JPS60257820A - Gas separation composite membrane - Google Patents

Gas separation composite membrane

Info

Publication number
JPS60257820A
JPS60257820A JP59114513A JP11451384A JPS60257820A JP S60257820 A JPS60257820 A JP S60257820A JP 59114513 A JP59114513 A JP 59114513A JP 11451384 A JP11451384 A JP 11451384A JP S60257820 A JPS60257820 A JP S60257820A
Authority
JP
Japan
Prior art keywords
membrane
gas separation
composite membrane
thin film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59114513A
Other languages
Japanese (ja)
Other versions
JPH0479687B2 (en
Inventor
Kuniyasu Jiyou
邦恭 城
Tokuo Tazaki
田崎 徳雄
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59114513A priority Critical patent/JPS60257820A/en
Publication of JPS60257820A publication Critical patent/JPS60257820A/en
Publication of JPH0479687B2 publication Critical patent/JPH0479687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite membrane prevented from the delamination of the membrane and support membrane thereof and excellent in separation permeability, by interposing an extremely thin membrane comprising a polyorganosiloxane/silphenylene copolymer between a porous support and an extremely thin membrane comprising a polymer having high gas separation capacity. CONSTITUTION:An extremely thin membrane C comprising a polyorganosiloxane/silphenylene copolymer having a repeating unit represented by formula is interposed between a porous support A and an extremely thin membrane B comprising a polymer having high gas separation capacity to form a gas separation composite membrane. The extremely thin membrane B pref. comprises poly (4-methylpenten-1) or polyvinyl trimethylsilane and the thickness thereof is 0.01-0.3mum. The n/m ratio of the constitutional unit of the extremely thin membrane C is 5-20 and the thickness thereof is pref. 0.01-0.3mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体分離複合膜に関する。更にくわしくは膜分
離法により空気から酸素富化空気を得るために有効な気
体分離複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas separation composite membrane. More specifically, the present invention relates to a gas separation composite membrane effective for obtaining oxygen-enriched air from air by a membrane separation method.

〔従来の技術〕[Conventional technology]

近年、脱法による気体分離、特に膜分離による酸素富化
空気を得る方法が注目されている。この膜分離に車用l
−使用慣れ看る膜は、儲体分離性蛙が高く、かつ気体透
過性能も高いという条件を満たさなければならない。そ
の為、膜の形態は気体分離性を有する膜素材を薄膜とし
、多孔質支持体」二に複合化した複合膜とする必要があ
る。従来までに、該複合膜としてポリオルガノシロキサ
ンシルフェニレン共重合体複合膜(特開昭57−122
906 )が知られているが、ポリオルガノシロキサン
シルフェニレン共重合体は9分離性能が低いという欠点
があった。
In recent years, gas separation by demethods, particularly methods for obtaining oxygen-enriched air by membrane separation, have attracted attention. This membrane separation is used for cars.
- A membrane that is suitable for use must satisfy the conditions of high body separation properties and high gas permeability. Therefore, the form of the membrane needs to be a composite membrane in which a thin membrane material with gas separation properties is combined with a porous support. Until now, as the composite membrane, a polyorganosiloxane silphenylene copolymer composite membrane (Japanese Patent Application Laid-Open No. 57-122
906), but the polyorganosiloxane silphenylene copolymer had the drawback of low separation performance.

一方、気体分離性能の高い膜素材であるポリフェニレン
オキサイドやポリ(4−メチルペンテン−1)などの重
合体を薄膜とし多孔質支持体に直接複合化したものは、
接着性が悪い為、複合膜の取 □9扱いの際、薄膜が剥
離するという欠点があった。
On the other hand, membrane materials with high gas separation performance, such as polyphenylene oxide and poly(4-methylpentene-1), are made into thin films and composited directly onto a porous support.
Due to poor adhesion, there was a drawback that the thin film would peel off when handling the composite film.

この問題を解消する為に、米国特許第3874986号
に記載されているごとく、気体分離性能の高いポリフェ
ニレンオキサイドの薄膜と多孔質支持体との間に接着性
の高いポリカーボネート/ポリジメチルシロキサン(P
C−PDMS)共重合体薄膜を介在せしめた複合膜が提
唱されている。
In order to solve this problem, as described in U.S. Pat. No. 3,874,986, a polycarbonate/polydimethylsiloxane (P
A composite membrane in which a thin film of C-PDMS) copolymer is interposed has been proposed.

しかしながら、PC−PDMS共重合体は酸素透過係数
po、が2−3 (G CRS(T P ) ・Cm/
cm’・riec、lcn・Hg)と小さく、接着性を
向上さ亡る為に介在した該薄膜層が複合膜の透過性能を
低下させるという欠点があった。
However, the PC-PDMS copolymer has an oxygen permeability coefficient po of 2-3 (GCRS(TP) ・Cm/
cm'·riec, lcn·Hg), and the thin film layer interposed to improve adhesion deteriorates the permeation performance of the composite membrane.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記欠点を解消せしめ、薄膜層が多孔
質支持体膜から剥離せず、気体分離性能と気体透過性能
がともに優れている気体会則複合膜を提供せんとするも
のである。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a gas regulation composite membrane in which the thin film layer does not peel off from the porous support membrane and has excellent gas separation performance and gas permeation performance.

〔…」照点を解決するための手段〕[…” Means for resolving points of interest]

本発明は、上記目的を達成するため次の構成。 The present invention has the following configuration to achieve the above object.

すなわち、多孔質支持体Aと、高気体分離性を有する重
合体からなる極薄膜Bとの間に、構造式がで表わされる
ポリオルガノシロキサンシ)L−フェニレン共重合体か
らなる極薄膜Cが介在されてなる気体分離複合膜である
That is, between the porous support A and the ultra-thin film B made of a polymer having high gas separation properties, an ultra-thin film C made of a polyorganosiloxane/L-phenylene copolymer having the structural formula: This is a gas separation composite membrane formed by intervening membranes.

本発明におりる多孔質支持体Aとは、薄膜を支持するも
のであればよく、和紙、不織布1合成紙。
The porous support A according to the present invention may be anything that supports a thin film, such as Japanese paper, nonwoven fabric, and synthetic paper.

P紙、布、金網。′l濾過膜、限外と濾過膜等があげら
れるが、その中でも表面の平滑性および孔の小さい方が
補強上杆−ましいので限外濾過膜が好適である。限’4
濾過膜を具体的に例示すると、ポリスルホン多孔質支持
膜、ポリエーテルスルホン多孔質支持膜、ポリプロピレ
ン多孔質支持膜、ボリテ]・ラフルオロエチレン多孔質
支持膜など挙げることができる。これら多孔質支持体A
の形状は、シート状、管状、繊維状などあるが特に限定
されない。
P paper, cloth, wire mesh. Examples include filtration membranes, ultrafiltration membranes, etc. Among them, ultrafiltration membranes are preferred because smoothness of the surface and smaller pores are more durable in terms of reinforcement. Limited '4
Specific examples of the filtration membrane include a polysulfone porous support membrane, a polyethersulfone porous support membrane, a polypropylene porous support membrane, and a polyfluoroethylene porous support membrane. These porous supports A
The shape may be sheet-like, tubular, fibrous, etc., but is not particularly limited.

次に本発明における高気体分離性を有する重合体からな
る極薄膜Bとは。気体分離性が高く、かつ気体透過性の
比較的すぐれた重合体であれば何でも良いが、薄膜形成
性、気体分離性、気体透過性のバランスの点で以下の重
合体が好ましい。
Next, what is the ultra-thin film B made of a polymer having high gas separation properties in the present invention? Any polymer may be used as long as it has high gas separation properties and relatively good gas permeability, but the following polymers are preferred in terms of the balance of thin film forming properties, gas separation properties, and gas permeability.

ポリ(4−メチルベンゾン−1)、ポリエチレン/プロ
ピレン共重合体、ポリビニルトリメチルシランのビニル
系重合体。
Vinyl polymers of poly(4-methylbenzone-1), polyethylene/propylene copolymers, and polyvinyltrimethylsilane.

一般式が。The general formula.

(但し、田は1.2.3の整数。 R7け−CH,。(However, field is an integer of 1.2.3. R7ke-CH,.

−C−、H,、−1C,Hヮ、 −C41(、、−C,
H,、のアルキル基から成る群より選ばわる。)で表わ
されるボリフエニレンオキザイド、あるい(は一般式が
-C-, H,, -1C, Hヮ, -C41(,, -C,
selected from the group consisting of alkyl groups of H, . ), or (or the general formula is).

0 111 40 C−N11−R,−1すH−C−0−R、+り、
H40+、+C3H60+、+C4H2O+、−+C1
H1oO分から成る群より選はれる。)で表わされるボ
リウレクン、あるいは、一般式が −C,H,−、−C,H,−,−C4H,−より成る群
より選ばれる。ここでmは1.2.3の整数)で表わさ
れるポリスルホンである。
0 111 40 C-N11-R, -1suH-C-0-R, +ri,
H40+, +C3H60+, +C4H2O+, -+C1
selected from the group consisting of H1oO. ), or the general formula is selected from the group consisting of -C,H,-, -C,H,-, -C4H,-. Here, m is an integer of 1.2.3).

その中でも特に好捷しいの(d、ポリ(4メチ)Iyペ
ンテン−1)とポリビニルトリメチルシランである。極
薄膜Bの膜厚は、001μ以上りろμヅ下が好ましい。
Among them, particularly preferred are (d, poly(4methy)Iypentene-1) and polyvinyltrimethylsilane. The thickness of the ultra-thin film B is preferably 0.001 μm or more and less than 0.00 μm.

膜厚が口01μを越えない場合はビンホー・ルが発生し
て気体分離性能は低くなり。
If the film thickness does not exceed 01 μm, bin holes will occur and the gas separation performance will deteriorate.

03μを越える場合に(址、気体透過抵抗が大きくなり
、複合膜の気体透過性能が低くなるので好1しくない。
If it exceeds 0.03μ, the gas permeation resistance increases and the gas permeation performance of the composite membrane decreases, which is not preferable.

本発明におけるポリオルガノシロキザンシルフエニレン
共重合体とは。
What is the polyorganosiloxane silphenylene copolymer in the present invention?

CH、CH、CH。CH, CH, CH.

上20以下が好寸1−1.い。5に満/とない場合は、
気体透過率が低く好1、シ、りなく、20を越える場合
に薄膜形成1ツ[、が著しく悪くなる為〃rましくない
Upper 20 or below is good size 1-1. stomach. If less than 5,
If the gas permeability is low and exceeds 1, 2, or 20, thin film formation will be significantly impaired, so this is not recommended.

子子量は、20万以」−好1しくに3(3万以上である
、分q量が20万に満たない場合は、薄膜形成性が著し
く悪くなるため好−ましくない。極薄膜Cの膜厚ば1口
01μ以」二〇3μ以−ドが好−ましい。
The molecular weight is 200,000 or more" - preferably 30,000 or more. If the molecular weight is less than 200,000, the thin film forming property will be significantly deteriorated, which is not preferable. Very thin film. The film thickness of C is preferably 01μ or more and 203μ or more.

膜厚が[]、01μに満たない場合は、ビンホーノシが
多く発生し、複合膜の気体分離性能が悪くなり。
If the film thickness is less than [], 01 μm, a lot of porpoise occurs, and the gas separation performance of the composite membrane deteriorates.

03μを越える場合は、気体透過抵抗が大きくなり好ま
しくない。
If it exceeds 0.03μ, gas permeation resistance increases, which is not preferable.

次に本発明の製造方法について説明する。まず1話気体
分離性を有する重合体を、ベンゼン、トルエン、キシレ
ン。ジクロロメタン、シクロDエクン、シクロヘギサン
、シクロヘキセン、テトラクロロエタン等の溶媒に溶解
し製膜液B′とする。。
Next, the manufacturing method of the present invention will be explained. First, talk about polymers that have gas separation properties: benzene, toluene, and xylene. It is dissolved in a solvent such as dichloromethane, cycloD-ecune, cyclohexane, cyclohexene, tetrachloroethane, etc. to obtain a film-forming solution B'. .

ポリオルカノシロキザンシルフエニレン共重合体をシク
ロヘキサン、トルエン、ベンゼン、テトラクロロエタン
等の溶媒に溶解し製膜液C′とする。
A polyorkanosiloxane silphenylene copolymer is dissolved in a solvent such as cyclohexane, toluene, benzene, or tetrachloroethane to obtain a film forming solution C'.

濃度は、0.01 =5 wt係、特に好ましくは00
ろ〜2wt係が適当である。このように調製した製膜液
C′をあらかじめ水面上に滴下し、展開し、これに多孔
質支持体を接触させポリオルガノシロキザンシルフエニ
レン共重合体の薄膜を付着させる。
The concentration is 0.01 = 5 wt, particularly preferably 0.00
Ro~2wt class is appropriate. The film-forming solution C' prepared in this manner is dropped onto the water surface in advance and spread, and a porous support is brought into contact with the solution to adhere a thin film of the polyorganosiloxane silphenylene copolymer.

次に同様な方法で高気体分即1性を有する重合体の薄膜
ヲポリオルガノシロキザンシルフエニレン共重合体の薄
膜の」二に付着させて複合膜化1゛る。
Next, in a similar manner, a thin film of a polymer having a high gas content and monomer properties is attached to the thin film of the polyorganosiloxane silphenylene copolymer to form a composite film.

このように本発明による複合膜は、単に水面上に展開さ
せ/こ薄膜を水面上で接触させて引上げるたけで成膜が
可能である。
As described above, the composite film according to the present invention can be formed by simply spreading the film on the water surface/bringing the thin film into contact with the water surface and pulling it up.

なお本発明に訃ける特性の評価基準は次のとおυである
The evaluation criteria for the characteristics that are suitable for the present invention are as follows.

(1) 気体透過性、気体分離性 本発明の気体分離用複合膜を隔てて、−次側の圧力を2
 atm。二次側の圧力をIatmにし、複合膜を透過
してきた気体(酸素丼たけ窒≠)透過速度を精密膜流量
計5F−101(スタンタ”−ド・ ゛ □テクノロジ
ー社製)で測定した。
(1) Gas permeability and gas separation properties The composite membrane for gas separation of the present invention is separated so that the pressure on the downstream side can be reduced to 2
atm. The pressure on the secondary side was set to Iatm, and the permeation rate of gas (oxygen, nitrogen≠) that had passed through the composite membrane was measured using a precision membrane flowmeter 5F-101 (manufactured by Stanstar Technology Co., Ltd.).

酸素透過速度を気体透過性能とし、酸素透過速度と窒素
透過速度の比である分離1係数を気体分離1′1能のr
p+ろ価基準とした。
The oxygen permeation rate is defined as the gas permeation performance, and the separation 1 coefficient, which is the ratio of the oxygen permeation rate to the nitrogen permeation rate, is defined as r of the gas separation 1'1 ability.
It was set as p + filtration value standard.

(2) 接着性 本発明の気体分用1用複合膜の極薄膜8表面上に。(2) Adhesiveness On the surface of the ultra-thin film 8 of the composite membrane for gas component 1 of the present invention.

別に準(MLrv多孔質支持体を載置して圧力2g/C
m’で加圧接着させメ3−後、多孔質支持膜を剥離した
Separately, place the MLrv porous support at a pressure of 2 g/C.
After bonding under pressure at step m', the porous support film was peeled off.

剥離後の気体分層用複合膜の気体(酸素または窒素)透
過速度を゛前記同様測定し。酸素透過速度と分離(係数
を接着剤と剥離後の差異で評価した。
The gas (oxygen or nitrogen) permeation rate of the composite membrane for gas separation after peeling was measured in the same manner as above. Oxygen permeation rate and separation (coefficient) were evaluated based on the difference between adhesive and after peeling.

〔実施例〕〔Example〕

次に、実施例に基づいて本発明の実施態様を説明する。 Next, embodiments of the present invention will be described based on Examples.

実施例1 ポリオルガノシロキザンシルフエニレ:y共重合体P 
S O95(チッ素株式会社Mシルフェニレン/ジメチ
ルシロキサンの共λ合圧=115.数平均分子−量50
万)をシクロヘキセンに溶解し、Oi vtt、%に調
製する。この溶液を水面上に展開し。
Example 1 Polyorganosiloxane silane:y copolymer P
SO95 (Chisso Co., Ltd. M Silphenylene/dimethylsiloxane co-lambda combined pressure = 115. Number average molecular weight 50
Oi vtt,% was adjusted by dissolving Oi vtt in cyclohexene. Spread this solution on the water surface.

フッ素樹脂多孔膜(商品名フロロボア、住友電工社製)
に水面」二の薄膜を担持し気体分離用複合膜を得る。次
に、ポリ(4メチルペンテン−1)(商品名T P X
 −1〜へχい01.三井石油化学社製)をシクロヘキ
センに浴解し+ 01 vtt係に調製する。
Fluororesin porous membrane (product name: Fluorobor, manufactured by Sumitomo Electric Industries, Ltd.)
A composite membrane for gas separation is obtained by supporting a second thin film on the water surface. Next, poly(4 methylpentene-1) (trade name T P
-1~ to χ01. Mitsui Petrochemical Co., Ltd.) was dissolved in cyclohexene to prepare +01 vtt.

この溶液を水面上に展開し、先はど作成したポリオルガ
ノシロキザンシルフエニレン共重合体複合膜の薄膜表面
に、水面上のポリ(4メチルペンテン−1)薄膜を担持
し、気体分暉1用複合膜を作成した。
This solution was spread on the water surface, and the poly(4-methylpentene-1) thin film on the water surface was supported on the thin film surface of the previously prepared polyorganosiloxane silphenylene copolymer composite film, and gas separation was carried out. A composite membrane for 1 was created.

なお、ポリ(4メチルペ/テン−1)薄膜の膜厚は約0
.02μ、ポリオルガノシロギザンシルフエニレン共重
合体薄膜の膜厚は約01μであった。この気体分離用複
合膜の酸素透過速度ならびに酸素と窒素の分離係数を測
定した結果を表−1に示す。
The thickness of the poly(4-methylpe/tene-1) thin film is approximately 0.
.. The thickness of the polyorganosylogisane silphenylene copolymer thin film was approximately 0.01 μm. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation.

ポリオルガノシロキザンシルフエニレン共i合 ’体の
薄膜を介在させたにもかかわらず、高気体透過性で、か
つ高気体分離性の性能であった。
Despite the presence of a thin film of polyorganosiloxane silphenylene co-conjugate, it had high gas permeability and high gas separation performance.

実施例2 ボリフエニ1/ンオキサイド(重量平均分子量〒50、
 [) 00 )をベンゼンに溶解し、0.5wt%の
溶液を調製する。この溶液を水面上に展開し、薄膜を形
成させる。実施例1と同様の作成方法で作成シタホリオ
ルガノシロギサンシルフエニレン共重合体複合膜の表面
に、水面」二に形成されているポリフェニレンオキサイ
ド薄膜を担持し9気体分離複合膜を作成した。該複合膜
のポリフェニレンオキサイド薄膜の膜厚は約004μ、
ポリオルガノシロキサンシルフェニレン共重合体薄膜の
膜厚は約01μであった。この気体分離複合膜の酸素透
過速度ならびに酸素と窒素の分離係数を測定した結果を
表1に示す、気体透過性と気体分離性はともに優れてい
る。
Example 2 Borifueni 1/n oxide (weight average molecular weight 〒50,
[)00) is dissolved in benzene to prepare a 0.5 wt% solution. This solution is spread on the water surface to form a thin film. A polyphenylene oxide thin film formed on the water surface was supported on the surface of a cylindrical organosiloxysansilphenylene copolymer composite membrane prepared in the same manner as in Example 1 to prepare a 9-gas separation composite membrane. The thickness of the polyphenylene oxide thin film of the composite membrane is approximately 0.04μ,
The thickness of the polyorganosiloxane silphenylene copolymer thin film was approximately 0.1 μm. The results of measuring the oxygen permeation rate and the separation coefficient between oxygen and nitrogen of this gas separation composite membrane are shown in Table 1. Both gas permeability and gas separation performance are excellent.

実施例6 実施例1で作成した気体分離複合膜の薄膜表面にフッ素
多孔質支持膜(商品名フロロボア、住友電工社製)を圧
力2 g 7cm”で加圧接着させ、その後剥離した気
体分離複合膜の酸素透過速度ならびに酸素と窒素の分離
係数を測定した結果を表2に示す。
Example 6 A fluorine porous support membrane (trade name: Fluorobor, manufactured by Sumitomo Electric Industries, Ltd.) was adhered to the thin film surface of the gas separation composite membrane prepared in Example 1 at a pressure of 2 g 7 cm, and then peeled off. Table 2 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of the membrane.

実施例4 実施例2で作成した気体分離複合膜に実施例6と同様に
して行なった接着剥離後の結果を表2に示す。
Example 4 Table 2 shows the results of adhesive peeling performed on the gas separation composite membrane prepared in Example 2 in the same manner as in Example 6.

実施例ろ、実施例4とも接着剥離前後で気体分離性能、
気体透過性能ともに変化せず0本発明が接着性に優れて
いることがわかる。
Both Example 4 and Example 4 showed gas separation performance before and after adhesive peeling.
It can be seen that the present invention has excellent adhesive properties, with no change in gas permeability.

比較例1 実施例1で調製したポリ(4メアルペンテンー1)シク
ロヘキセンQ、 j wt%溶液を水面に展開し。
Comparative Example 1 The poly(4-meralpentene-1)cyclohexene Q, j wt% solution prepared in Example 1 was spread on the water surface.

薄膜を形成させる。この薄膜をフッ素多孔質支持膜に担
持し、気体分離用複合膜を作製する。ポリ(4メチルペ
ンテン−1)薄膜の膜厚は約0.02μであった。この
気体分離用複合膜の酸素透過速度および酸素と窒素の分
離係数を測定した結果を表1に示す1.実施例1で作成
したポリオルガノシロキサンシルフェニレン共重合体薄
膜を介在せしめた気体分離用複合膜が、気体透過性の点
で劣っていないことがわかる。
Form a thin film. This thin film is supported on a fluorine porous support membrane to produce a composite membrane for gas separation. The thickness of the poly(4-methylpentene-1) thin film was about 0.02μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation. It can be seen that the composite membrane for gas separation in which the polyorganosiloxane silphenylene copolymer thin film prepared in Example 1 was interposed was not inferior in terms of gas permeability.

比較例2 実施例2で調製したポリフェニレンオキサイドのベンゼ
ン0.5wt、%溶液を水面上に展開し、薄膜を形成せ
しめ、フッ素多孔質支持膜に担持して気体分離用複合膜
を作成する。ポリフェニレンオキサイド薄膜の膜厚は約
004μであった。この気体分離用複合膜の酸素透過速
度および酸素と窒素の分離係数を測定した結果を表1に
示す。実施例2で作成したポリオルガノシロキサンシル
フェニレン共重合体薄膜を介在せしめた気体分離用複合
膜が気体透過性の点で劣っていないことがわかる。
Comparative Example 2 A 0.5 wt% solution of polyphenylene oxide prepared in Example 2 in benzene is spread on a water surface to form a thin film, and the thin film is supported on a fluorine porous support membrane to prepare a composite membrane for gas separation. The thickness of the polyphenylene oxide thin film was approximately 0.04 μm. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation. It can be seen that the composite membrane for gas separation in which the polyorganosiloxane silphenylene copolymer thin film prepared in Example 2 was interposed was not inferior in terms of gas permeability.

比較例6 比較例1で作成した気体分離複合膜の薄膜表面に6フツ
素多孔質支持膜を圧力2g/−で接触させ剥がした後、
酸素透過速度ならびに酸素と窒素の分離係数を測定しそ
の結果を表2に示す。
Comparative Example 6 After contacting the thin film surface of the gas separation composite membrane prepared in Comparative Example 1 with a hexafluorine porous support membrane at a pressure of 2 g/- and peeling it off,
The oxygen permeation rate and the separation coefficient between oxygen and nitrogen were measured and the results are shown in Table 2.

比較例4 比較例2で作成した気体分離複合膜に比較例ろと同様の
接着テストを施し、その結果を表2に示す。
Comparative Example 4 The gas separation composite membrane prepared in Comparative Example 2 was subjected to the same adhesion test as in Comparative Example, and the results are shown in Table 2.

比較例3.比較例4ともポリオルガノシロキサンシルフ
ェニレン共重合体薄膜を介在させない気体分離複合膜は
、接着性が悪く分離性能が失われてしまうことがわかる
Comparative example 3. It can be seen that in Comparative Example 4, the gas separation composite membrane in which the polyorganosiloxane silphenylene copolymer thin film is not interposed has poor adhesion and a loss of separation performance.

」二記から明らかなように本発明は、薄膜層が多孔質支
持体から剥離しにくい為、取扱い性が良く気体透過性、
気体分離性が優れていることがわかる。
As is clear from Section 2, the thin film layer of the present invention is difficult to peel off from the porous support, so it is easy to handle and has good gas permeability.
It can be seen that the gas separation property is excellent.

表 1 *1Qc、:酸素透過速度(nn’7 m’ o hr
aatm )*2Qu、;窒素透過速度(m’/ m’
 o hr−atm )*ろ α :分離係数 表 2 〔発明の効果〕 本発明の気体分離複合膜は多孔質支持体Aと。
Table 1 *1Qc,: Oxygen permeation rate (nn'7 m' o hr
aatm ) *2 Qu,; Nitrogen permeation rate (m'/m'
o hr-atm ) * filter α : Separation coefficient Table 2 [Effects of the invention] The gas separation composite membrane of the present invention has a porous support A.

高気体分離性を有する重合体からなる極薄膜Bの間に、
ポリオルガノシロキサンシルフェニレン共重合体からな
る極薄膜Cが介在されているのでポリオルガノシロキサ
ンシルフェニレン共重合体の優れた接着性ならびに気体
透過性により0次のごとき優れた効果を得ることができ
る。
Between the ultra-thin membrane B made of a polymer with high gas separation,
Since the ultrathin film C made of the polyorganosiloxane silphenylene copolymer is interposed, excellent effects such as zero order can be obtained due to the excellent adhesiveness and gas permeability of the polyorganosiloxane silphenylene copolymer.

(]〕 複合膜は使用に際して、薄膜が剥離しない為、
取シ扱い性に優れている。
(]] Composite membranes do not peel off when used, so
Excellent handling properties.

(2) 気体分離性能および気体透過性能がともに優れ
ている。
(2) Both gas separation performance and gas permeation performance are excellent.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】 多孔質支持体Aと、高気体分離性を有する重合体からな
る極薄膜Bの間に、構造式が。 で表わされるポリオルガノシロキサンシルフェニレン共
重合体からなる極薄膜Cが介在されてなる気体分離複合
膜。
[Claims] Between the porous support A and the ultra-thin membrane B made of a polymer having high gas separation properties, the structural formula is: A gas separation composite membrane comprising an ultra-thin membrane C made of a polyorganosiloxane silphenylene copolymer represented by:
JP59114513A 1984-06-06 1984-06-06 Gas separation composite membrane Granted JPS60257820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114513A JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114513A JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Publications (2)

Publication Number Publication Date
JPS60257820A true JPS60257820A (en) 1985-12-19
JPH0479687B2 JPH0479687B2 (en) 1992-12-16

Family

ID=14639631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114513A Granted JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Country Status (1)

Country Link
JP (1) JPS60257820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180708A (en) * 1986-02-03 1987-08-08 Agency Of Ind Science & Technol Production of porous membrane
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JP2015112502A (en) * 2013-12-07 2015-06-22 住友化学株式会社 Laminate and gas separation membrane, and method of manufacturing the laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180708A (en) * 1986-02-03 1987-08-08 Agency Of Ind Science & Technol Production of porous membrane
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JP2015112502A (en) * 2013-12-07 2015-06-22 住友化学株式会社 Laminate and gas separation membrane, and method of manufacturing the laminate

Also Published As

Publication number Publication date
JPH0479687B2 (en) 1992-12-16

Similar Documents

Publication Publication Date Title
US3874986A (en) Laminated porous/non-porous membranes
JPS59154106A (en) Gas-separation membrane
JPS60161703A (en) Gas permselective composite membrane
JPS6054707A (en) Dense composite membrane and separation of fluid performed thereby
JPS58223411A (en) Composite film for selective permeation of gas
GB2138702A (en) Composite membrane for gas separation
Li et al. Multilayer ultrathin‐film composite membranes for oxygen enrichment
JPS60257820A (en) Gas separation composite membrane
EP1326703B1 (en) Laminates of asymmetric membranes
JPH0419891B2 (en)
JPS61120617A (en) Composite membrane for separating gas
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JPS6256775B2 (en)
JPH0440223A (en) Gas separation composite membrane
JPS63278525A (en) Production of vapor-liquid separation membrane
JPS6071023A (en) Gas permselective membrane
JPH0696107B2 (en) Selective gas permeable membrane
JP2005350573A (en) Gas-permeable polymer composition and gas-separating composite membrane
JPS61146321A (en) Permselective compound membrane for gas
JPH0453575B2 (en)
JPH0451217B2 (en)
JP3299298B2 (en) Gas selective permeable composite membrane
JPH0365776B2 (en)
JPS61107922A (en) Composite membrane for gas separation
JPS6260933B2 (en)