JPS6115718A - Composite membrane for gas separation - Google Patents

Composite membrane for gas separation

Info

Publication number
JPS6115718A
JPS6115718A JP59132920A JP13292084A JPS6115718A JP S6115718 A JPS6115718 A JP S6115718A JP 59132920 A JP59132920 A JP 59132920A JP 13292084 A JP13292084 A JP 13292084A JP S6115718 A JPS6115718 A JP S6115718A
Authority
JP
Japan
Prior art keywords
gas separation
porous support
membrane
composite membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132920A
Other languages
Japanese (ja)
Other versions
JPH0451217B2 (en
Inventor
Kuniyasu Jiyou
邦恭 城
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59132920A priority Critical patent/JPS6115718A/en
Publication of JPS6115718A publication Critical patent/JPS6115718A/en
Publication of JPH0451217B2 publication Critical patent/JPH0451217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas separation composite membrane having high separation capacity and showing high and stable permeability over a long period of time, by forming a polymer membrane having a high gas separation property onto a porous support of which the surface openings are sealed by polyorganosilylacetylene. CONSTITUTION:A polymer membrane having a high gas separation property is formed onto the surface of a porous support of which the surface openings are sealed with polyorganosilylacetylene represented by formula. The transmission coefficient of oxygen of polyorganosilylacetylene is 6-8X10<-7>cm<2>(STP)cm/cm. Hg.sec.cm<2> and the MW thereof is 200,000 or more. As the porous support, one comprising polystyrene with a pore size of 50-500Angstrom is used and one, wherein parts as near as possible to the surfaces of fine pores are sealed by the aforementioned polyacetylene, is used. As the polymer having the high gas separation property, poly(4-methylpentene-1) is used and formed into a membrane with a thickness of 0.3mum or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体分離用複合膜に関する。更にくわしくは膜
分離法により空気から酸素富化空気を得るために有効な
気体分離用複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite membrane for gas separation. More specifically, the present invention relates to a composite membrane for gas separation that is effective for obtaining oxygen-enriched air from air by a membrane separation method.

〔従来の技術〕[Conventional technology]

近年、脱法による気体分離、特に膜分離による酸素富化
空気を得る方法が注目されている。この膜分離に実用上
使用され得る膜は、気体分離性能が高く、かつ気体透過
性能も高いという条件を満たさなければならない。その
為、膜の形態は気体分離性能の^い膜素材を薄膜とし、
多孔質支持体上に複合化した複合膜とする必要がある。
In recent years, gas separation by demethods, particularly methods for obtaining oxygen-enriched air by membrane separation, have attracted attention. A membrane that can be practically used for this membrane separation must satisfy the conditions of high gas separation performance and high gas permeation performance. Therefore, the form of the membrane is a thin membrane made of membrane material with high gas separation performance.
It is necessary to form a composite membrane on a porous support.

該複合膜の作成方法としては、多孔質支持体に高気体分
離性を有する膜素材のコーティング溶液をコーティング
するコーティング法や、反応性モノマーを低温プラズマ
により重合させ、薄膜を多孔質支持体上に形成させるプ
ラズマ重合法(低温プラズマ化学(化学の領域、増刊1
11号、穂積啓一部編))や、高気体分離性を有する重
合体の稀薄溶液を水面に滴下し、水・面上に広がった稀
薄溶液から溶媒が蒸発した後に形成された水面上の薄膜
を、多孔質支持体上に担持させる水面キレスト法などが
知られている。しかしながら、従来より知られている多
孔質支持体、たとえば、ポリスルホン多孔質支持膜、エ
チルセルロース多孔質支持膜、ポリプロピレン多孔質支
持膜などは、気体透過抵抗は小さいが、孔の大きさが約
50Å以上と大きい為、コーティング法で作成した複合
膜は、コーティング溶液が孔の中に含浸し、薄膜の膜厚
が厚くなる。
The composite membrane can be produced by a coating method in which a porous support is coated with a coating solution of a membrane material having high gas separation properties, or by polymerizing a reactive monomer using low-temperature plasma to form a thin film on a porous support. Plasma polymerization method to form (low-temperature plasma chemistry (area of chemistry, special edition 1)
11, edited by Keiichi Hozumi)) or a thin film on the water surface that is formed after a dilute solution of a polymer with high gas separation properties is dropped onto the water surface and the solvent evaporates from the dilute solution that spreads on the water/surface. A water surface cleavage method, in which a porous support is supported on a porous support, is known. However, conventionally known porous supports, such as polysulfone porous support membranes, ethyl cellulose porous support membranes, and polypropylene porous support membranes, have low gas permeation resistance, but have pore sizes of about 50 Å or more. Because of their large size, in composite membranes created using the coating method, the coating solution impregnates into the pores, increasing the thickness of the thin film.

またプラズマ重合法で作成した複合膜においても、重合
初期に得られた重合体は、孔の中に落ら込み、その後に
多孔質支持体上に薄膜が形成される為、前記コーディン
グ法同様に膜厚が厚くなり気体透過性能が低いという欠
点があった。また、水面キャスト法で得られた複合膜は
、薄膜が固体の状態で多孔質支持体に担持される為、作
成性の膜厚は薄く出来るが、複合膜を長期使用している
と、多孔質支持体上の薄膜が孔の大きさが大きい為、孔
の中に落ち込み破断したり、気体透過性能が低下すると
いう欠点があった。
In addition, even in composite membranes created by the plasma polymerization method, the polymer obtained at the initial stage of polymerization falls into the pores and then forms a thin film on the porous support, so it is similar to the coating method described above. The drawback was that the film was thick and its gas permeability was low. In addition, composite membranes obtained by the water surface casting method can be made thinner because the thin membrane is supported on a porous support in a solid state, but if the composite membrane is used for a long time, the porous Since the thin film on the support has large pores, it has the drawback that it falls into the pores and breaks, and gas permeation performance deteriorates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記欠点を解消せしめるために、高気
体分離性能を右し、かつ高気体透過性能が長期間安定な
気体分離用複合膜を提供せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite membrane for gas separation which has high gas separation performance and whose high gas permeation performance is stable for a long period of time, in order to eliminate the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記]]的を達成するため次の構成を有する
。すなわち、構造式が、 CH3 (n−0〜2))で表わされるポリアセチレンにより、
孔表面の開口部分が閉塞された多孔質支持体上に、高気
体分離性を有する重合体からなる薄Il@が形成されて
なる気体分離用複合膜である。
The present invention has the following configuration to achieve the above objective. That is, by polyacetylene whose structural formula is represented by CH3 (n-0 to 2),
This is a composite membrane for gas separation, in which a thin Il@ made of a polymer having high gas separation properties is formed on a porous support whose pore surface openings are closed.

 H3 本発明におりる、構造式が+C−C← 1−1 s C−8i −CHs (Rは(CH2)n C1−13(n =0〜2))で
表わされるポリアセチレンとは、 CI−1s Cl−13−C:EC−8i −CH5(Rは(CI−
12)〆Cl−1s(n−〇〜2〉)で表わされる二置
換アセチレンを重合したものであり、重合触媒として、
丁a Cl sやNbCl5等を使用して不活性気体中
で50−80℃程度で加温して重合することにより得ら
れる。アルキル基Rは、n−0〜2が好ましい。n=3
以上では、ポリアセチレンの気体透過性能、特に酸素透
過係数Po 2 (a+t <STP’)・cm、′c
mHg−sec −al )が低いので、ポリアセチレ
ンで閉塞した多孔質支持体の気体透過抵抗が大きくなる
為、好ましくない。7I−0〜2のアルキル基Rを有す
るポリアセチレンは、酸素透過係数Po 2 (cJ 
(STP)−cm/cml−1g−sec −cffl
)が6〜Bxio−zであり、従来知られている重合体
に比して、大幅に気体透過係数が高い為、多孔質支持体
の孔を閉塞したにもかかわらず、多孔質支持体の気体透
過抵抗を大幅に大きくしないので好ましい。分子量は、
数平均分子量で20万以上か好ましい。20万に満たな
いと、膜形成性が低下し、多孔質支持体の孔表面の開口
部分を閉塞する際、孔の中で膜を形成しない為好ましく
ない。
H3 In the present invention, the polyacetylene represented by the structural formula +C-C←1-1s C-8i -CHs (R is (CH2)n C1-13 (n = 0 to 2)) is CI- 1s Cl-13-C:EC-8i-CH5 (R is (CI-
12) It is a product obtained by polymerizing disubstituted acetylene represented by Cl-1s (n-〇~2〉), and as a polymerization catalyst,
It can be obtained by polymerizing by heating at about 50 to 80°C in an inert gas using chloride, NbCl5, or the like. The alkyl group R is preferably n-0 to n-2. n=3
In the above, we will discuss the gas permeability of polyacetylene, especially the oxygen permeability coefficient Po 2 (a+t <STP')・cm, 'c
Since the mHg-sec-al) is low, the gas permeation resistance of the porous support plugged with polyacetylene becomes large, which is not preferable. Polyacetylene having an alkyl group R of 7I-0 to 2 has an oxygen permeability coefficient Po 2 (cJ
(STP)-cm/cml-1g-sec -cffl
) is 6 to Bxio-z, and has a significantly higher gas permeability coefficient than conventionally known polymers, so even if the pores of the porous support are blocked, the This is preferable because it does not significantly increase gas permeation resistance. The molecular weight is
A number average molecular weight of 200,000 or more is preferred. If it is less than 200,000, the film-forming property decreases, and when the openings on the pore surface of the porous support are closed, a film is not formed in the pores, which is not preferable.

本発明における、孔表面の開口部分が閉塞されたとは、
多孔質支持体の中を貫通している細孔の表面に開口して
いる部分をふさぐ事であり、出来るかぎり、細孔の表面
に近い部分を閉塞するのが好ましい。細孔の奥深くまで
閉塞すると、閉塞したポリアセチレン部分の気体透過抵
抗が大きくなって好ましくない。ポリアセチレンが細孔
の表面に近い部分を閉塞すれば、薄く多孔質支持体を覆
っていても良いが、その場合多孔質支持体を覆っている
ポリアセチレンの膜厚は薄ければ薄くほど、気体透過抵
抗が小さくなって好ましい。
In the present invention, the opening portion of the pore surface is closed.
The purpose is to close the portions of the pores penetrating through the porous support that open to the surface, and it is preferable to close the portions as close to the surface of the pores as possible. If the pores are deeply blocked, the gas permeation resistance of the blocked polyacetylene portion increases, which is undesirable. As long as the polyacetylene closes the part close to the surface of the pores, it may cover the porous support thinly, but in this case, the thinner the polyacetylene film covering the porous support, the better the gas permeation. This is preferable because the resistance is small.

本発明における多孔質支持体とは、孔の大きさが、50
Å以上500大以下である支持体であれば、特に限定さ
れない。孔の大きさが、50大に満たないと、気体透過
抵抗が大きくなり、気体分離用複合膜の多孔質支持体と
しては好ましくない。500人を越えると、孔を前述し
たポリアセチレンで完全に閉塞しようとすると、孔の奥
深くまでポリアセチレンが含浸する為、気体透過抵抗が
大きくなりすぎて好ましくない。上記孔(¥を有する多
孔質支持体として、ポリスルホン多孔質支持膜、エチル
セルロース多孔質支持膜、ポリアクリロニトリル多孔質
支持膜などの限外−過膜を上げることが出来る。その中
でも、機械的強度の点で、ポリスルホン多孔質支持膜が
好ましい。
The porous support in the present invention is defined as having a pore size of 50
There is no particular limitation as long as the support has a diameter of Å or more and 500 or less. If the pore size is less than 50, the gas permeation resistance will be large, making it undesirable as a porous support for a composite membrane for gas separation. If the number exceeds 500, if the pores are completely blocked with the polyacetylene described above, the polyacetylene will be impregnated deep into the pores, making gas permeation resistance too large, which is not preferable. As porous supports having the above-mentioned pores, ultra-permeable membranes such as polysulfone porous support membranes, ethyl cellulose porous support membranes, and polyacrylonitrile porous support membranes can be used. In this respect, polysulfone porous support membranes are preferred.

本発明における高気体分断性を有する重合体とは、気体
分11f(が高く、かつ気体透過性の比較的すぐれた重
合体であれば何でも良いが、薄膜形成性、気体分離性、
気体透過性のバランスの点で以下の重合体が好ましい。
The polymer having high gas separation properties in the present invention may be any polymer as long as it has a high gas content (11f) and relatively good gas permeability.
The following polymers are preferred in terms of gas permeability balance.

ポリ(4−メチルペンテン−1)、ポリエチレン/プロ
ピレン技重合体、ポリビニルトリメチルシランのビニル
系重合体。一般式が、 (但し、mは1,2.3の整数。R1は一〇H3、−C
21」 5 、 − C3ト1 了 、  = 04 
1−19  、 −Cs  1−1uのアルキル基から
成る群より選ばれる。)で表わされるポリフェニレンオ
キ[1イド、あるいは、一般式が 一← OC−N  l−1−Rs   −N  ト1−
C−0−R4−1−=π−C3H6−1−04  t−
1a−1−CsH+a−1R2は−02114,0−1
責C2H40す7、+Cs H6o−y−1+ C4I
」a Orl(Cs Hlo O)から成る群より選ば
れる。)で表わされるポリウレタン、あるいは一般式が 〇 =Cl−12、−C2H4−1−C31−1e−1−C
4hl a−1より成る群より選ばれる。ここでmは1
゜2.3の整数。)で表わされるポリスルホンが代表的
なものとして挙げられるが、これに限定されるものでは
ない。
Vinyl polymers of poly(4-methylpentene-1), polyethylene/propylene technology polymers, and polyvinyltrimethylsilane. The general formula is (however, m is an integer of 1, 2.3, R1 is 10H3, -C
21" 5, - C3 to 1, = 04
1-19, -Cs 1-1u. ), or if the general formula is 1← OC-N l-1-Rs -N
C-0-R4-1-=π-C3H6-1-04 t-
1a-1-CsH+a-1R2 is -02114,0-1
Responsibility C2H40su7, +Cs H6o-y-1+ C4I
”a Orl (Cs Hlo O). ) or whose general formula is 〇=Cl-12, -C2H4-1-C31-1e-1-C
4hl a-1. Here m is 1
An integer of ゜2.3. ) is a typical example of polysulfone, but it is not limited thereto.

その中でも、特に好ましいのは、ポリ(4メチルペンテ
ン−1)とポリビニルトリメチルシランである。該重合
体の薄膜の膜厚は、通常0.3μ以下が気体透過性能を
低下させないので好ましい。
Among these, particularly preferred are poly(4methylpentene-1) and polyvinyltrimethylsilane. The thickness of the thin film of the polymer is usually preferably 0.3 μm or less since this does not reduce gas permeation performance.

膜厚は、0.3μ以下であれば、薄ければ薄い程好まし
い。本発明の特徴である前述したボリアヒチレンで孔を
閉塞した多孔質支持体を使用しているため、膜厚が薄く
なりすぎて機械的強度がなく破断するという事はない。
As long as the film thickness is 0.3 μm or less, the thinner the film is, the more preferable it is. Since a porous support whose pores are closed with the aforementioned boriahytylene, which is a feature of the present invention, is used, there is no possibility that the film will become too thin and lack mechanical strength and break.

   □ 次に本発明の気体分離用複合膜の製造方法について説明
する。
□ Next, a method for manufacturing the composite membrane for gas separation of the present invention will be explained.

あらかじめ、ポリアセチレンの稀薄溶液を調整する。良
溶媒は、シクロヘキサン、トルエン、クロロホルム、四
塩化炭素などであるが、この良溶媒の中で、多孔質支持
体を侵さないものを選ぶ必要がある。たとえば、ポリス
ルホン多孔質支持膜を多孔質支持体して使用するならば
、支持膜の非溶媒であるシクロヘキサンが最適である。
Prepare a dilute solution of polyacetylene in advance. Good solvents include cyclohexane, toluene, chloroform, carbon tetrachloride, etc., but among these good solvents, it is necessary to select one that does not attack the porous support. For example, if a polysulfone porous support membrane is used as the porous support, cyclohexane, which is a non-solvent for the support membrane, is optimal.

温度を、0.01wt%〜1.Owt%に調製した溶液
を]−ティング液のウェット厚を10μ〜30μで多孔
質支持膜にコーティングし;50℃〜150℃あ熱風で
乾燥する。この様にして、孔をポリアセチレンで閉塞さ
れた多孔質支持膜が19られる。この多孔質支持膜上に
高気体分離性を有する重合体をベンゼン、トルエン、キ
シレン、ジクロメタン、シクロヘキサン、シクロヘキセ
ン、テトラクロロエタン等の溶媒に溶解した溶液でコー
ティングし、薄膜を形成させることにより本発明の気体
分離用複合膜が得られる。このときの高気体分離性を有
する重合体1g ハ、0.01〜1.Owt%、特ニ好
マL < =、0.03〜0,5wt%が適当である。
The temperature was adjusted to 0.01 wt% to 1. The porous support membrane is coated with the solution prepared to 0 wt % at a wet thickness of 10 μm to 30 μm; and dried with hot air at 50° C. to 150° C. In this way, a porous support membrane 19 whose pores are plugged with polyacetylene is obtained. The method of the present invention is achieved by coating this porous support membrane with a solution of a polymer having high gas separation properties dissolved in a solvent such as benzene, toluene, xylene, dichloromethane, cyclohexane, cyclohexene, or tetrachloroethane to form a thin film. A composite membrane for gas separation is obtained. At this time, 1 g of polymer having high gas separation property c) 0.01 to 1. Owt%, particularly preferable L<=, 0.03 to 0.5wt% is suitable.

この他、高気体分離性を有する重合体の薄膜を形成する
方法として、プラズマ重合法もある。この方法で気体分
離用複合膜を作成するには、前述した如く孔をポリアセ
チレンで閉塞した多孔質支持股上に、市販のプラズマ装
置により反応性七ツマ−をプラズマ重合して薄膜を形成
さけることにより得ることがtきる。
In addition, there is a plasma polymerization method as a method for forming a thin film of a polymer having high gas separation properties. In order to create a composite membrane for gas separation using this method, a thin film is formed by plasma polymerizing a reactive hexamer using a commercially available plasma device on a porous support whose pores are closed with polyacetylene as described above. You can get a lot.

なお、本発明にお【プる特性の評価基準は次のとおりで
ある。
The evaluation criteria for the characteristics used in the present invention are as follows.

(1)気体透過性、気体分離性 本発明の気体分離用複合膜を隔てて、−次側の圧力を2
 atm二次側の圧力を1atmにし、複合膜を透過し
てきた気体(酸素または窒素)透過速度を精密膜流吊甜
5F−101(スタンダード・テクノロジー社製)で測
定した。
(1) Gas permeability and gas separation property The composite membrane for gas separation of the present invention is separated so that the pressure on the next side can be reduced to 2
The pressure on the ATM secondary side was set to 1 atm, and the permeation rate of gas (oxygen or nitrogen) passing through the composite membrane was measured using a precision membrane flow hanger 5F-101 (manufactured by Standard Technology).

酸素透過速度を気体透過性能とし、酸素透過速度と窒素
透過j*度の比である分離係数を気体分離性能の評価基
準とした。
The oxygen permeation rate was defined as the gas permeation performance, and the separation coefficient, which is the ratio of the oxygen permeation rate to the nitrogen permeation j* degree, was used as the evaluation standard for the gas separation performance.

(実施例) 次に、実施例に基づいて本発明の実施態様を説明する。(Example) Next, embodiments of the present invention will be described based on Examples.

実施例1 ポリスルボン(商品名: P−1700、ユニオンカー
パイトン1製)をジメチルホルムアミドに溶解し、14
W1%溶液を調製する。この溶液をポリエステル433
4ftの不織布上にコーテイング液のウェット厚200
μで塗布し、水の凝固浴に浸漬する。この様にして、ポ
リスルホン多孔性支持膜を作成する。電子顕微鏡観察の
結果、表面に間口している孔径は約75.ぺであった。
Example 1 Polysulfone (trade name: P-1700, manufactured by Union Carpaiton 1) was dissolved in dimethylformamide, and 14
Prepare a 1% W solution. Add this solution to polyester 433
Wet thickness of coating liquid on 4ft non-woven fabric 200mm
Coat with μ and immerse in a coagulation bath of water. In this way, a polysulfone porous support membrane is created. As a result of electron microscopic observation, the diameter of the pores opening on the surface was approximately 75. It was bae.

触媒どしてTaCl5を20m Mをトルエンに溶解し
、窒素雰囲気下で80℃24時間で重合する。得られた
トリメチルシリルプロピンの数平均分子量は、50万で
あった。この重合体をシクロヘキサンの0、1wt%溶
液に調製し、あらかじめ作成したポリスルホン多孔質支
持股上にコーテイング液のウェット厚20μで塗布し、
140℃の熱風で乾燥した。
As a catalyst, 20mM of TaCl5 was dissolved in toluene and polymerized at 80°C for 24 hours under a nitrogen atmosphere. The number average molecular weight of the obtained trimethylsilylpropyne was 500,000. This polymer was prepared as a 0.1 wt% solution of cyclohexane, and applied to the polysulfone porous support crotch prepared in advance at a wet thickness of 20 μm as a coating liquid.
It was dried with hot air at 140°C.

次に、ポリ〈4−メチルペンテン−1) (商品名TP
X−MXOO1、三井石油化学社製)をシクロヘキサン
の0.1wt%溶液に調製し、先はど作成したトリメチ
ルシリルプロピンで孔表面の開口部分を閉塞したポリス
ルホン多孔質支持膜上にコーテイング液のウェット厚2
0μで塗布し、140℃の熱風で乾燥させて気体分離用
複合膜を作成した。
Next, poly(4-methylpentene-1) (product name TP
X-MXOO1 (manufactured by Mitsui Petrochemicals, Inc.) was prepared in a 0.1 wt% solution of cyclohexane, and the coating solution was wetted onto a polysulfone porous support membrane whose openings on the pore surface were closed with the previously prepared trimethylsilylpropyne. Thickness 2
A composite membrane for gas separation was prepared by coating at 0μ and drying with hot air at 140°C.

ポリ(4−メチルペンテン−1)の厚みは0.02μで
あった。得られた気体分離用複合膜の気体透過性能を表
1に示す。
The thickness of poly(4-methylpentene-1) was 0.02μ. Table 1 shows the gas permeation performance of the obtained composite membrane for gas separation.

比較例1 実施例1′c作成したポリスルホン多孔質支持膜上に、
実施例1で調製したポリ(4−メチルペンテン−1)の
シクロへ4−リン0.1wt%溶液をコーテイング液の
ウェット厚20μで塗布し、140℃の熱風で乾燥した
。ポリ(4−メチルペンテン−1)の厚みは、ウェット
厚から翳1輝すると、0.02μである。得らねた気体
分離用複合膜の気体透過性能を表1に示す。実施例1、
比較例1ともに、ポリ(4−メチルペンテン−1)の塗
布厚を同じにしたにもかかわらず、実施例1では高い気
体分離性能が得られており、比較例1では気体弁1il
l竹能は得られていない。これにより、本発明の気体分
離用複合膜は、高気体分離性能にすぐれかつ高気体透過
性能にすぐれていることがわかる。
Comparative Example 1 On the polysulfone porous support membrane prepared in Example 1'c,
A 0.1 wt % solution of 4-phosphorus to the cyclocyclohexane of poly(4-methylpentene-1) prepared in Example 1 was applied to a wet thickness of 20 μm of the coating liquid, and dried with hot air at 140° C. The thickness of poly(4-methylpentene-1) is 0.02 μm when the wet thickness is reduced to 0.02 μm. Table 1 shows the gas permeation performance of the composite membrane for gas separation that was not obtained. Example 1,
Although the coating thickness of poly(4-methylpentene-1) was the same in both Comparative Example 1, high gas separation performance was obtained in Example 1.
l Bamboo power has not been obtained. This shows that the composite membrane for gas separation of the present invention has excellent high gas separation performance and excellent high gas permeation performance.

表  1 *IQo、:酸素透過速度(m”/1712− hr−
atm )*2  Qui:窒素透過速度(Tl+”/
T11’ −hr−atm )*3 α :分離係数 実施例2 実施例1で1qられた、トリメチルシリルプロピンによ
り孔が閉塞されたポリスルホン多孔質支持膜を用意する
。ポリ(4−メチルペンテン−1)をシクロヘキセンに
溶解し、0.1wt%液に調製した。この溶液を1滴水
面に滴下し、水面上に薄膜を形成させた。この薄膜を、
さきほど用意した、トリメチルシリルプロピンにより孔
表面の開口部分を閉塞したポリスルホン多孔質支持膜に
担持し、気体分離用複合膜を作成する。この気体分離用
複合膜の気体透過性能を測定し、次に一次圧を10at
mにセットして、−週間放置した後の気体透過性能の測
定結果を表2に示す。
Table 1 *IQo,: Oxygen permeation rate (m"/1712-hr-
atm ) *2 Qui: Nitrogen permeation rate (Tl+”/
T11'-hr-atm)*3 α: Separation coefficient Example 2 The polysulfone porous support membrane prepared in Example 1 and having pores blocked with trimethylsilylpropyne is prepared. Poly(4-methylpentene-1) was dissolved in cyclohexene to prepare a 0.1 wt% solution. One drop of this solution was dropped on the water surface to form a thin film on the water surface. This thin film
A composite membrane for gas separation is prepared by supporting the polysulfone porous support membrane prepared earlier with the openings on the pore surface closed with trimethylsilylpropyne. The gas permeation performance of this composite membrane for gas separation was measured, and the primary pressure was then adjusted to 10at.
Table 2 shows the measurement results of the gas permeation performance after setting the sample to m and leaving it for -week.

比較例2 実施例1と同様の条イ1で作成1ノだポリスルホン多孔
質支持膜の上に、実施例2と同じ条イ1で作成したポリ
(4−メチルベニ/テン−1)の薄膜を担持して、気体
分離用複合膜を作成した。この気体弁H用複合膜の気体
透過1(を能を測定し、次に一次辻10atmにセット
して、−週間放置した後の気体透過性能の測定結果を表
1に示す。実施例2と比較例2かられかる様に、本発明
の気体分離用複合膜は、長期性能安定性に優れているこ
とがわかる。
Comparative Example 2 A thin film of poly(4-methylbeni/thene-1) prepared using the same strip 1 as in Example 2 was placed on a polysulfone porous support membrane made using the same strip 1 as in Example 1. A composite membrane for gas separation was prepared by supporting the membrane. The gas permeation performance of this composite membrane for gas valve H was measured, and the gas permeation performance was set at a primary temperature of 10 atm and left for - weeks. Table 1 shows the measurement results of gas permeation performance. As can be seen from Comparative Example 2, the composite membrane for gas separation of the present invention is found to have excellent long-term performance stability.

表  2 〔発明の効果〕 本発明の気体分離用複合膜は、構造式が、CI−1s ■ TO=Cj7+(Rは(CH2)nCH3H2O−8i
 −CI−13 (x=O〜2〉)で表わされるポリアセチレンにより孔
表面の開口部分が閉塞された多孔質支持体上に、高気体
分mt性を有する重合体からなる薄膜を形成させたので
、次のような優れた効果を得ることができる。
Table 2 [Effects of the Invention] The composite membrane for gas separation of the present invention has a structural formula of CI-1s ■ TO=Cj7+ (R is (CH2)nCH3H2O-8i
-CI-13 A thin film made of a polymer having a high gas content mt property was formed on a porous support whose pore surface openings were closed with polyacetylene represented by (x=O~2>). , the following excellent effects can be obtained.

(1)  気体分離性能および気体透過性能がともに著
しく優れている。
(1) Both gas separation performance and gas permeation performance are extremely excellent.

(2)長期性能安定性に優れている。(2) Excellent long-term performance stability.

特許出願人  東 し 株 式 会 社昭和  年  
月  日
Patent applicant: Higashishi Co., Ltd. Showa
time

Claims (1)

【特許請求の範囲】[Claims] (1)構造式が、▲数式、化学式、表等があります▼ で表わされるポリアセチ レンにより、孔表面の開口部分が閉塞された多孔質支持
体上に、高気体分離性を有する重合体からなる薄膜が形
成されてなる気体分離用複合膜。
(1) A thin film made of a polymer with high gas separation properties is placed on a porous support whose pore surface openings are closed with polyacetylene whose structural formula is represented by ▲mathematical formula, chemical formula, table, etc.▼ A composite membrane for gas separation formed by
JP59132920A 1984-06-29 1984-06-29 Composite membrane for gas separation Granted JPS6115718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132920A JPS6115718A (en) 1984-06-29 1984-06-29 Composite membrane for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132920A JPS6115718A (en) 1984-06-29 1984-06-29 Composite membrane for gas separation

Publications (2)

Publication Number Publication Date
JPS6115718A true JPS6115718A (en) 1986-01-23
JPH0451217B2 JPH0451217B2 (en) 1992-08-18

Family

ID=15092599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132920A Granted JPS6115718A (en) 1984-06-29 1984-06-29 Composite membrane for gas separation

Country Status (1)

Country Link
JP (1) JPS6115718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
US5176724A (en) * 1987-11-10 1993-01-05 Matsushita Electric Industrial Co., Ltd. Permselective composite membrane having improved gas permeability and selectivity
US5501722A (en) * 1992-11-04 1996-03-26 Membrane Technology And Research, Inc. Natural gas treatment process using PTMSP membrane
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958405U (en) * 1972-08-30 1974-05-23
JPS5956075U (en) * 1982-10-06 1984-04-12 日本鉱業株式会社 Patent management form

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122026A (en) * 1983-12-02 1985-06-29 Shin Etsu Chem Co Ltd Compound molded body for gas separation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958405U (en) * 1972-08-30 1974-05-23
JPS5956075U (en) * 1982-10-06 1984-04-12 日本鉱業株式会社 Patent management form

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176724A (en) * 1987-11-10 1993-01-05 Matsushita Electric Industrial Co., Ltd. Permselective composite membrane having improved gas permeability and selectivity
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
US5501722A (en) * 1992-11-04 1996-03-26 Membrane Technology And Research, Inc. Natural gas treatment process using PTMSP membrane
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Also Published As

Publication number Publication date
JPH0451217B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
US4689267A (en) Composite hollow fiber
CA1280042C (en) Membrane type artificial lung and method for manufacture thereof
JPS62196390A (en) Ion permeable diaphragm for improved electrolytic cell
JP6432508B2 (en) Method for producing film having nanostructure on surface
JPS6154222A (en) Composite separation membrane
US3961122A (en) Thin polymer films and method
US5049169A (en) Polysulfone separation membrane
JPH0388B2 (en)
JPS6115718A (en) Composite membrane for gas separation
US20210197129A1 (en) Method Of Producing A Polymeric Membrane
JPS58180206A (en) Production of selective permeable membrane
JPH02187134A (en) Structure and method for separation of fluid mixture
JPS6154204A (en) Composite fluid separation membrane
JPS61111121A (en) Composite membrane for separating gas
JPS61120617A (en) Composite membrane for separating gas
JPS63278525A (en) Production of vapor-liquid separation membrane
JPH0446172B2 (en)
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPH0453575B2 (en)
JPH0693981B2 (en) Gas selective permeable membrane
JPS6135823A (en) Gas permeable membrane
JPH06277438A (en) Gas separation membrane and production thereof
JPS60227804A (en) Manufacture of separation membrane
JPH0464729B2 (en)
JPH0440223A (en) Gas separation composite membrane