JPH01123618A - Composite gas separation membrane - Google Patents

Composite gas separation membrane

Info

Publication number
JPH01123618A
JPH01123618A JP62282041A JP28204187A JPH01123618A JP H01123618 A JPH01123618 A JP H01123618A JP 62282041 A JP62282041 A JP 62282041A JP 28204187 A JP28204187 A JP 28204187A JP H01123618 A JPH01123618 A JP H01123618A
Authority
JP
Japan
Prior art keywords
membrane
gas
alkyl group
gas separation
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62282041A
Other languages
Japanese (ja)
Inventor
Hirotsugu Yamamoto
博嗣 山本
Hide Nakamura
秀 中村
Ichiro Terada
一郎 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62282041A priority Critical patent/JPH01123618A/en
Publication of JPH01123618A publication Critical patent/JPH01123618A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the above composite membrane having excellent gas permeability and gas separability by applying a soln. of the nonionic surfactant having a fluorocarbon chain-contg. long-chain alkyl group and an amine oxide hydrophilic group on a porous supporting membrane, and drying the soln. CONSTITUTION:The nonionic surfactant having an amine oxide hydrophilic group and a fluorocarbon chain-contg. long-chain alkyl group expressed by the formula [Rf is CF3(CF2)n-1, (n) is 2-16, R1 is (CH2)m, (m) is 0-6, X is COO, SO3, CONR4, SO2NR4, (l) is 2-6, and R2-R4 are alkyls] is applied on the porous supporting membrane, etc., and dried. The obtained composite membrane has excellent gas permeability and gas separability. According to example 1, for instance, alphaO2/N2=2.96, QO2=0.7m<3>(STP)/m<3>.H.atm, and alphaCO2/CH4=6.3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は混合気体中から少なくとも1種の気体を選択的
に分離するための気体選択透過複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas selective permeation composite membrane for selectively separating at least one gas from a mixed gas.

[従来の技術] 高分子物質を通しての気体分子の透過速度の差を気体分
離操作に利用して高分子物質からなる選択透過層を有す
る気体選択素子を介して気体混合物中の特定成分の濃縮
を行う手法は従来よりよく知られており空気からの酸素
富化空気の回収などに利用されている。
[Prior Art] Differences in the permeation rates of gas molecules through a polymeric substance are used in gas separation operations to concentrate specific components in a gas mixture through a gas selective element having a selectively permeable layer made of a polymeric substance. This method is well known and has been used to recover oxygen-enriched air from the air.

気体分子の透過性は選択透過層の材質に固有のものであ
り効率のよい分離操作を行うためには、着目成分と共存
成分との透過性の差が大きく、かつ着目成分の透過性が
大きい材質を選択することが必要である。膜素材という
点で考えるならば一般に気体分離選択性(a)を上げる
と気体透過係数Pが低下し、気体透過係数Pを上げると
気体分離選択性αが低下するという傾向がある。
The permeability of gas molecules is unique to the material of the selectively permeable layer, and in order to perform efficient separation operations, it is necessary to have a large difference in permeability between the target component and coexisting components, and a large permeability of the target component. It is necessary to select the material. Considering the membrane material, there is a general tendency that increasing the gas separation selectivity (a) causes the gas permeability coefficient P to decrease, and increasing the gas permeability coefficient P tends to decrease the gas separation selectivity α.

また一般に均一膜中な透過する気体の透過量は次式で表
される。
Additionally, the amount of gas permeating through a uniform membrane is generally expressed by the following equation.

ここでQは気体透過速度mβ (STP) / 5ec
Pは気体透過係数mA (STP) cm/ cm!・
cmHg−sec P、、 P、は膜に対するガスの供給側及び透過側の分
圧 (cmHg) lは膜厚(cm) Aは膜面積(cm”)である。
Here, Q is the gas permeation rate mβ (STP) / 5ec
P is the gas permeability coefficient mA (STP) cm/cm!・
cmHg-sec P, P is the partial pressure of gas on the supply side and permeation side of the membrane (cmHg) l is the membrane thickness (cm) A is the membrane area (cm'').

従って気体選択性と気体透過性を両方とも満足させるた
めには所望の気体分離性aを有するものの中で比較的気
体透過係数Pの高い素材を使用すると同時に膜厚1を小
さくすることが必要である。
Therefore, in order to satisfy both gas selectivity and gas permeability, it is necessary to use a material with a relatively high gas permeability coefficient P among those having the desired gas separation property a, and at the same time reduce the film thickness 1. be.

このような目的のため通常気体分離能を有さない多孔質
支持体の上に気体分離性を有する高分子体からなる層を
被覆した複合膜が一般に用いられている。
For this purpose, a composite membrane is generally used in which a layer of a polymer having gas separation properties is coated on a porous support that does not have gas separation properties.

例えば特開昭56−40415ではポリ (4−メチル
ペンテン−1)から主としてなる重合体を多孔質膜上に
水面展開法により複合化した膜が開示されている。ポリ
 (4−メチルペンテン=り素材自身のαOs/Nnは
3以上と大きいが、POa= 3x10−@において劣
りかつ薄膜化に限界があるため、複合膜のQO!は充分
ではなかった。
For example, JP-A-56-40415 discloses a membrane in which a polymer mainly consisting of poly(4-methylpentene-1) is composited onto a porous membrane by a water surface spreading method. Although the αOs/Nn of the poly(4-methylpentene) material itself is as high as 3 or more, it is inferior at POa = 3x10-@ and there is a limit to the thinning of the film, so the QO! of the composite film was not sufficient.

また特開昭50−41958号にはオルガノポリシロキ
サン−ポリカーボネート共重合体からなる膜が開示され
ている。このもののPOlは2X 10−”(cc:c
m (STP)7cm”sec−cmllg)と大きい
がaL/N2は2〜2.2と小さく得られる酸素富化空
気の酸素濃度に限界があった。
Further, JP-A-50-41958 discloses a membrane made of an organopolysiloxane-polycarbonate copolymer. The POl of this is 2X 10-” (cc: c
m (STP) 7 cm"sec-cmllg), which is large, but aL/N2 is small, 2 to 2.2, and there is a limit to the oxygen concentration of the oxygen-enriched air that can be obtained.

一方特開昭60−114323には、フルオロカーボン
基含有の長鎖アルチル基を有する両親媒性化合物から作
られた二分子膜のフィルムからなることを特徴とする酸
素の分離濃縮フィルムが開示されている。
On the other hand, JP-A No. 60-114323 discloses an oxygen separation and concentration film characterized by being composed of a bilayer film made of an amphiphilic compound having a long-chain alkyl group containing a fluorocarbon group. .

しかしながらこの二分子膜単独のPO,は1.74XI
O−”と高いがC0,/N、 =2.27と充分ではな
く、また膜の成形性を改良する目的で極性ポリマーを混
合することによりQ Os/Na = 2.29〜3.
13と高くなるがpotは6.7X 10−10〜0.
097XIQ−10と大きくしてしまう傾向にあった。
However, the PO of this bilayer membrane alone is 1.74XI
O-'', which is high, but C0,/N = 2.27, which is not sufficient, and by mixing a polar polymer for the purpose of improving the formability of the membrane, QOs/Na = 2.29 to 3.
Although it is high at 13, the pot is 6.7X 10-10 to 0.
There was a tendency to increase the size to 097XIQ-10.

[発明の解決しようとする問題点] このように気体選択性と気体透過性のバランスがとれて
おり、かつ複合膜化するために充分な薄膜形成能を有す
る素材及びこれを用いた複合膜は従来はとんど見られな
かった。
[Problems to be solved by the invention] As described above, a material that has a good balance between gas selectivity and gas permeability and has sufficient thin film forming ability to form a composite membrane, and a composite membrane using the same, are Previously, it was rarely seen.

[問題点を解決するための手段] 本発明者らは、上記問題点の認識のもとに鋭意研究を重
ねた結果アミンオキシドを親水基とするフルオロカーボ
ン基含有の長鎖アルキル基を有するノニオン性界面活性
剤の溶液をガス分離性を有さない多孔質膜上に接触させ
た後これを乾燥することによって複合化することにより
高い酸素透過性と酸素、窒素の分離性を有する複合膜が
得られることを見出し、本発明に到達した。
[Means for Solving the Problems] In recognition of the above problems, the present inventors have conducted extensive research and have developed a nonionic product having a long-chain alkyl group containing a fluorocarbon group and having an amine oxide as a hydrophilic group. A composite membrane with high oxygen permeability and oxygen and nitrogen separation properties can be obtained by bringing a surfactant solution into contact with a porous membrane that does not have gas separation properties and then drying it to form a composite. The present invention was achieved based on the discovery that

本発明におけるアミンオキシドを親水基とするフルオロ
カーボン基含有の長鎖アルキル基を有するノニオン性界
面活性剤は次式(1)であられされるものが用いられる R3 0−R8 [RfはCF3 (CFII) n−1(但しnは2〜
16の整数を表わす)を表わしR1は (C1h) −
(但しmはO〜6の整数を表わす)を表わし 又は−3−NR4−を表わしく但しR4は11又は炭素
U 数2〜6のアルキル基を表わす)1は2〜6の整数を表
わしl、 Raは炭素数1〜6のアルキル基を表わす。
In the present invention, the nonionic surfactant having a long chain alkyl group containing a fluorocarbon group and having an amine oxide as a hydrophilic group is represented by the following formula (1): R30-R8 [Rf is CF3 (CFII)] n-1 (however, n is 2~
represents an integer of 16) and R1 is (C1h) −
(where m represents an integer of O to 6) or -3-NR4-, where R4 represents 11 or an alkyl group having 2 to 6 carbon atoms) 1 represents an integer of 2 to 6 , Ra represents an alkyl group having 1 to 6 carbon atoms.

〕 本発明における多孔質支持体としては気体の透過速度が
0.1m”7m”・h+”atm以上で気体選択透過膜
層を被覆する側の表面の平均孔径が10〜10000人
で他方の面の平均孔径が前記孔径よりも大きな非対称構
造を有するものが好ましい、その中でも気体の透過速度
が0.5m”7m”・hr”atm以上で表面の、平均
孔径が50〜5[100大の非対称構造を有するものが
気体抵抗が小さくかつ高圧下で気体選択透過膜層を破損
することなく保持できるので特に好ましい。
] The porous support in the present invention has a gas permeation rate of 0.1m"7m".h+"atm or more, an average pore diameter of 10 to 10,000 on the side covered with the gas selective permeation membrane layer, and the other side It is preferable to have an asymmetric structure in which the average pore size of the pores is larger than the above pore size.Among these, an asymmetric structure with a gas permeation rate of 0.5m"7m"・hr"atm or more and an asymmetric structure with an average pore size of 50 to 5[100" on the surface Particularly preferred is one having such a structure because it has low gas resistance and can maintain the gas selectively permeable membrane layer under high pressure without being damaged.

またその表面形状としては滑らかで凹凸の小さいものが
気体選択透過性膜層に欠陥を形成しにくいという理由で
好ましい。
Further, it is preferable that the surface shape is smooth and has small irregularities because it is difficult to form defects in the gas selectively permeable membrane layer.

多孔質体の素材としては前記のような多孔形状を形成し
つるものならば何でも可能であるが、例えばポリスルホ
ン、ポリエーテルスルホン、ポリプロピレン、ポリテト
ラフルオロエチレン、ポリアミド、ポリイミド、ポリア
クリロニトリル、ポリカーボネート、セルロースエステ
ル等の重合体や多孔質ガラス、多孔質セラミック等の無
機の素材がある。
As the material for the porous body, any material that can form the above-mentioned porous shape can be used, such as polysulfone, polyethersulfone, polypropylene, polytetrafluoroethylene, polyamide, polyimide, polyacrylonitrile, polycarbonate, and cellulose. There are polymers such as esters, and inorganic materials such as porous glass and porous ceramics.

これらの多孔質支持体の形状はその用途に応じてシート
状、中空糸状、チューブ状のものいずれも使用可能であ
る。
The shape of these porous supports may be sheet-like, hollow fiber-like, or tube-like depending on the purpose.

これらの多孔質支持体と親水基としてアミンオキシドを
有するフルオロカーボン基含有長鎖アルキル基を有する
ノニオン系界面活性剤からなる膜の複合化は親水基とし
てアミンオキシドを有するフルオロカーボン基含有長鎖
アルキル基を有するノニオン系界面活性剤の水溶液又は
有機溶液に多孔質支持体を接触させて薄く均一に塗布し
、ついで熱風で乾燥することによって行うことができる
。フルオロカーボン基含有長鎖アルキル基を有するノニ
オン系界面活性剤の溶媒としては水、メタノール、エタ
ノール・イソプロピルアルコール等のアルコール類・ジ
オキサン、テトラヒドロフラン、フレオン系溶媒ならび
にこれらの混合物があるが、これらの溶媒は、多孔質支
持体との組合せに応じて選択される高透過性を有する重
合体の有機溶液を多孔質支持体上に塗布する方法として
は公知の方法が用いられる。かくして、例えばデイツプ
コート法、リバースロール法等により、厚さが好ましく
は0.03〜5μm、特には0.05〜2μmの薄膜が
得られる。
Composite membranes made of these porous supports and nonionic surfactants having fluorocarbon group-containing long-chain alkyl groups having amine oxide as hydrophilic groups have a fluorocarbon group-containing long-chain alkyl group having amine oxide as hydrophilic groups. This can be carried out by bringing a porous support into contact with an aqueous or organic solution of a nonionic surfactant, coating the porous support thinly and uniformly, and then drying with hot air. Solvents for nonionic surfactants having long-chain alkyl groups containing fluorocarbon groups include water, methanol, alcohols such as ethanol and isopropyl alcohol, dioxane, tetrahydrofuran, Freon solvents, and mixtures thereof. A known method can be used for coating the porous support with an organic solution of a highly permeable polymer selected depending on the combination with the porous support. In this way, a thin film having a thickness of preferably 0.03 to 5 μm, particularly 0.05 to 2 μm can be obtained by, for example, a dip coating method or a reverse roll method.

なお上記説明においては酸素と窒素を例にとったが本発
明はこの系のみに限定されるのではなく例えば天然ガス
からのメタンやヘリウムの回収、−酸化炭素と水素の分
離、等にも応用する事ができる。以下実施例に基づいて
本発明を具体的に説明するがかかる説明によって本発明
が何ら限定されるものでないことは勿論である。
Although the above explanation uses oxygen and nitrogen as examples, the present invention is not limited to this system, but can also be applied to, for example, recovery of methane and helium from natural gas, separation of carbon oxide and hydrogen, etc. I can do that. The present invention will be specifically explained below based on Examples, but it goes without saying that the present invention is not limited by such explanations.

[実施例] 実施例1 ポリエステル不織布を裏打ちした表面細孔径約50人、
裏面孔径的 16mのポリスルホンよりなる厚さ50μ
mのシート状非対称多孔質支持膜 (空気透過速度20
m’/ m”旧atm)をCFa (CF+1) nC
0NII (CIla) +IN (CHs) * (
nは平均8)な番 る構造を有するフッ素系界面活性剤の2市川%水溶液に
浸漬後、室温下に保存して風乾し選択層の厚みが μm
の複合膜を得た。
[Example] Example 1 Polyester nonwoven fabric lined surface with a pore diameter of about 50,
Back side hole diameter: 50μ thick made of polysulfone with a diameter of 16m
m sheet-like asymmetric porous support membrane (air permeation rate 20
m'/ m"old atm) to CFa (CF+1) nC
0NII (CIla) +IN (CHs) * (
After immersing in a 2% Ichikawa aqueous solution of a fluorosurfactant with a number structure where n is 8 on average, it was stored at room temperature and air-dried to reduce the thickness of the selected layer to μm.
A composite membrane was obtained.

この複合膜の酸素、窒素及び炭酸ガス、メタンの分離性
能を測定したところ Q Qz= o、7m’ (STP)7m”・ll・a
tm、 0口2/Na□2.96、Q Qa= 2.0
m” (STP) / m”11・atm、 a CO
2//CIL・6.3であった。
When we measured the separation performance of this composite membrane for oxygen, nitrogen, carbon dioxide, and methane, we found that Qz = o, 7m' (STP) 7m''・ll・a
tm, 0 mouth 2/Na□2.96, Q Qa= 2.0
m” (STP) / m”11・atm, a CO
2//CIL・6.3.

実施例2 界面活性剤としてCF3 (CF2) n(C1la)
 、SNll−(CIlx) 3N (CH31m (
nは平均8)なる構造のフッ素系↓ 界面活性剤の選択層 (厚み0.16μm)を用いたこ
と以外は実施例1と同様の方法で複合膜を得た。
Example 2 CF3 (CF2) n(C1la) as surfactant
, SNll-(CIlx) 3N (CH31m (
A composite membrane was obtained in the same manner as in Example 1, except that a selective layer (thickness: 0.16 μm) of a fluorine-based ↓ surfactant having a structure in which n is 8 on average was used.

この膜の性能はQO3=0.58m’(STP) /m
”ilatm %aOa/NgT=2.78、Q CO
*g1.6m’ (STP)/ m”H・atm %a
cOIl/CHn’5.3であった。
The performance of this membrane is QO3=0.58m'(STP)/m
”ilatm %aOa/NgT=2.78, Q CO
*g1.6m' (STP)/ m"H・atm %a
The cOIl/CHn' was 5.3.

比較例1 界面活性剤としてCHs (C1la) r IN (
CH3) aなる構↓ 造を有する非フツ素系界面活性剤を用いること以外は実
施例1と全く同様にして複合膜化を行なった。この膜の
性能はQ L= 18.2m” (STP) /m”・
トatm%a L/ Nx= 0.99と多孔質支持膜
の性能と殆ど変らなかった。
Comparative Example 1 CHs (C1la) r IN (
CH3) A composite film was formed in the same manner as in Example 1 except that a non-fluorine surfactant having the structure ↓ was used. The performance of this film is Q L = 18.2m” (STP) /m”・
Atm%a L/Nx = 0.99, which was almost the same as the performance of the porous support membrane.

実施例3 表面細孔径約50人、外径350μm、内径150μm
のポリスルホン (空気透過速度5m’/m”・トat
m)を70℃で風乾した後CFa (CFi)。C0N
H(CHi) aN−(C1la) z (nは平均8
)の2重量%水溶液に浸漬↓ 後、80℃で1分間乾燥して複合膜を得た。この膜の性
能を測定したところ Q Qa= 0.4m”(STP)/ m2・h+”a
tm %a 02/N2 =2.58であった。
Example 3 Surface pore diameter approximately 50, outer diameter 350 μm, inner diameter 150 μm
polysulfone (air permeation rate 5 m'/m"・t
CFa (CFi) after air drying m) at 70°C. C0N
H(CHi) aN-(C1la) z (n is 8 on average
) in a 2% by weight aqueous solution↓, and then dried at 80°C for 1 minute to obtain a composite membrane. When the performance of this film was measured, Q Qa = 0.4m” (STP)/m2・h+”a
tm %a 02/N2 =2.58.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質支持膜上に、気体選択性を有する層として
アミンオキシドを親水基とするフルオロカーボン鎖含有
長鎖アルキル基を有するノニオン系界面活性剤からなる
膜を積層した複合気体分離膜。
(1) A composite gas separation membrane in which a membrane made of a nonionic surfactant having a long-chain alkyl group containing a fluorocarbon chain and having an amine oxide as a hydrophilic group is laminated on a porous support membrane as a gas-selective layer.
(2)アミンオキシドを親水基とするフルオロカーボン
鎖含有長鎖アルキル基を有するノニオン系界面活性剤が
次式で表わされる特許請求の範囲第1項記載の複合気体
分離膜。 ▲数式、化学式、表等があります▼    [RfはCF_3(CF_2)_n_−_1(但しnは
2〜16の整数を表わす)を表わしR_1は(CH_2
)_m(但しmは0〜6の整数を表わす)を表わし Xは▲数式、化学式、表等があります▼又は −O−但しR_4はH又は炭素数1〜6のアルキル基を
表わす]を表わし、lは2〜6の整数を表わしR_2、
R_3は炭素数1〜6のアルキル基を表わす。]
(2) The composite gas separation membrane according to claim 1, wherein the nonionic surfactant having a long-chain alkyl group containing a fluorocarbon chain and having an amine oxide as a hydrophilic group is represented by the following formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [Rf represents CF_3 (CF_2)_n_-_1 (where n represents an integer from 2 to 16), and R_1 represents (CH_2
)_m (where m represents an integer from 0 to 6); , l represents an integer from 2 to 6, R_2,
R_3 represents an alkyl group having 1 to 6 carbon atoms. ]
JP62282041A 1987-11-10 1987-11-10 Composite gas separation membrane Pending JPH01123618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282041A JPH01123618A (en) 1987-11-10 1987-11-10 Composite gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282041A JPH01123618A (en) 1987-11-10 1987-11-10 Composite gas separation membrane

Publications (1)

Publication Number Publication Date
JPH01123618A true JPH01123618A (en) 1989-05-16

Family

ID=17647402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282041A Pending JPH01123618A (en) 1987-11-10 1987-11-10 Composite gas separation membrane

Country Status (1)

Country Link
JP (1) JPH01123618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968470A (en) * 1989-11-15 1990-11-06 Air Products And Chemicals, Inc. Asymmetric permselective polyacetylene membranes and process for the formation thereof
US5032149A (en) * 1989-10-10 1991-07-16 E. I. Du Pont De Nemours And Company Surfactant treatment of polyaramide gas separation membranes
US5034024A (en) * 1989-10-10 1991-07-23 E. I. Du Pont De Nemours And Company Surfactant treatment of aromatic polyimide gas separation membranes
US6730145B1 (en) 2002-01-29 2004-05-04 L'air Liquide Societe Anonyme Treating gas separation membrane with aqueous reagent dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032149A (en) * 1989-10-10 1991-07-16 E. I. Du Pont De Nemours And Company Surfactant treatment of polyaramide gas separation membranes
US5034024A (en) * 1989-10-10 1991-07-23 E. I. Du Pont De Nemours And Company Surfactant treatment of aromatic polyimide gas separation membranes
US4968470A (en) * 1989-11-15 1990-11-06 Air Products And Chemicals, Inc. Asymmetric permselective polyacetylene membranes and process for the formation thereof
US6730145B1 (en) 2002-01-29 2004-05-04 L'air Liquide Societe Anonyme Treating gas separation membrane with aqueous reagent dispersion

Similar Documents

Publication Publication Date Title
US4875908A (en) Process for selectively separating gaseous mixtures containing water vapor
US5129920A (en) Gas separation apparatus and also method for separating gases by means of such an apparatus
US4080743A (en) Membrane drying process
US4681605A (en) Anisotropic membranes for gas separation
US4631075A (en) Composite membrane for gas separation
JPH0457372B2 (en)
JPH0563213B2 (en)
JPS6182810A (en) Production of united assymmetric membrane for mutually separating gases
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
US4758251A (en) Separation of gases through gas enrichment membrane composites
US5061301A (en) Process for the preparation of surface modified, multilayered, composite membranes for oxygen enrichment and the gas separation membranes
JPS6214916A (en) Manufacture of composite asymmetric membrane for mutually separating gas
JPH0312224A (en) Permselective membrane
JPH01123618A (en) Composite gas separation membrane
EP0181850A1 (en) Composite fluid separation membranes
JPH0260370B2 (en)
JPH02290230A (en) Composite polymer membrane for separating gas mixture and manufacture thereof
JP2024525689A (en) Thin film composite membranes having improved adhesion between layers and uses thereof - Patents.com
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
Sada et al. Permeation of carbon dioxide through homogeneous and asymmetric polysulfone membranes
JPS61408A (en) Hollow yarn composite membrane
JPH0456653B2 (en)
JPH0423572B2 (en)
KR20200107121A (en) Gas separation membrane, gas separation membrane module comprising the same and preparation method for the same
JPS61192323A (en) Gas separation membrane