JPS61120617A - Composite membrane for separating gas - Google Patents

Composite membrane for separating gas

Info

Publication number
JPS61120617A
JPS61120617A JP59241662A JP24166284A JPS61120617A JP S61120617 A JPS61120617 A JP S61120617A JP 59241662 A JP59241662 A JP 59241662A JP 24166284 A JP24166284 A JP 24166284A JP S61120617 A JPS61120617 A JP S61120617A
Authority
JP
Japan
Prior art keywords
membrane
gas
support
polymer
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59241662A
Other languages
Japanese (ja)
Inventor
Shigeru Ryuzaki
粒崎 繁
Kazuo Sugata
菅田 和夫
Takafumi Kajima
孝文 鹿嶋
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59241662A priority Critical patent/JPS61120617A/en
Publication of JPS61120617A publication Critical patent/JPS61120617A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only

Abstract

PURPOSE:To form a uniform membrane by a water surface development method, by laminating a polymer membrane excellent in close adhesiveness to a support and having large gas transmission coefficient and a polymer membrane having large gas transmission coefficient and gas separation coefficient to the support. CONSTITUTION:A porous support to be used has a surface average pore size of 0.004-0.3mum, a surface void ratio of 10-60% and a film thickness of 20-120mum. A first polymer membrane material has oxygen transmissivity of 10<-8>-10<-7>cccm/cm<2>seccmHg and pref. comprising polyorganosiloxane having good close adhesiveness to a support and capable of being formed into a membrane with a thickness of 0.01-0.1mum. A second layer has high gas separability and is pref. formed of a material capable of being formed into a membrane by development on the surface of water such as 4-methylpentene-1, ethyl cellulose or polyoxylene oxide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体分離用複合膜に関し、特に酸素と炭素ガス
又は炭酸ガスとメタンガスの分離に適した気体分離用複
合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a composite membrane for gas separation, and more particularly to a composite membrane for gas separation suitable for separating oxygen and carbon gas or carbon dioxide and methane gas.

従来例の構成とその問題点 気体弁ta模には、その分離しようとするU合気体の種
類によりそれぞれ異なった高分子材料が使用されている
。例えば、最近の気体分用膜としては酸素富化膜があり
、これはシリコーン、ポリキシレンオキシド、ポリ−4
−メチルペンテン−1、シリコーン−ポリカーボネート
共重合体等を素材としている。また、炭酸ガスと酸素の
分離にはセルロース誘導体が知られている。しかし、か
かる分離膜素材を実用に供するためには、膜厚をできる
だけ薄くすることによりガス透過速度の増大をはかり、
膜面積の縮小をはかる必要がある。この場合、薄膜の破
損を防ぐために多孔質支持体上に担持した状態で用いる
のが通常である。このツノが、としては、ポリマーの希
薄溶液を水面上に展開して薄膜を形成し、支持体上に担
持させる方法、あるいはポリマーの希薄溶液を支持体上
にコートもしくは含浸させる方法等が知られている。し
かし、これらの方法によって薄膜を得ようとする場合、
前者の方法では、薄膜はできるが材料によっては支持体
と!!しない欠点があり、また侵者の方法では、ポリマ
ー溶液が支持体とのなじみが必ずしら良好でなく、部分
的に充分な結合状態を呈さなかったり、厚みが不均一に
なる問題点があった。
Conventional Structure and Problems Different polymer materials are used in the gas valve model depending on the type of U gas to be separated. For example, recent gas distribution membranes include oxygen enrichment membranes, which are made of silicone, polyxylene oxide, poly-4
-Methylpentene-1, silicone-polycarbonate copolymer, etc. are used as materials. Furthermore, cellulose derivatives are known for separating carbon dioxide gas and oxygen. However, in order to put such separation membrane materials into practical use, it is necessary to increase the gas permeation rate by making the membrane thickness as thin as possible.
It is necessary to reduce the membrane area. In this case, the thin film is usually supported on a porous support in order to prevent damage to the thin film. There are two known methods for forming these horns, such as spreading a dilute solution of a polymer on the surface of water to form a thin film and supporting it on a support, or coating or impregnating a dilute solution of a polymer onto a support. ing. However, when trying to obtain thin films using these methods,
With the former method, a thin film can be produced, but depending on the material, it may be necessary to create a support! ! In addition, the polymer solution did not always fit well with the support, and some areas did not have a sufficient bonding state, and the thickness was uneven. .

発明の目的 本発明は、上記従来の欠点を解消するもので、水面展開
法によって多孔質支持体上に密着性よく均一に膜形成で
さ、しかも膜材料の持つ特性を損なわせることがないよ
うにすることを目的とする。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and is capable of forming a film uniformly with good adhesion on a porous support by a water surface spreading method, without impairing the properties of the film material. The purpose is to

発明の構成 上記[1的を達成するために1本発明は、多孔質支持体
上に、この支持体に対する密着性に優れ、かつガス透過
係数の大きい第111!目の高分子薄膜を形成し、さら
にこの第1層目の高分子WI膜上に、づ    それよ
りもガス透過係数及びガス分離係数の大きい第2層目の
高分子薄膜を形成してなる気体分離用複合膜を提供する
Structure of the Invention In order to achieve the above-mentioned object [1], the present invention provides a porous support with excellent adhesion to the support and a large gas permeability coefficient. A gas produced by forming a second layer of polymer thin film on the first layer of polymer WI film, and further forming a second layer of polymer thin film having a higher gas permeability coefficient and gas separation coefficient than the first layer of polymer WI film. Provides a composite membrane for separation.

実施例の説明 以下、本発明の実施例について説明する。Description of examples Examples of the present invention will be described below.

既に、発明の構成でも述べたように、本発明の気体分離
用複合膜は、多孔質支持体上に性質の異なる21類の高
分子ifl膜を積層したものである。
As already mentioned in the structure of the invention, the composite membrane for gas separation of the present invention is a composite membrane for gas separation in which 21 types of polymeric IFL membranes having different properties are laminated on a porous support.

本発明において、多孔質支持体は、表面の平均細化径を
0.004〜0.3μm 、好ましくは0.004〜0
.1μ■、表面空孔率を10〜60%、好ましくは20
〜40%、膜厚を20〜120μm、好ましくは20〜
60μ醜にするのが適当である。これら範囲を外れる場
合は、躾のピンホールによる破損を生じたり、ガス透過
速度の減少が起こるため好ましくないが、必ずしもこれ
に限定されるものではない。また、多孔質支持体の材料
としては、例えば、ポリスチレン、ポリスルホン、ポリ
四弗化エチレン、ポリプロピレン等が挙げられる。
In the present invention, the porous support has an average attenuation diameter of 0.004 to 0.3 μm, preferably 0.004 to 0.0 μm.
.. 1μ■, surface porosity 10-60%, preferably 20
~40%, film thickness 20~120μm, preferably 20~
It is appropriate to make it 60μ ugly. Outside these ranges, damage may occur due to pinholes or the gas permeation rate may decrease, which is undesirable, but the invention is not necessarily limited to this. Furthermore, examples of the material for the porous support include polystyrene, polysulfone, polytetrafluoroethylene, and polypropylene.

第1層目の高分子膜材料としては、ガス透過係数が、例
えば、PO2で10(〜1G−’ CG −cm / 
alSeG−1+’4 Qを有している必要がある。ま
た、この材料は上記支持体との密着性が良く、かつ0.
01〜0.1μmまでの薄膜化が可能でなければならな
い。ガス透過係数が小さかったり、膜厚が厚いと、流m
が少なくなり、特に燃焼用等の流量を多く必要とする分
野においては不適当である。
The first layer polymer membrane material has a gas permeability coefficient of, for example, 10 (~1 G-' CG-cm /
It is necessary to have alSeG-1+'4 Q. In addition, this material has good adhesion to the support and has 0.
It must be possible to reduce the film thickness to 0.01 to 0.1 μm. If the gas permeability coefficient is small or the film thickness is large, the flow rate m
This makes it unsuitable especially in fields that require a large flow rate, such as for combustion.

これら条件を満足するものとしては、ポリオルガノシロ
キサンあるいは、ポリジメチルシロキサンJ(重合体等
がある。ポリオルガノシ[1キサンについては特に限定
しないが、例えばポリジメチルシロキサン、ポリメチル
フェニルジ0キサン、ポリジフェニルシロキサン等があ
る。ポリジメチルシロキサン共重合体としては、ポリス
ルホン−ポリヒトOオシスヂレンーボリジメチルシOキ
サン共重合体を挙げることができ、特にポリジメチルシ
ロキサンの含有率60w t%以上のものが特に支持体
との密省性において有利である。
Examples of substances that satisfy these conditions include polyorganosiloxane and polydimethylsiloxane (polymers, etc.).Polyorganosiloxane is not particularly limited, but examples include polydimethylsiloxane, polymethylphenyldioxane, and polydiphenyl Siloxane, etc. Examples of polydimethylsiloxane copolymers include polysulfone-polyhuman oxysdyrene-boridimethylsiloxane copolymers, particularly those with a polydimethylsiloxane content of 60wt% or more. This is particularly advantageous in terms of compactness with the support.

第211!目の高分子膜材料は、目的の気・体に対する
分111機能が^く、かつ水面での展開において薄膜化
の可能な材料が有利である。FAえば、酸素と窒素の分
離においては、分離係数がnい、例えば4−メチルペン
テン−1、ポリスチレン等があり、酸素と炭酸ガス、あ
るいは#2!!ガスとメタンガスとの分離においては、
エチルセルロース、ポリキシレンオキシド等があるが、
必ずしもこれらに限定するものではない。これらはいず
れも2N目申独では水面での展開法において多持体と直
接密石するに困難な材料であり、第1層目を必要とする
ものである。
211th! It is advantageous for the polymer film material for the eye to be a material that has a high function for the target gas/body and can be made into a thin film when deployed on the water surface. For example, in the separation of oxygen and nitrogen, there are materials with a low separation coefficient such as 4-methylpentene-1, polystyrene, etc. ! In separating gas and methane gas,
There are ethyl cellulose, polyxylene oxide, etc.
It is not necessarily limited to these. All of these are materials that are difficult to form directly with the multi-bearing body in the water surface development method for 2N-order metals, and therefore require the first layer.

以下、本発明の効果を確認するために実際に行なった比
較試験について説明する。
A comparative test actually conducted to confirm the effects of the present invention will be described below.

比較例1 エチルセルロース(粘度1oc p s )をトルエン
に溶解して10%溶液とした。この溶液を水面上に厚み
が0.1μmとなるように展間し、この膜上に多孔質支
持体としてのジュラガード(セラニーズ# 社11 2400>を静かに置き、引き上げたが、模番
よtのまま水面上に残り、担持することはできなかった
Comparative Example 1 Ethylcellulose (viscosity 1ocps) was dissolved in toluene to make a 10% solution. This solution was spread on the water surface to a thickness of 0.1 μm, and a porous support of Duragard (Celaniese # Co. 11 2400) was gently placed on the membrane and pulled up. It remained on the water surface as t and could not be supported.

実施例1 ポリジメチルシロキサン(東しシリコーン(株))をベ
ンゼンに溶解して20%溶液とした。
Example 1 Polydimethylsiloxane (manufactured by Toshi Silicone Co., Ltd.) was dissolved in benzene to make a 20% solution.

この溶液を水面上に厚みが0.2μ−となるように展開
し、この股上に比較例1で用いた多孔質支持体と静かに
tき、引き上げることによりポリジメチルシロキサンの
模を多孔質支持体上に得た。この模を含めた全体の酸素
透過速度は、t、OKg/cdの圧力で16.3秒/l
0CCで、炭酸ガスとの分離比は5.Oであった。次に
、比較例1で得たエチルセルロースの10%トルエン溶
液を水面上に厚みが0.1μmになるように展開し、こ
の股上にポリジメチルシロキサンの膜を担持した多孔質
支持体を静かに費きポリジメチルシロキリン膜の上にエ
チルセルロース膜を付着し、その後エチルセルロースの
膜を3回繰り返し骨上した。この膜を含めた全体の酸素
透過速度は139/c+Iの圧力で30.8秒/IQc
cで、炭酸ガスとの分離比は7.1であった。
Spread this solution on the water surface to a thickness of 0.2 μ-, gently place the porous support used in Comparative Example 1 on the top of the water, and pull it up to form a polydimethylsiloxane model on the porous support. Got on the body. The overall oxygen permeation rate including this model is 16.3 seconds/l at a pressure of t, OKg/cd.
At 0CC, the separation ratio with carbon dioxide gas is 5. It was O. Next, the 10% toluene solution of ethyl cellulose obtained in Comparative Example 1 was spread on the water surface to a thickness of 0.1 μm, and the porous support carrying the polydimethylsiloxane film was gently placed on the crotch. An ethylcellulose membrane was attached on top of the polydimethylsiloquiline membrane, and then the ethylcellulose membrane was placed on the bone three times. The overall oxygen permeation rate including this membrane is 30.8 seconds/IQc at a pressure of 139/c+I.
c, the separation ratio with carbon dioxide gas was 7.1.

また、炭酸ガスとメタンガスの分離比は4,6であった
Moreover, the separation ratio of carbon dioxide gas and methane gas was 4.6.

実施例2 ポリビトロキシスチレン−ポリスルホン−ポリジメチル
シロキサンの共重合体(ポリジメチルシロキサン含有率
65w t%)をベンゼンに溶解して2%溶液とし、テ
トラヒトOフランを5%添加しこの溶液を水面上に厚み
が0.2μIとなるように展開し、実施例1と同様に多
孔質支持体上に担持し、共重合体の膜を多孔質支持体上
に得た。この膜を含めた全体の酸素透過速度は、1に9
1011の圧力で10.8秒/100C1炭酸ガスとの
分離比は4.2であった。次に実施例1と同様にセルロ
ース膜を付着させたところ、全体の酸素透過速度は25
.4秒/l0CGで炭酸ガスとの分離比は5,3であっ
た。
Example 2 A copolymer of polybitroxystyrene-polysulfone-polydimethylsiloxane (polydimethylsiloxane content 65wt%) was dissolved in benzene to make a 2% solution, 5% of tetrahydrofuran was added, and this solution was poured onto the water surface. A copolymer film was spread on the porous support in the same manner as in Example 1 to obtain a copolymer film on the porous support. The overall oxygen permeation rate including this membrane is 1 to 9
The separation ratio with 10.8 seconds/100C1 carbon dioxide gas at a pressure of 1011 was 4.2. Next, a cellulose membrane was attached in the same manner as in Example 1, and the overall oxygen permeation rate was 25.
.. The separation ratio with carbon dioxide gas was 5.3 at 4 seconds/l0CG.

また、炭酸ガスとメタンガスの分離比は3.8であった
Further, the separation ratio between carbon dioxide gas and methane gas was 3.8.

実施例3 実施例1で用いたエチルセルロースの代わりにポリキシ
レンオキシドを用いて、同様に0.2μmの厚みに付着
した。全体の酸素透過jili度は、1 Ky/aIの
圧力で50秒/1GGG、炭酸ガスとの分離比は4.5
であった。また、炭酸ガスとメタンガスの    □分
離比は、16.8であった。
Example 3 Polyxylene oxide was used in place of the ethyl cellulose used in Example 1, and it was similarly deposited to a thickness of 0.2 μm. The overall oxygen permeability is 50 seconds/1 GGG at a pressure of 1 Ky/aI, and the separation ratio with carbon dioxide is 4.5.
Met. Furthermore, the separation ratio between carbon dioxide gas and methane gas was 16.8.

実施例4 実施例2で用いたエチルセル0−スの代わりにポリキシ
レンオキシドを用いて、同様に0,2μ−の厚みに付着
した。全体の酸素透過速度は、1 Kg/aIの圧力で
42.6秒/l0CC1炭酸ガスとの分離比は3.8ま
た、炭酸ガスとメタンガスの分離比は14.1であった
Example 4 Polyxylene oxide was used in place of the ethyl cellulose used in Example 2, and the film was deposited to a thickness of 0.2 μm in the same manner. The overall oxygen permeation rate was 42.6 seconds/l0CC1 at a pressure of 1 Kg/aI.The separation ratio with carbon dioxide gas was 3.8, and the separation ratio between carbon dioxide gas and methane gas was 14.1.

発明の効果 以F述べたように、本発明のよれば、多孔質支持体に、
これと密着性がよく、かつガス透過係数の高い第1層目
の高分子薄膜を形成し、さらにこの高分子薄膜の上にこ
れよりもガス透過係数及びガス分離係数の大きい第21
!!i目の高分子薄膜を形成する構成なので、水面展開
法によって均一に膜形成を行なうことができ、しかもそ
れによ、りて膜材料の特性を損なうことがないという効
果がある。
Effects of the Invention As described above, according to the present invention, the porous support has
A first layer of polymer thin film having good adhesion and a high gas permeability coefficient is formed on top of this polymer thin film, and a second layer having a higher gas permeability coefficient and gas separation coefficient than this thin polymer film is formed.
! ! Since the structure forms the i-th polymer thin film, the film can be formed uniformly by the water surface spreading method, and the properties of the film material are thereby not impaired.

Claims (1)

【特許請求の範囲】 1、多孔質支持体上に、この支持体に対する密着性に優
れ、かつガス透過係数の大きい第1層目の高分子薄膜を
形成し、さらにこの第1層目の高分子薄膜上に、それよ
りもガス透過係数及びガス分離係数の大きい第2層目の
高分子薄膜を形成してなる気体分離用複合膜。 2、第1層目の高分子薄膜が、ポリオルガノシロキサン
もしくはポリジメチルシロキサン共重合体からなる特許
請求の範囲第1項に記載の気体分離用複合膜。 3、第2層目のn分子膜がエチルセルロースもしくはポ
リキシレンオキシドからなる特許請求の範囲第1項又は
第2項に記載の気体分離用複合膜。
[Claims] 1. A first layer of a thin polymer film having excellent adhesion to the support and a large gas permeability coefficient is formed on a porous support, and A composite membrane for gas separation comprising a second layer of a polymer thin film having a larger gas permeability coefficient and gas separation coefficient formed on a molecular thin film. 2. The composite membrane for gas separation according to claim 1, wherein the first polymer thin film is made of polyorganosiloxane or polydimethylsiloxane copolymer. 3. The composite membrane for gas separation according to claim 1 or 2, wherein the second layer n-molecular membrane is made of ethyl cellulose or polyxylene oxide.
JP59241662A 1984-11-15 1984-11-15 Composite membrane for separating gas Pending JPS61120617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241662A JPS61120617A (en) 1984-11-15 1984-11-15 Composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241662A JPS61120617A (en) 1984-11-15 1984-11-15 Composite membrane for separating gas

Publications (1)

Publication Number Publication Date
JPS61120617A true JPS61120617A (en) 1986-06-07

Family

ID=17077650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241662A Pending JPS61120617A (en) 1984-11-15 1984-11-15 Composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS61120617A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296822A (en) * 1987-05-28 1988-12-02 Matsushita Electric Ind Co Ltd Composite membrane for gas separation
US5868428A (en) * 1994-11-21 1999-02-09 Toyota Jidosha Kabushiki Kaisha Structure for mounting a canister for reducing transmission of vibration generated in a wheel to the canister
JP2008013126A (en) * 2006-07-07 2008-01-24 Fuji Heavy Ind Ltd Fuel cooling device for vehicle
WO2014141868A1 (en) * 2013-03-14 2014-09-18 富士フイルム株式会社 Gas separation composite membrane, gas separation module, gas separation device and gas separation method
CN104128101A (en) * 2014-07-18 2014-11-05 南京工业大学 Silver doped metal ceramic composite membrane and preparation method thereof
WO2016136396A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296822A (en) * 1987-05-28 1988-12-02 Matsushita Electric Ind Co Ltd Composite membrane for gas separation
US5868428A (en) * 1994-11-21 1999-02-09 Toyota Jidosha Kabushiki Kaisha Structure for mounting a canister for reducing transmission of vibration generated in a wheel to the canister
JP2008013126A (en) * 2006-07-07 2008-01-24 Fuji Heavy Ind Ltd Fuel cooling device for vehicle
WO2014141868A1 (en) * 2013-03-14 2014-09-18 富士フイルム株式会社 Gas separation composite membrane, gas separation module, gas separation device and gas separation method
CN104128101A (en) * 2014-07-18 2014-11-05 南京工业大学 Silver doped metal ceramic composite membrane and preparation method thereof
WO2016136396A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPWO2016136396A1 (en) * 2015-02-27 2017-08-10 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
US10507437B2 (en) 2015-02-27 2019-12-17 Fujifilm Corporation Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method

Similar Documents

Publication Publication Date Title
JPH0418889B2 (en)
JPS61120617A (en) Composite membrane for separating gas
GB2138702B (en) Composite membrane for gas separation
US4732586A (en) Asymmetric or composite polyquinoxaline base membranes, possible application to gaseous permeation and more particularly gaseous mixture fractionation, and mainly dehydration and deacidification of gases, especially gaseous hydrocarbons
JPS58180206A (en) Production of selective permeable membrane
JPH03262523A (en) Oxygen enriching composite membrane
JPS59112802A (en) Gas permselective composite membrane
JPH0747221A (en) Composite membrane for gas separation and its preparation
JPS60257820A (en) Gas separation composite membrane
JPS63278525A (en) Production of vapor-liquid separation membrane
JPH0413012B2 (en)
JPH0421528B2 (en)
JPS5959210A (en) Gas permselective composite membrane
JPS59301A (en) Selective gas permeable composite membrane
Suzuki et al. Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation
JPS6115718A (en) Composite membrane for gas separation
JPS61107922A (en) Composite membrane for gas separation
JPS62136224A (en) Composite membrane for separating gas
JPH0761426B2 (en) Selective gas permeable composite membrane
JPH02139023A (en) Selectively gas permeable multilayer membrane
JPH0440223A (en) Gas separation composite membrane
JPS60110303A (en) Permselective membrane and composite film
JPS58223408A (en) Gas separation film
JPS5959736A (en) Production of oxygen enriching membrane
JPS60227804A (en) Manufacture of separation membrane