JPH0479687B2 - - Google Patents

Info

Publication number
JPH0479687B2
JPH0479687B2 JP59114513A JP11451384A JPH0479687B2 JP H0479687 B2 JPH0479687 B2 JP H0479687B2 JP 59114513 A JP59114513 A JP 59114513A JP 11451384 A JP11451384 A JP 11451384A JP H0479687 B2 JPH0479687 B2 JP H0479687B2
Authority
JP
Japan
Prior art keywords
gas separation
membrane
thin film
composite membrane
polyorganosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59114513A
Other languages
Japanese (ja)
Other versions
JPS60257820A (en
Inventor
Kunitaka Jo
Tokuo Tazaki
Isamu Sakuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59114513A priority Critical patent/JPS60257820A/en
Publication of JPS60257820A publication Critical patent/JPS60257820A/en
Publication of JPH0479687B2 publication Critical patent/JPH0479687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は気体分離複合膜に関する。更にくわし
くは膜分離法により空気から酸素富化空気を得る
ために有効な気体分離複合膜に関する。 〔従来の技術〕 近年、膜法による気体分離、特に膜分離による
酸素富化空気を得る方法が注目されている。この
膜分離に実用上使用され得る膜は、気体分離性能
が高く、かつ気体透過性能も高いという条件を満
たさなければならない。その為、膜の形態は気体
分離性を有する膜素材を薄膜とし、多孔質支持体
上に複合化した複合膜とする必要がある。従来ま
でに、該複合膜としてポリオルガノシロキサンシ
ルフエニレン共重合体複合膜(特開昭57−
122906)が知られているが、ポリオルガノシロキ
サンシルフエニレン共重合体は、分離性能が低い
という欠点があつた。 一方、気体分離性能の高い膜素材であるポリフ
エニレンオキサイドやポリ(4−メチルペンテン
−1)などの重合体を薄膜とし多孔質支持体に直
接複合化したものは、接着性が悪い為、複合膜の
取り扱いの際、薄膜が剥離するという欠点があつ
た。この問題を解消する為に、米国特許第
3874986号に記載されているごとく、気体分離性
能の高いポリフエニレンオキサイドの薄膜と多孔
質支持体との間に接着性の高いポリカーボネー
ト/ポリジメチルシロキサン(PC−PDMS)共
重合体薄膜を介在せしめた複合膜が提唱されてい
る。 しかしながら、PC−PDMS共重合体は酸素透
過係数PO2が2〜3(CCS(TP)・cm/cm2・sec・
cmHg)と小さく、接着性を向上させる為に介在
した該薄膜層が複合膜の透過性能を低下させると
いう欠点があつた。 〔発明が解決しようとする問題点〕 本発明の目的は、上記欠点を解消せしめ、薄膜
層が多孔質支持膜から剥離せず、気体分離性能と
気体透過性能がともに優れている気体分離複合膜
を提供せんとするものである。 〔問題点を解決するための手段〕 本発明は、上記目的を達成するため次の構成、
すなわち、多孔質支持体Aと、高気体分離性を有
する重合体からなる極薄膜Bとの間に、構造式が で表わされるポリオルガノシロキサンシルフエニ
レン共重合体からなる極薄膜Cが介在されてなる
気体分離複合膜である。 本発明におけ多孔質支持体Aとは、薄膜を支持
するものであればよく、和紙、不織布、合成紙、
紙、布、金網、過膜、限外過膜等があげら
れるが、その中でも表面の平滑性および孔の小さ
い方が補強上好ましいので限外過膜が好適であ
る。限外過膜を具体的に例示すると、ポリスル
ホン多孔質支持膜、ポリエーテルスルホン多孔質
支持膜、ポリプロピレン多孔質支持膜、ポリテト
ラフルオロエチレン多孔質支持膜など挙げること
ができる。これら多孔質支持体Aの形状は、シー
ト状、管状、繊維状などあるが特に限定されな
い。 次に本発明における高気体分離性を有する重合
体からなる極薄膜Bとは、気体分離性が高く、か
つ気体透過性の比較的すぐれた重合体であれば何
でも良いが、薄膜形成性、気体分離性、気体透過
性のバランスの点で以下の重合体が好ましい。 ポリ(4−メチルペンテン−1).ポリエチレ
ン/プロピレン共重合体.ポリビニルトリメチル
シランのビニル系重合体。 一般式が、 (但し、mは1,2,3の整数。R1は−CH3
−C2H5,−C3H7,−C4H9,−C5H11のアルキル基
から成る群より選ばれる。)で表わされるポリフ
エニレンオキサイド、あるいは一般式が、 (但し、R3,R4
[Industrial Application Field] The present invention relates to a gas separation composite membrane. More specifically, the present invention relates to a gas separation composite membrane effective for obtaining oxygen-enriched air from air by a membrane separation method. [Prior Art] In recent years, gas separation by membrane methods, particularly methods for obtaining oxygen-enriched air by membrane separation, have attracted attention. A membrane that can be practically used for this membrane separation must satisfy the conditions of high gas separation performance and high gas permeation performance. Therefore, the form of the membrane needs to be a composite membrane in which a thin membrane material with gas separation properties is formed on a porous support. Up until now, polyorganosiloxane silphenylene copolymer composite membrane (Unexamined Japanese Patent Publication No. 1983-1999) has been used as the composite membrane.
122906), but the polyorganosiloxane silphenylene copolymer had the drawback of low separation performance. On the other hand, membrane materials with high gas separation performance, such as polyphenylene oxide and poly(4-methylpentene-1), are made into thin films and composited directly onto a porous support because of poor adhesion. There was a drawback that the thin film peeled off when handling the composite film. In order to solve this problem, US Patent No.
As described in No. 3874986, a highly adhesive polycarbonate/polydimethylsiloxane (PC-PDMS) copolymer thin film is interposed between a polyphenylene oxide thin film with high gas separation performance and a porous support. Composite membranes have been proposed. However, the PC-PDMS copolymer has an oxygen permeability coefficient PO 2 of 2 to 3 (CCS (TP) cm/cm 2 sec
cmHg), and the thin film layer interposed to improve adhesion had the disadvantage that the permeation performance of the composite membrane was reduced. [Problems to be Solved by the Invention] The object of the present invention is to solve the above-mentioned drawbacks, and to provide a gas separation composite membrane in which the thin film layer does not peel off from the porous support membrane and has excellent gas separation performance and gas permeation performance. We aim to provide the following. [Means for solving the problems] In order to achieve the above object, the present invention has the following configuration:
That is, the structural formula is This is a gas separation composite membrane in which an ultra-thin membrane C made of a polyorganosiloxane silphenylene copolymer represented by is interposed. The porous support A in the present invention may be anything that supports a thin film, such as Japanese paper, nonwoven fabric, synthetic paper,
Examples include paper, cloth, wire mesh, permeable membrane, ultrapermeable membrane, etc. Among them, ultrapermeable membrane is preferable because smoothness of the surface and smaller pores are preferable for reinforcement. Specific examples of ultrafiltration membranes include polysulfone porous support membranes, polyethersulfone porous support membranes, polypropylene porous support membranes, polytetrafluoroethylene porous support membranes, and the like. The shape of these porous supports A may be sheet-like, tubular, fibrous, etc., but is not particularly limited. Next, the ultra-thin film B made of a polymer having high gas separation property in the present invention may be any polymer as long as it has high gas separation property and relatively good gas permeability. The following polymers are preferred in terms of the balance between separability and gas permeability. Poly(4-methylpentene-1). Polyethylene/propylene copolymer. A vinyl polymer of polyvinyltrimethylsilane. The general formula is (However, m is an integer of 1, 2, 3. R 1 is −CH 3 ,
selected from the group consisting of the alkyl groups -C2H5 , -C3H7 , -C4H9 , -C5H11 . ), or the general formula is (However, R 3 and R 4 are

【式】− C2H4−,−C3H6−,−C4H8−,−C5H10−,R2
−C2H4O−,(―C2H4O)―2,(―C3H6O)―,(―
C4H8O)―,(―C5H10O)―から成る群より選ばれ
る。)で表わされるポリウレタン、あるいは、一
般式が (但し、R5
[Formula] −C 2 H 4 −, −C 3 H 6 −, −C 4 H 8 −, −C 5 H 10 −, R 2 is −C 2 H 4 O−, (−C 2 H 4 O) ― 2 , (―C 3 H 6 O)―, (―
C 4 H 8 O)―, (―C 5 H 10 O)―. ), or the general formula is (However, R 5 is

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

〔実施例〕〔Example〕

次に、実施例に基づいて本発明の実施態様を説
明する。 実施例 1 ポリオルガノシロキサンシルフエニレン共重合
体PSO95(チツ素株式会社製シルフエニレン/ジ
メチルシロキサンの共重合比=1/5、数平均分
子量30万)をシクロヘキセンに溶解し、0.1wt%
に調製する。この溶液を水面上に展開し、フツ素
樹脂多孔膜(商品名フロロポア、住友電工社製)
に水面上の薄膜を担持し気体分離用複合膜を得
る。次に、ポリ(4メチルペンテン−1)(商品
名TPX−MX001、三井石油化学社製)をシクロ
ヘキセンに溶解し、0.1wt%に調製する。この溶
液を水面上に展開し、先ほど作成したポリオルガ
ノシロキサンシルフエニレン共重合体複合膜の薄
膜表面に、水面上のポリ(4メチルペンテン−
1)薄膜を担持し、気体分離用複合膜を作成し
た。 なお、ポリ(4メチルペンテン−1)薄膜の膜
厚は約0.02μ、ポリオルガノシロキサンシルフエ
ニレン共重合体薄膜の膜厚は約0.1μであつた。こ
の気体分離複合膜の酸素透過速度ならびに酸素と
窒素の分離係数を測定した結果を表−1に示す。 ポリオルガノシロキサンシルフエニレン共重合
体の薄膜を介在させたにもかかわらず、高気体透
過性で、かつ高気体分離性の性能であつた。 実施例 2 ポリフエニレンオキサイド(重量平均分子量≒
50000)をベンゼンに溶解し、0.5wt%の溶液を調
製する。この溶液を水面上に展開し、薄膜を形成
させる。実施例1と同様の作成方法で作成したポ
リオルガノシロキサンシルフエニレン共重合体複
合膜の表面に、水面上に形成されているポリフエ
ニレンオキサイド薄膜を担持し、気体分離複合膜
を作成した。該複合膜のポリフエニレンオキサイ
ド薄膜の膜厚は約0.04μ、ポリオルガノシロキサ
ンシルフエニレン共重合体薄膜の膜厚は約0.1μで
あつた。この気体分離複合膜の酸素透過速度なら
びに酸素と窒素の分離係数を測定した結果を表1
に示す。気体透過性と気体分離性はともに優れて
いる。 実施例 3 実施例1で作成した気体分離複合膜の薄膜表面
にフツ素多孔質支持膜(商品名フロロポア、住友
電工社製)を圧力2g/cm2で加圧接着させ、その
後剥離した気体分離複合膜の酸素透過速度ならび
に酸素と窒素の分離係数を測定した結果を表2に
示す。 実施例 4 実施例2で作成した気体分離複合膜に実施例3
と同様にして行なつた接着剥離後の結果を表2に
示す。 実施例3、実施例4とも接着剥離前後で気体分
離性能、気体透過性能ともに変化せず、本発明が
接着性に優れていることがわかる。 比較例 1 実施例1で調製したポリ(4メチルペンテン−
1)シクロヘキセン0.1wt%溶液を水面に展開し、
薄膜を形成させる。この薄膜をフツ素多孔質支持
膜に担持し、気体分離用複合膜を作製する。ポリ
(4メチルペンテン−1)薄膜の膜厚は約0.02μで
あつた。この気体分離用複合膜の酸素透過速度お
よび酸素と窒素の分離係数を測定した結果を表1
に示す。実施例1で作成したポリオルガノシロキ
サンシルフエニレン共重合体薄膜を介在せしめた
気体分離用複合膜が、気体透過性の点で劣つてい
ないことがわかる。 比較例 2 実施例2で調製したポリフエニレンオキサイド
のベンゼン0.5wt%溶液を水面上に展開し、薄膜
を形成せしめ、フツ素多孔質支持膜に担持して気
体分離用複合膜を作成する。ポリフエニレンオキ
サイド薄膜の膜厚は約0.04μであつた。この気体
分離用複合膜の酸素透過速度および酸素と窒素の
分離係数を測定した結果を表1に示す。実施例2
で作成したポリオルガノシロキサンフエニレン共
重合体薄膜を介在せしめた気体分離用複合膜が気
体透過性の点で劣つていないことがわかる。 比較例 3 比較例1で作成した気体分離複合膜の薄膜表面
に、フツ素多孔質支持膜を圧力2g/cm2で接触さ
せ剥がした後、酸素透過速度ならびに酸素と窒素
の分離係数を測定しその結果を表2に示す。 比較例 4 比較例2で作成した気体分離複合膜に比較例3
と同様の接着テストを施し、その結果を表2に示
す。 比較例3、比較例4ともポリオルガノシロキサ
ンシルフエニレン共重合体薄膜を介在させない気
体分離複合膜は、接着性が悪く分離性能が失われ
てしまうことがわかる。 上記から明らかなように本発明は、薄膜層が多
孔質支持体から剥離しにくい為、取扱い性が良く
気体透過性、気体分離性が優れていることがわか
る。
Next, embodiments of the present invention will be described based on Examples. Example 1 Polyorganosiloxane silphenylene copolymer PSO95 (manufactured by Chitsuso Co., Ltd., silphenylene/dimethylsiloxane copolymerization ratio = 1/5, number average molecular weight 300,000) was dissolved in cyclohexene, and the concentration was 0.1 wt%.
Prepare to. This solution is spread on the water surface and a fluorine resin porous membrane (trade name: Fluoropore, manufactured by Sumitomo Electric Industries, Ltd.) is used.
A thin film is supported on the water surface to obtain a composite membrane for gas separation. Next, poly(4-methylpentene-1) (trade name TPX-MX001, manufactured by Mitsui Petrochemicals) is dissolved in cyclohexene and adjusted to 0.1 wt%. This solution was spread on the water surface and applied to the thin film surface of the polyorganosiloxane silphenylene copolymer composite film prepared earlier.
1) A composite membrane for gas separation was created by supporting a thin film. The thickness of the poly(4-methylpentene-1) film was about 0.02 μm, and the thickness of the polyorganosiloxane silphenylene copolymer film was about 0.1 μm. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this gas separation composite membrane. Despite the presence of a thin film of polyorganosiloxane silphenylene copolymer, it had high gas permeability and high gas separation performance. Example 2 Polyphenylene oxide (weight average molecular weight≒
50000) in benzene to prepare a 0.5wt% solution. This solution is spread on the water surface to form a thin film. A polyphenylene oxide thin film formed on the water surface was supported on the surface of a polyorganosiloxane silphenylene copolymer composite membrane prepared in the same manner as in Example 1 to prepare a gas separation composite membrane. The polyphenylene oxide thin film of the composite membrane had a thickness of about 0.04 μm, and the polyorganosiloxane silphenylene copolymer thin film had a film thickness of about 0.1 μm. Table 1 shows the results of measuring the oxygen permeation rate and oxygen and nitrogen separation coefficient of this gas separation composite membrane.
Shown below. Both gas permeability and gas separation are excellent. Example 3 A fluorine porous support membrane (trade name: Fluoropore, manufactured by Sumitomo Electric Industries, Ltd.) was adhered to the thin film surface of the gas separation composite membrane prepared in Example 1 at a pressure of 2 g/cm 2 and then peeled off. Table 2 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of the composite membrane. Example 4 Example 3 was applied to the gas separation composite membrane prepared in Example 2.
Table 2 shows the results after adhesive peeling performed in the same manner as above. In both Examples 3 and 4, both gas separation performance and gas permeation performance did not change before and after adhesive peeling, indicating that the present invention has excellent adhesive properties. Comparative Example 1 Poly(4-methylpentene-
1) Spread a 0.1wt% cyclohexene solution on the water surface,
Form a thin film. This thin film is supported on a fluorine porous support membrane to produce a composite membrane for gas separation. The thickness of the poly(4-methylpentene-1) film was about 0.02μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen and nitrogen separation coefficient of this composite membrane for gas separation.
Shown below. It can be seen that the composite membrane for gas separation in which the polyorganosiloxane silphenylene copolymer thin film prepared in Example 1 was interposed was not inferior in terms of gas permeability. Comparative Example 2 A 0.5 wt% benzene solution of polyphenylene oxide prepared in Example 2 is spread on a water surface to form a thin film and supported on a fluorine porous support membrane to prepare a composite membrane for gas separation. The thickness of the polyphenylene oxide thin film was approximately 0.04μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation. Example 2
It can be seen that the composite membrane for gas separation in which the polyorganosiloxane phenylene copolymer thin film prepared in the above is interposed is not inferior in terms of gas permeability. Comparative Example 3 After contacting the thin film surface of the gas separation composite membrane prepared in Comparative Example 1 with a fluorine porous support membrane at a pressure of 2 g/cm 2 and peeling it off, the oxygen permeation rate and the separation coefficient between oxygen and nitrogen were measured. The results are shown in Table 2. Comparative Example 4 Comparative Example 3 was applied to the gas separation composite membrane prepared in Comparative Example 2.
An adhesion test similar to that was conducted and the results are shown in Table 2. It can be seen that in both Comparative Examples 3 and 4, the gas separation composite membranes without the polyorganosiloxane silphenylene copolymer thin film had poor adhesion and lost separation performance. As is clear from the above, in the present invention, since the thin film layer is difficult to peel off from the porous support, it is easy to handle and has excellent gas permeability and gas separation properties.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の気体分離複合膜は多孔質支持体Aと、
高気体分離性を有する重合体からなる極薄膜Bの
間に、ポリオルガノシロキサンシルフエニレン共
重合体からなる極薄膜Cが介在されているのでポ
リオルガノシロキサンシルフエニレン共重合体の
優れた接着性ならびに気体透過性により、次のご
とき優れた効果を得ることができる。 (1) 複合膜は使用に際して、薄膜が剥離しない
為、取り扱い性に優れている。 (2) 気体分離性能および気体透過性能がともに優
れている。
The gas separation composite membrane of the present invention includes a porous support A,
Since the ultra-thin film C made of polyorganosiloxane silphenylene copolymer is interposed between the ultra-thin film B made of a polymer with high gas separation properties, excellent adhesion of the polyorganosiloxane silphenylene copolymer is achieved. The following excellent effects can be obtained due to the properties and gas permeability. (1) Composite membranes are easy to handle because the thin film does not peel off during use. (2) Both gas separation performance and gas permeation performance are excellent.

Claims (1)

【特許請求の範囲】 1 多孔質支持体Aと、高気体分離性を有する重
合体からなる極薄膜Bの間に、構造式が、 で表わされるポリオルガノシロキサンシルフエニ
レン共重合体からなる極薄膜Cが介在されてなる
気体分離複合膜。
[Claims] 1 Between the porous support A and the ultrathin membrane B made of a polymer having high gas separation properties, A gas separation composite membrane comprising an ultra-thin membrane C made of a polyorganosiloxane silphenylene copolymer represented by:
JP59114513A 1984-06-06 1984-06-06 Gas separation composite membrane Granted JPS60257820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114513A JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114513A JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Publications (2)

Publication Number Publication Date
JPS60257820A JPS60257820A (en) 1985-12-19
JPH0479687B2 true JPH0479687B2 (en) 1992-12-16

Family

ID=14639631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114513A Granted JPS60257820A (en) 1984-06-06 1984-06-06 Gas separation composite membrane

Country Status (1)

Country Link
JP (1) JPS60257820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180708A (en) * 1986-02-03 1987-08-08 Agency Of Ind Science & Technol Production of porous membrane
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JP2015112502A (en) * 2013-12-07 2015-06-22 住友化学株式会社 Laminate and gas separation membrane, and method of manufacturing the laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
US9185418B2 (en) 2008-06-03 2015-11-10 Microsoft Technology Licensing, Llc Adaptive quantization for enhancement layer video coding
US9571840B2 (en) 2008-06-03 2017-02-14 Microsoft Technology Licensing, Llc Adaptive quantization for enhancement layer video coding

Also Published As

Publication number Publication date
JPS60257820A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
EP0298531B1 (en) Gas separation apparatus and also method for separating gases by means of such an apparatus
CA1320025C (en) Gas separation membrane
JPS59154106A (en) Gas-separation membrane
US4631075A (en) Composite membrane for gas separation
JP6729725B2 (en) Reverse osmosis membrane protective layer forming composition, method for producing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
Li et al. Multilayer ultrathin‐film composite membranes for oxygen enrichment
JPH0479687B2 (en)
US5176724A (en) Permselective composite membrane having improved gas permeability and selectivity
JPS6154204A (en) Composite fluid separation membrane
JPH0419891B2 (en)
Marchese et al. Preparation and gas separation performance of silicone‐coated polysulfone membranes
EP0242069A2 (en) Semipermeable composite membranes produced from silicone water based emulsions applied to porous substrates
JPS61129008A (en) Composite membrane for separating gas and its preparation
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JPS6256775B2 (en)
JPS61120617A (en) Composite membrane for separating gas
JPH01123618A (en) Composite gas separation membrane
JPH0696107B2 (en) Selective gas permeable membrane
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPS61107922A (en) Composite membrane for gas separation
JP2005350573A (en) Gas-permeable polymer composition and gas-separating composite membrane
JPS5919506A (en) Gas separation membrane
JPH0440223A (en) Gas separation composite membrane
JPH0761426B2 (en) Selective gas permeable composite membrane
JPH05111626A (en) Gaseous oxygen separating membrane and its production