the other hand, in the separation of mixed gases using organic polymer membranes, the selectivity of the membrane is low, and it is difficult to selectively obtain high-purity gas in one-step separation, and the amount of permeation is small, so a large amount of gas is produced. There are few examples of practical use of gas separation using membranes for reasons such as the inability to do so.

しかし、ガスの最終用途として必ずしも高純度
のガスを必要としない分野も多々ある。例えば酸
素の場合、高炉送風用、燃料補助用、医療用にお
ける呼吸用等では高純度酸素を必要としない。
However, there are many fields where high purity gas is not necessarily required for the end use of gas. For example, in the case of oxygen, high purity oxygen is not required for blast furnace ventilation, fuel supplementation, medical breathing, etc.

むしろ高純度では燃焼温度があがりすぎるため
炉の損傷や火災の危険、あるいは医療用では未熟
児の失明等がかえつて不都合な場合も多い。その
ためこのような分野では膜による気体分離法が有
利となる。
In fact, with high purity, the combustion temperature rises too high, causing damage to the furnace and the risk of fire, and for medical use, often causing inconveniences such as blindness in premature babies. Therefore, gas separation methods using membranes are advantageous in such fields.

膜による空気からの酸素の分離では、一段の分
離で高純度の酸素を有する空気を得ることは困難
であるが、中程度の酸素を富化した空気は比較的
容易に得られる。すなわち膜分離法は酸素濃度が
約25〜50%の酸素富化空気を空気より直接製造す
ることができ、混合器やボンベの取扱いもなく、
操作上簡単でありまた経済的にも有利な方法であ
る。
In the separation of oxygen from air by membranes, it is difficult to obtain air with high purity of oxygen in one stage of separation, but air with moderate oxygen enrichment can be obtained relatively easily. In other words, the membrane separation method can directly produce oxygen-enriched air with an oxygen concentration of approximately 25 to 50% from air, and there is no need to handle mixers or cylinders.
This method is operationally simple and economically advantageous.

現在まで高分子膜を用いての混合ガスの分離に
関して既にいくつかの文献、特許出願などで指摘
されているごとく、この場合は高分子膜のガスに
対する透過係数の大小、ならびに薄膜としての機
械的強度、および薄膜化技術が重要な問題とな
る。
As has already been pointed out in several literatures and patent applications regarding the separation of mixed gases using polymer membranes, in this case, the permeability coefficient of the polymer membrane for gases, as well as the mechanical Strength and film thinning technology are important issues.

現在報告されている高分子材料で比較的気体透
過能のすぐれている物質は天然ゴム、ポリブタジ
エンのごとき合成ゴム、ポリオレフイン、更にす
ぐれたものではシリコーンゴムが知られている。
Among the currently reported polymer materials, substances with relatively excellent gas permeability include natural rubber, synthetic rubber such as polybutadiene, polyolefin, and silicone rubber, which is even more excellent.

シリコーンゴムはほとんど全ての気体に対して
他のいかなる高分子材料よりもすぐれる。しかし
各気体の分離比が小さくなり、空気の酸素富化に
使用した場合23%から30%までの低濃度酸素富化
空気しか得られない。従がつて30%以上の酸素富
化空気を得ようとする場合さらに分離比の大きな
材料が必要となつてくる。その1つとして特開昭
56−92925号公報に示されているポリオレフイン
あるいはジエンポリマーを主体とする気体分離膜
がある。この公報に示されている材料の1つであ
るポリー4−メチルペンテン−1は酸素透過係数
が約2.5×10-9c.c.・cm/cm2・secHgでシリコーン
ゴムの10分の1以下になつてしまうが、酸素と窒
素の分離比が高く約4.0の値を示す。従がつて、
この材料を用いると約40%の酸素富化空気を容易
に得ることができる。しかし透過係数が小さいた
めシリコーンゴムと同じ膜厚とした場合約10分の
1以下の酸素量しか得られないことになる。この
点からこの様な材料を用いる場合薄膜化技術が非
常に重要になつてくる。
Silicone rubber is better against almost all gases than any other polymeric material. However, the separation ratio of each gas becomes small, and when used to enrich air with oxygen, only low-concentration oxygen-enriched air of 23% to 30% can be obtained. Therefore, in order to obtain oxygen-enriched air of 30% or more, a material with a higher separation ratio becomes necessary. Tokukaisho is one of them.
There is a gas separation membrane based on polyolefin or diene polymer disclosed in Japanese Patent No. 56-92925. Poly 4-methylpentene-1, one of the materials shown in this publication, has an oxygen permeability coefficient of approximately 2.5×10 -9 cc・cm/cm 2・secHg, which is less than one-tenth that of silicone rubber. However, the separation ratio between oxygen and nitrogen is high, reaching a value of approximately 4.0. Accordingly,
Using this material, approximately 40% oxygen enriched air can be easily obtained. However, since the permeability coefficient is small, if the film thickness is the same as that of silicone rubber, the amount of oxygen obtained will be about one-tenth or less. From this point of view, thin film technology becomes extremely important when using such materials.

そこで我々はこの材料に関して薄膜化の実験を
行ない気体透過膜への応用を検討した。その結果
ポリー4−メチルペンテン−1は溶剤への溶解性
が悪くきわめて成膜性が悪いことがわかつた。ま
たポリブタジエンの場合は非常に成膜性が良好で
あることがわかつた。しかし両者の場合その気体
の分離性は優れるが非常に透過性が悪くそれぞれ
の酸素透過流量は多孔質ポリプロピレンを支持体
として製膜した場合、前者が8.68×10-5c.c./cm2
sec・cmHgで後者は6.20×10-5c.c./cm2・sec・cm
Hgであつた。そして気体分離性は酸素と窒素で
それぞれ約3.7と約3.0であつた。この透過流量の
値から有効膜厚を計算すると両者とも約0.3μmと
なり比較的厚くなつてしまう。
Therefore, we conducted experiments on thinning this material and considered its application to gas permeable membranes. As a result, it was found that poly-4-methylpentene-1 has poor solubility in solvents and extremely poor film-forming properties. It was also found that polybutadiene has very good film forming properties. However, in both cases, the gas separation property is excellent, but the permeability is very poor, and the oxygen permeation flow rate for each is 8.68 × 10 -5 cc/cm 2 when the film is formed using porous polypropylene as a support.
sec・cmHg, the latter is 6.20×10 -5 cc/cm 2・sec・cm
It was Hg. The gas separation properties were approximately 3.7 and 3.0 for oxygen and nitrogen, respectively. When the effective film thickness is calculated from this permeation flow rate value, it is approximately 0.3 μm for both, which is relatively thick.

この様に膜厚が厚くなる原因としては第1図に
示すように膜材料1が支持体2の孔3内へ含浸す
る現象が生じているものと思われる。つまりガラ
ス転移温度Tgが常温以下にあるような高分子で
は常温で膜が屈曲性に富むため膜上面より圧力が
加わると第1図に示すように支持体孔3内への含
浸が生じ結果的に膜厚が厚くなつてしまうものと
思われる。
The reason for the increase in film thickness is thought to be the phenomenon in which the membrane material 1 impregnates into the pores 3 of the support 2, as shown in FIG. In other words, in the case of polymers whose glass transition temperature Tg is below room temperature, the membrane is highly flexible at room temperature, so when pressure is applied from the top surface of the membrane, impregnation into the support pores 3 occurs as shown in Figure 1. It is thought that the film thickness will become thicker.

すなわち、Tgが常温以下である高分子は常温
において屈曲性に富むため、仮にラングミユア法
により水面上で高分子薄膜が形成できても、多孔
質支持体2上に引き上げると膜材料1は支持体孔
3中へ入り込んでしまい、高分子は第1図に示す
ような状態になる。従がつて膜厚が厚くなり気体
透過流量は非常に小さくなつてしまう。
In other words, since polymers with Tg below room temperature have high flexibility at room temperature, even if a thin polymer film can be formed on the water surface by the Langmiur method, when pulled up onto the porous support 2, the membrane material 1 will not form on the support. The polymer enters into the pore 3, and the polymer becomes in the state shown in FIG. As a result, the film thickness increases and the gas permeation flow rate becomes extremely small.

発明の目的 本発明はこのような欠点を克服し、気体透過性
に優れ、かつ分離性も良い選択気体透過性膜を得
ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to overcome these drawbacks and to obtain a selective gas permeable membrane that has excellent gas permeability and good separation properties.

発明の構成 本発明はTgが常温以下の高分子材料の層と支
持体との間にポリオルガノシロキサンを主成分と
するシリコーン系共重合体高分子からなる成膜性
のすぐれた高気体透過性高分子層を挿入して複合
膜化した選択気体透過性複合膜である。
Structure of the Invention The present invention provides a highly gas-permeable film with excellent film-forming properties consisting of a silicone-based copolymer polymer containing polyorganosiloxane as a main component between a layer of a polymeric material whose Tg is below room temperature and a support. This is a selective gas permeable composite membrane created by inserting a molecular layer.

実施例の説明 以下本発明を実施例について図面とともに詳細
に説明する。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to embodiments and drawings.

第2図は本発明による選択気体透過性複合膜の
実施例を示す。図において、1はTgが常温以下
で、気体分離性は比較的よいが、気体透過性の悪
い高分子材料Bより成る薄膜である。高分子材料
としては、ポリブテン、ポリペンテン、ポリメチ
ルペンテン、ポリヘキセン、ポリメチルヘキサン
で示されるポリオレフインおよびポリブタジエ
ン、ポリイソプレンで示されるジエンポリマーか
ら成る群より選ばれた少なくとも1種のポリマー
が使用される。2は多孔質支持体で、多孔質ポリ
プロピレンなどが使用される。3は多孔質支持体
2の孔、4は成膜性に優れ、かつ気体透過性の高
い高分子Aの薄膜である。高分子Aとしてはポリ
オルガノシロキサンを主成分とするシリコーン系
共重合体高分子が好適で、たとえばポリヒドロキ
シスチレン−ポリジメチルシロキサン共重合体が
好適である。高分子Aと高分子Bとから成る複合
膜は気体透過性に優れた高分子A層4を支持体2
側に配することにより高気体透過性で、かつ気体
分離性の良い気体透過複合膜を与える。つまり気
体透過性の良い材料(高分子A)の層4を高分子
B層1と支持体2との間に設けているため、この
層4が高分子B層1の支持体孔3への侵入を防止
するので、高分子B層1は非常に薄く構成するこ
とができる。
FIG. 2 shows an embodiment of a selective gas permeable composite membrane according to the present invention. In the figure, 1 is a thin film made of polymeric material B, which has a Tg below room temperature and relatively good gas separation, but poor gas permeability. As the polymer material, at least one polymer selected from the group consisting of polyolefins such as polybutene, polypentene, polymethylpentene, polyhexene, and polymethylhexane, and diene polymers such as polybutadiene and polyisoprene is used. 2 is a porous support, and porous polypropylene or the like is used. 3 is the pore of the porous support 2, and 4 is a thin film of polymer A which has excellent film formability and high gas permeability. As the polymer A, a silicone copolymer polymer containing polyorganosiloxane as a main component is suitable, such as a polyhydroxystyrene-polydimethylsiloxane copolymer. A composite membrane consisting of polymer A and polymer B has a polymer A layer 4 with excellent gas permeability as a support 2.
By disposing it on the side, a gas permeable composite membrane with high gas permeability and good gas separation property is provided. In other words, since the layer 4 of a material with good gas permeability (polymer A) is provided between the polymer B layer 1 and the support 2, this layer 4 is able to penetrate the support pores 3 of the polymer B layer 1. Since it prevents intrusion, the polymer B layer 1 can be constructed very thin.

そして上記層4は主にシリコーン系共重合体高
分子で構成されるため非常に気体透過性に優れ、
複合化した時高分子B層1の特性をほとんど劣化
させずに維持する。従がつて高分子Bを単独使用
した場合に比較して、気体分離性は高いまま維持
され、変化はないが気体透過性が4〜10倍すぐれ
る選択気体透過性複合膜を与える。
Since the layer 4 is mainly composed of a silicone copolymer, it has excellent gas permeability.
When composited, the properties of the polymer B layer 1 are maintained with almost no deterioration. Therefore, compared to the case where polymer B is used alone, the gas separation property remains high, and a selective gas permeable composite membrane is obtained which has gas permeability that is 4 to 10 times better, although there is no change.

以下具体的な実施例について説明する。 Specific examples will be described below.

<実施例 1> 高分子Aとして特開昭57−101879号公報に示さ
れるポリヒドロキシスチレン(PHS)−ポリジメ
チルシロキサン(PDMS)共重合体を用い、高
分子Bとしてポリブタジエン(日本合成ゴム(株)
RB−810)を用い、それぞれ2〜4重量%ベン
ゼン溶液を調整後ラングミユア法により水面上に
各高分子膜を展開した。支持体は多孔質ポリプロ
ピレン(ポリプラスチツク社製ジユラガード
2400)を使用した。それぞれの高分子膜をA、B
の順で支持体上にすくい上げて複合膜を作成し
た。この複合膜の気体透過特性を第3図aに示
す。第3図aに示すようにこの複合膜の気体透過
特性は非常にすぐれ、酸素透過流量が2×10-3
c.c./cm2・sec・cmHgで酸素と窒素の分離比は約
3.0であつた。
<Example 1> Polyhydroxystyrene (PHS)-polydimethylsiloxane (PDMS) copolymer shown in JP-A-57-101879 was used as polymer A, and polybutadiene (Japan Synthetic Rubber Co., Ltd.) was used as polymer B. )
Using RB-810), each polymer membrane was spread on the water surface by the Langmiure method after preparing a 2 to 4% by weight benzene solution. The support is porous polypropylene (Jyuragard manufactured by Polyplastics)
2400) was used. Each polymer membrane is labeled A and B.
A composite membrane was prepared by scooping it onto a support in this order. The gas permeation characteristics of this composite membrane are shown in Figure 3a. As shown in Figure 3a, the gas permeation properties of this composite membrane are very good, with an oxygen permeation flow rate of 2×10 -3
The separation ratio of oxygen and nitrogen is approximately cc/ cm2・sec・cmHg.
It was 3.0.

第3図bは高分子Aを使用せず高分子Bとして
ブタジエン(日本合成ゴム(株)RB−810)のみを
実施例1と同様の方法で支持体にすくい上げたと
きの特性であり、従来例のものである。同図から
わかるように、ポリブタジエンだけの場合は酸素
透過量が非常に小さく2.5×10-4c.c./cm2・sec・cm
Hgである。したがつて実施例1に示した本発明
による複合膜はポリブタジエンだけの場合に比し
て酸素透過量が約8倍に上昇する。
Figure 3b shows the characteristics when only butadiene (RB-810, manufactured by Nippon Gosei Rubber Co., Ltd.) was scooped onto the support as polymer B without using polymer A, and in the same manner as in Example 1. This is an example. As can be seen from the figure, in the case of only polybutadiene, the oxygen permeation rate is extremely small, 2.5×10 -4 cc/cm 2・sec・cm
It is Hg. Therefore, the composite membrane according to the present invention shown in Example 1 has an oxygen permeation rate that is about 8 times higher than that of a membrane made of only polybutadiene.

以上の実施例では、高分子Bとしてポリブタジ
エンのみを示したが、前述したその他の高分子を
利用した場合も全く同様である。
In the above examples, only polybutadiene was shown as the polymer B, but the same is true even if the other polymers mentioned above are used.

以上のような構成の複合膜は、燃焼機器、医療
用、内燃機関、廃棄物処理等に利用できる。
The composite membrane having the above structure can be used for combustion equipment, medical use, internal combustion engines, waste treatment, etc.

発明の効果 以上のように本発明はTgが常温以下になる高
分子Bと多孔質支持体との間にシリコーン系共重
合体高分子Aを介在させて複合化した選択気体透
過性複合膜であり、高分子Bだけの膜特性に比較
して気体分離性は高いまま変化せず4〜10倍の気
体透過性をもつ選択気体透過性複合膜を得ること
ができる。
Effects of the Invention As described above, the present invention is a selective gas permeable composite membrane in which a silicone copolymer polymer A is interposed between a polymer B whose Tg is below room temperature and a porous support. , it is possible to obtain a selective gas permeable composite membrane having a gas permeability 4 to 10 times higher than that of polymer B alone, with gas separation properties remaining high and unchanged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の選択気体透過性膜の構造を示す
断面図、第2図は本発明の一実施例における選択
気体透過性複合膜を示す断面図、第3図は従来例
および本発明による選択気体透過性膜の酸素窒素
分離比−酸素透過流量特性図である。 1……Tgが常温以下の高分子膜、2……支持
体、3……支持体孔、4……シリコーン系共重合
体高分子膜。
FIG. 1 is a sectional view showing the structure of a conventional selective gas permeable membrane, FIG. 2 is a sectional view showing a selective gas permeable composite membrane according to an embodiment of the present invention, and FIG. 3 is a sectional view showing the structure of a conventional selective gas permeable membrane and the present invention. FIG. 3 is a graph showing the oxygen/nitrogen separation ratio-oxygen permeation flow rate characteristic of a selective gas permeable membrane. 1...Polymer membrane with Tg below room temperature, 2...Support, 3...Support pores, 4...Silicone copolymer polymer membrane.

Claims (1)

【特許請求の範囲】 1 ガラス転移温度が常温以下である高分子から
なる第1の層を、ポリオルガノシロキサンを主成
分となるシリコーン系共重合体高分子からなる第
2の層を介して多孔質支持体に支持させることを
特徴とする選択気体透過性複合膜。 2 シリコーン系共重合体高分子がポリヒドロキ
シスチレン−ポリジメチルシロキサン共重合体で
ある特許請求の範囲第1項記載の選択気体透過性
複合膜。 3 ガラス転移温度が常温以下である高分子がポ
リブテン、ポリペンテン、ポリメチルペンテン、
ポリヘキサン、ポリメチルヘキサンで示されるポ
リオレフインおよびポリブタジエン、ポリイソプ
レンで示されるジエンポリマーから成る群より選
ばれた少なくとも1種のポリマーである特許請求
の範囲第1項記載の選択気体透過性複合膜。
[Scope of Claims] 1. A first layer made of a polymer whose glass transition temperature is below room temperature is interposed in a porous layer through a second layer made of a silicone copolymer polymer mainly composed of polyorganosiloxane. A selective gas permeable composite membrane characterized in that it is supported on a support. 2. The selective gas permeable composite membrane according to claim 1, wherein the silicone copolymer polymer is a polyhydroxystyrene-polydimethylsiloxane copolymer. 3 Polymers whose glass transition temperature is below room temperature include polybutene, polypentene, polymethylpentene,
The selective gas permeable composite membrane according to claim 1, which is at least one polymer selected from the group consisting of polyolefins represented by polyhexane, polymethylhexane, and diene polymers represented by polybutadiene and polyisoprene.
JP1134984A 1989-05-29 1989-05-29 Selectively gas permeable multilayer membrane Granted JPH02139023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134984A JPH02139023A (en) 1989-05-29 1989-05-29 Selectively gas permeable multilayer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134984A JPH02139023A (en) 1989-05-29 1989-05-29 Selectively gas permeable multilayer membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57222408A Division JPS59111478A (en) 1982-12-17 1982-12-17 Fadar device

Publications (2)

Publication Number Publication Date
JPH02139023A JPH02139023A (en) 1990-05-29
JPH0474047B2 true JPH0474047B2 (en) 1992-11-25

Family

ID=15141207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134984A Granted JPH02139023A (en) 1989-05-29 1989-05-29 Selectively gas permeable multilayer membrane

Country Status (1)

Country Link
JP (1) JPH02139023A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831025B (en) * 2014-03-03 2015-10-28 中山火炬职业技术学院 A kind of preparation method of carbon black modification PDMS pervaporation priority dealcoholization diffusion barrier
US11617989B1 (en) 2020-09-04 2023-04-04 King Saud University Extraction of benzene from benzene/cyclohexane mixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874986A (en) * 1974-05-20 1975-04-01 Gen Electric Laminated porous/non-porous membranes
JPS5959214A (en) * 1982-09-28 1984-04-05 Asahi Glass Co Ltd Gas separating composite membrane
JPS6256775A (en) * 1985-09-03 1987-03-12 大同特殊鋼株式会社 Method of controlling pattern of quantity of suction of gas containing dust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874986A (en) * 1974-05-20 1975-04-01 Gen Electric Laminated porous/non-porous membranes
JPS5959214A (en) * 1982-09-28 1984-04-05 Asahi Glass Co Ltd Gas separating composite membrane
JPS6256775A (en) * 1985-09-03 1987-03-12 大同特殊鋼株式会社 Method of controlling pattern of quantity of suction of gas containing dust

Also Published As

Publication number Publication date
JPH02139023A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US4933082A (en) Gas-permeable laminate
JPH0610277B2 (en) Membrane material
JPH0457372B2 (en)
GB8410293D0 (en) Composite membrane for gas separation
JPS6256775B2 (en)
US4751104A (en) Preparation of gas selective membranes
JPH0474047B2 (en)
JPH0413011B2 (en)
JPH0224574B2 (en)
JPH0155658B2 (en)
JPH0194917A (en) Permselective composite membrane for gas
JPS57122906A (en) Selective permeable film
JPS63278525A (en) Production of vapor-liquid separation membrane
JPS5959210A (en) Gas permselective composite membrane
JPS60114324A (en) Gas permeable compound membrane
JPS62136224A (en) Composite membrane for separating gas
JPS61120617A (en) Composite membrane for separating gas
Suzuki et al. Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation
JPH0380925A (en) Gas permselective membrane
JP3295144B2 (en) Gas separation composite membrane
JPH0332728A (en) Gas separating laminated membrane
JPH0421528B2 (en)
JPS61291018A (en) Gas permeable laminated body
JPS60227804A (en) Manufacture of separation membrane
JPH04317734A (en) Gas separating composite membrane and its production