JPH0260370B2 - - Google Patents

Info

Publication number
JPH0260370B2
JPH0260370B2 JP57169572A JP16957282A JPH0260370B2 JP H0260370 B2 JPH0260370 B2 JP H0260370B2 JP 57169572 A JP57169572 A JP 57169572A JP 16957282 A JP16957282 A JP 16957282A JP H0260370 B2 JPH0260370 B2 JP H0260370B2
Authority
JP
Japan
Prior art keywords
membrane
porous
thickness
layer
selectively permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57169572A
Other languages
Japanese (ja)
Other versions
JPS5962305A (en
Inventor
Kenko Yamada
Shuichi Sato
Toshio Motoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57169572A priority Critical patent/JPS5962305A/en
Publication of JPS5962305A publication Critical patent/JPS5962305A/en
Publication of JPH0260370B2 publication Critical patent/JPH0260370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄い選択透過膜層の破損がなく、取
り扱い易く、かつ耐久性の改善された気体分離用
複合膜を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a composite membrane for gas separation that is easy to handle and has improved durability without damaging the thin selectively permeable membrane layer. be.

(従来技術) 現在、燃焼エネルギーを利用する装置、例えば
家庭用暖房器具、自動車のエンジン、ボイラー等
においては、空気中に酸素が約20%の濃度で存在
することを基礎に設計され運用されている。
(Prior art) Currently, devices that utilize combustion energy, such as home heating appliances, automobile engines, and boilers, are designed and operated on the basis that oxygen exists in the air at a concentration of approximately 20%. There is.

今、酸素濃度の高められた空気が供給されたと
すれば、不完全燃焼による環境汚染等の問題が解
消されるばかりでなく、燃焼効率を高めることも
可能になる。
If air with increased oxygen concentration were now supplied, not only would problems such as environmental pollution caused by incomplete combustion be solved, but it would also be possible to increase combustion efficiency.

又、酸素濃度の高められた空気は、呼吸器系疾
患者や未熟児の呼吸用としても有用である。
The air with increased oxygen concentration is also useful for breathing by people with respiratory disorders and premature infants.

このように酸素濃度の高い空気を得る方法とし
て高分子膜を用いて大気中の酸素を選択的に分離
濃縮する方法がある。
As a method of obtaining air with such a high oxygen concentration, there is a method of selectively separating and concentrating oxygen in the atmosphere using a polymer membrane.

そこで、気体分離用の薄膜製造法として、ポリ
マー溶液を水面上に展開することでポリシロキサ
ン−ポリカーボネート共重合の薄膜をつくる方法
(特開昭51−89564号公報参照)やポリオレフイン
の薄膜をつくる方法(特開昭57−71605号公報参
照)が知られており、これを分離膜とするにはこ
の薄膜を多孔質膜に積層して使つている。
Therefore, as methods for producing thin films for gas separation, there is a method in which a thin film of polysiloxane-polycarbonate copolymerization is made by spreading a polymer solution on the water surface (see JP-A-51-89564), and a method in which a thin film of polyolefin is made. (Refer to Japanese Unexamined Patent Publication No. 71605/1983) is known, and in order to use this as a separation membrane, this thin film is used by laminating it on a porous membrane.

また、ポリマー溶液を平膜状や中空糸状に製膜
後溶媒の一部を蒸発し、その後凝固液に浸漬し、
残余の溶媒を除去して得られた薄膜分離活性層と
多孔質膜層とが一体となつた非対称膜の製膜法
(特公昭52−21021号、特開昭57−7206号公報参
照)、多孔質膜上でポリアミドポリイソシアネー
トとを界面反応で反応させてつくる所謂in situ
重合法による複合膜の製膜法(特開昭57−74476
号公報参照)なども知られている。
In addition, after forming a polymer solution into a flat membrane or hollow fiber, part of the solvent is evaporated, and then immersed in a coagulating liquid.
A method for producing an asymmetric membrane in which a thin membrane separation active layer obtained by removing residual solvent and a porous membrane layer are integrated (see Japanese Patent Publication No. 52-21021 and Japanese Patent Application Laid-Open No. 57-7206); A so-called in situ film made by reacting polyamide polyisocyanate on a porous membrane through an interfacial reaction.
Film production method of composite membrane by polymerization method (Japanese Patent Application Laid-open No. 57-74476
(Refer to Publication No. 2004) are also known.

これらの膜を実際の分離に使うには、これらの
膜を幾枚も重ねるかあるいは幾本も束ねて、分離
モジユールに組立てて使用する。
To use these membranes for actual separation, they are stacked or bundled together and assembled into a separation module.

しかし、その場合、膜の厚さが薄くなると、膜
の強度が小さくなり、手や物体が膜表面に触れる
だけで膜が破損し、そのため膜の取り扱いを慎重
にせねばならず、モジユールの組立ては大変面倒
な作業となる。また、破損した膜は使用できない
ため、製品となる割合も低い。
However, in this case, as the thickness of the membrane becomes thinner, the strength of the membrane decreases, and the membrane can be damaged simply by touching the membrane surface with a hand or an object. Therefore, the membrane must be handled carefully, making it difficult to assemble the module. This is a very tedious task. Furthermore, since damaged membranes cannot be used, the percentage of them being used as products is low.

さらに、分離運転中、供給気体中に含まれる固
形物による膜の破損の恐れもあり、また中空糸の
外側に薄膜を設けた場合、中空糸どうしが互いに
接触して膜が破損することもある。
Furthermore, during separation operation, there is a risk of membrane damage due to solids contained in the supplied gas, and if a thin film is provided on the outside of the hollow fibers, the hollow fibers may come into contact with each other and damage the membrane. .

(発明が解決しようとする課題) そこで、本発明者らは薄膜表面の破損がなく、
耐久性のある気体用分離膜を製造するべく鋭意研
究の結果、かかる分離膜を得るには、5〜1000μ
mの厚さの多孔質支持膜層、0.5μmの厚さの非多
孔質選択透過膜層および300μm以下の厚さの多
孔質保護膜層を積層して、全体が一体化した構造
の複合膜とすることが必要であり、かかる複合膜
は次の方法によつて工業的に製造することが出来
ることを見い出した。
(Problem to be solved by the invention) Therefore, the present inventors discovered that there is no damage to the thin film surface.
As a result of intensive research to produce a durable gas separation membrane, it has been found that in order to obtain such a separation membrane, it is necessary to
A composite membrane with an integrated structure consisting of a porous support membrane layer with a thickness of m, a non-porous permselective membrane layer with a thickness of 0.5μm, and a porous protective membrane layer with a thickness of 300μm or less. It has been found that such a composite membrane can be manufactured industrially by the following method.

(課題を解決する手段) すなわち、本発明では、上述の如き複合膜は、
5〜1000μmの厚さの多孔質支持膜層および0.5μ
m以下の厚さを有する気体の選択透過性を有する
非多孔質膜からなる非多孔質膜層の積層体の上
に、高分子化合物と溶媒より主としてなるかある
いは高分子化合物、添加剤および溶媒より主とし
てなる溶液を塗布し、ついで該溶媒あるいは該溶
媒と該添加剤を除去して該非多孔質膜の上に平均
孔径100Å以上の孔を有する厚さ300μm以下の多
孔質保護膜層を形成せしめることを特徴とする気
体分離用複合膜の製造法によつて製造される。
(Means for solving the problem) That is, in the present invention, the composite membrane as described above is
Porous support membrane layer with a thickness of 5-1000 μm and 0.5 μm
On top of a laminate of non-porous membrane layers consisting of a non-porous membrane having a gas selective permeability and having a thickness of not more than A more main solution is applied, and then the solvent or the solvent and the additive are removed to form a porous protective film layer having a thickness of 300 μm or less and having pores with an average pore diameter of 100 Å or more on the non-porous membrane. It is manufactured by a method for manufacturing a composite membrane for gas separation characterized by the following.

本発明の方法において使用する多孔質支持膜層
は、厚さ0.5μm以下の薄い非多孔質の選択透過膜
を支持するものであるから、表面の孔の大きさは
できるだけ均一で小さいことが好ましく、一般に
は約0.003〜1μmの間、好ましくは0.005〜0.5μm、
さらに好ましく0.01〜0.3μmである。
Since the porous support membrane layer used in the method of the present invention supports a thin non-porous permselective membrane with a thickness of 0.5 μm or less, it is preferable that the size of the pores on the surface be as uniform and small as possible. , generally between about 0.003 and 1 μm, preferably between 0.005 and 0.5 μm,
More preferably, it is 0.01 to 0.3 μm.

多孔質支持膜の基材としては、ガラス質多孔
材、焼結金属、セラミツクスなどの無機系基材、
あるいはセルロースエステル、ポリスチレン、ポ
リスルホン、ポリプロピレン、ポリエチレン、塩
化ビニルポリマー、ポリアクリロニトリルなどの
有機系基材あるいはシリカ含有ポリエチレンなど
の無機−有機からなる基材など通常の多孔質膜基
材が用いられる。
The base material for the porous support membrane includes glass porous materials, sintered metals, inorganic base materials such as ceramics,
Ordinary porous membrane substrates may be used, such as organic substrates such as cellulose ester, polystyrene, polysulfone, polypropylene, polyethylene, vinyl chloride polymer, and polyacrylonitrile, or inorganic-organic substrates such as silica-containing polyethylene.

その構造は対称構造でも非対称構造でもよい
が、表面小さな孔で内側は大きな孔の非対称構造
の方が気体の透過抵抗は小さく、透過量が多くな
るため好ましい。
The structure may be a symmetrical structure or an asymmetrical structure, but an asymmetrical structure with small pores on the surface and large pores on the inside is preferable because the gas permeation resistance is low and the amount of permeation is large.

また上記多孔質支持膜として、JIS P8117の装
置により測定された透気度が10〜10000秒、好ま
しくは20〜3000秒、より好ましくは50〜1000秒の
ものが用いるのが適当である。透気度が10秒以下
のものは、大きな孔があいていることが多く、そ
こに薄い選択透過膜をのせた場合欠陥を生じやす
い。一方、10000秒以上の場合、分離膜にした場
合、透過量が小さいものしかできないことが多
い。
Furthermore, it is appropriate to use a porous support membrane having an air permeability of 10 to 10,000 seconds, preferably 20 to 3,000 seconds, and more preferably 50 to 1,000 seconds, as measured by a JIS P8117 device. Those with an air permeability of 10 seconds or less often have large pores, which can easily cause defects if a thin permselective membrane is placed there. On the other hand, if the time is 10,000 seconds or more, if a separation membrane is used, it is likely that only a small amount of permeation will be produced.

本発明で使用する多孔質支持膜層の厚さは、5
〜1000μmの厚さであり、好ましくは10〜500μ
m、より好ましくは20〜300μmの厚さである。
5μmより薄いと形態保持ができにくく取り扱い
にくいし、一方1000μm以上あると分離膜として
厚い膜になり、モジユールのサイズが大きくな
る。
The thickness of the porous support membrane layer used in the present invention is 5
~1000μm thick, preferably 10-500μm
m, more preferably 20 to 300 μm.
If it is thinner than 5 μm, it will be difficult to maintain its shape and it will be difficult to handle, while if it is 1000 μm or more, it will become a thick separation membrane and the size of the module will increase.

なお、本発明で使用する多孔質支持膜として
は、前記特徴を有する限り非対称膜のスポンジ層
も含む。非対称膜はその断面が同一素材で、選択
透過機能を有する非多孔質層から多孔質のスポン
ジ層へと連続的にかわつていく構造であるが、ス
ポンジ層は膜の機能として非多孔質層(分離層)
を支持していることになる。
Note that the porous support membrane used in the present invention includes a sponge layer of an asymmetric membrane as long as it has the above characteristics. An asymmetric membrane has a structure in which its cross section is made of the same material and changes continuously from a non-porous layer with a selective permeation function to a porous sponge layer. layer)
It means that you are supporting.

一方、上記の多孔質支持膜上に有する選択透過
膜層は、本質的には無孔(非多孔質)の緻密な均
質膜からなる。この層は気体の透過量をあげるた
めには、できるだけ薄いのが好ましく、その厚さ
は0.5μm以下、好ましくは0.3μm以下、特に好ま
しくは0.1μm以下である。
On the other hand, the permselective membrane layer provided on the porous support membrane is essentially a dense, homogeneous membrane that is non-porous. In order to increase the amount of gas permeation, this layer is preferably as thin as possible, and its thickness is 0.5 μm or less, preferably 0.3 μm or less, particularly preferably 0.1 μm or less.

この薄い選択透過膜層の製造法としては、上述
した水面上展開法、非対称膜法、In−situ重合法
などがあるが、その他ポリマー溶液コーテイング
法、プラズマ重合膜法などいろいろあり、特に限
定されるものではない。
Methods for manufacturing this thin selectively permeable membrane layer include the above-mentioned water surface development method, asymmetric membrane method, and in-situ polymerization method, but there are also various other methods such as polymer solution coating method and plasma polymerization membrane method, but there are no particular limitations. It's not something you can do.

選択透過膜の素材としては、ある特定ガスに対
して選択的透過性を有しているものが好ましく、
一般に分離対象ガスによつて異なり、分離に最も
効率のよい透過性および選択性をもつ素材が選ば
れる。例えば、酸素と窒素の分離の場合は、ポリ
シロキサン、シロキサン−ポリカーボネート共重
合体、ポリフエニレンオキサイド、ポリメチルペ
ンテン、ポリビニルトリメチルシラン、ポリアリ
ルトリメチルシラン系共重合体、シロキサン含有
ポリ尿素、セルローストリアセテートなどをあげ
ることができる。
The material for the selectively permeable membrane is preferably one that has selective permeability to a specific gas.
In general, materials with the most efficient permeability and selectivity for separation are selected, depending on the gas to be separated. For example, in the case of oxygen and nitrogen separation, polysiloxane, siloxane-polycarbonate copolymer, polyphenylene oxide, polymethylpentene, polyvinyltrimethylsilane, polyallyltrimethylsilane copolymer, siloxane-containing polyurea, cellulose triacetate etc. can be given.

本発明方法では、選択透過膜の上に多孔質保護
膜を形成せしめるが、保護層の外側に分離すべき
混合気体を供給し、混合気体は多孔質保護膜の孔
を通つて選択透過膜表面に到達し分離されてい
く。選択透過膜表面では、透過しにくい気体の濃
度は次第に高まり分離効率を下げていくので、選
択透過表面にはたえず供給気体を送り、表面を更
新することが分離膜においては重要である。その
ため本発明では選択透過膜表面をおおうように設
ける多孔質保護膜は、選択透過膜の表面更新を妨
げないものであることが必要である。
In the method of the present invention, a porous protective film is formed on the selectively permeable membrane, and the mixed gas to be separated is supplied to the outside of the protective layer, and the mixed gas passes through the pores of the porous protective film to the surface of the selectively permeable membrane. reached and separated. On the surface of a selectively permeable membrane, the concentration of gases that are difficult to permeate gradually increases and the separation efficiency decreases, so it is important for separation membranes to constantly send supply gas to the selectively permeable surface to renew the surface. Therefore, in the present invention, it is necessary that the porous protective film provided to cover the surface of the selectively permeable membrane does not hinder the surface renewal of the selectively permeable membrane.

かかる見地から多孔質保護膜の厚さはできるだ
け薄い方が好ましく、厚さとしては300μm以下、
好ましくは150μm以下、さらに好ましくは100μ
m以下である。しかし、あまり薄すぎては保護層
の強度がなくなるので、厚さとしては0.5μm以
上、好ましくは1μm以上が適当である。
From this point of view, it is preferable that the thickness of the porous protective film is as thin as possible, and the thickness is 300 μm or less,
Preferably 150μm or less, more preferably 100μm
m or less. However, if it is too thin, the strength of the protective layer will be lost, so the appropriate thickness is 0.5 μm or more, preferably 1 μm or more.

表面更新を妨げず、透過量を多くするための多
孔質物性として重要なのは空隙率であり、多孔質
膜保護膜の空隙率は30%以上、好ましくは50%以
上、さらに好ましくは60%以上である。又、孔の
大きさには平均孔径の大きいほど透過が妨げられ
ず好ましいが選択透過膜がさらされることにな
る。そこで、多孔質膜保護層の孔径平均は、最小
孔径は100Å以上とする。
The porosity is important as a porous physical property to increase the amount of permeation without hindering surface renewal, and the porosity of the porous protective film is 30% or more, preferably 50% or more, and more preferably 60% or more. be. Also, regarding the size of the pores, it is preferable that the average pore diameter is larger as the permeation is not hindered, but the selectively permeable membrane is exposed. Therefore, the average pore diameter of the porous membrane protective layer is set to a minimum pore diameter of 100 Å or more.

本発明において、多孔質膜保護層の材質は、前
述の多孔質支持膜の材質と同じものから選ばれる
が、支持膜と同種のものを使用する必要はない。
In the present invention, the material of the porous membrane protective layer is selected from the same materials as the porous support membrane described above, but it is not necessary to use the same kind of material as the support membrane.

本発明で得られる気体分離用複合膜は、多孔質
支持膜層、選択透過膜層および多孔質保護膜層の
三層がそれぞれの間で一体となつた構造を有す
る。一体となつたとは、三層それぞれの間でずれ
を生じない構造であることであり、かくすること
により、この複合膜からモジユールを組みあげる
とき、あるいは圧力をかけて分離をおこなつてい
るとき、支持膜層および保護層はそれぞれ役割を
はたし、選択透過膜の破損を防ぎ、また保護膜お
よび支持膜自身による選択透過膜の破壊も防止す
る。
The composite membrane for gas separation obtained by the present invention has a structure in which three layers, a porous support membrane layer, a selectively permeable membrane layer, and a porous protective membrane layer, are integrated between each layer. Integral means that there is no misalignment between each of the three layers, and this ensures that when a module is assembled from this composite membrane or when separation is performed by applying pressure. , the supporting membrane layer and the protective layer each play a role to prevent damage to the selectively permeable membrane, and also to prevent destruction of the selectively permeable membrane by the protective membrane and the supporting membrane themselves.

以上の如き気体分離用複合膜の製造法として
は、まず多孔質支持膜および選択透過膜からなる
複合膜をつくり、その選択透過膜の上に多孔質保
護膜を設ける方法が採用される。具体的には、ポ
リマー(高分子化合物)の溶液を上記の如き多孔
質支持膜と分離膜とからなる積層複合膜における
選択透過膜の表面に塗布し、溶液中から溶媒ある
いは溶媒と添加剤とを除去して、選択透過膜表面
に平均孔径100Å以上、厚み300μm以下の多孔質
保護膜を形成せしめる方法が採用される。
As a method for producing the above-mentioned composite membrane for gas separation, a method is employed in which a composite membrane consisting of a porous support membrane and a selectively permeable membrane is first prepared, and then a porous protective membrane is provided on the selectively permeable membrane. Specifically, a solution of a polymer (high molecular compound) is applied to the surface of a selectively permeable membrane in a laminated composite membrane consisting of a porous support membrane and a separation membrane as described above, and a solvent or a solvent and an additive are extracted from the solution. A method is adopted in which a porous protective film with an average pore diameter of 100 Å or more and a thickness of 300 μm or less is formed on the surface of the selectively permeable membrane by removing the .

多孔質保護膜をそのまま選択透過膜の上に重ね
る方法も考えられるが、これは、重ねる時薄くて
強度の小さい選択透過膜を多孔質保護膜で傷める
ことが多く、多孔質保護膜の重ねる面の凹凸の有
無や多孔質保護膜の重ね合わせ時の張力のかけ方
など多大の慎重さを要するため実用的でない。
It is also possible to directly stack the porous protective film on top of the selectively permeable membrane, but this method often damages the thin and weakly strong selectively permeable membrane when layered, and the layered surface of the porous protective film It is not practical because it requires great care in determining the presence or absence of irregularities in the porous protective film and how to apply tension when overlapping the porous protective film.

一方、上記の方法は、ポリマー溶液あるいは添
加剤の入つたポリマー溶液を選択透過膜の上に塗
布し、その後溶剤あるいは溶剤と添加剤を除去し
て、多孔質膜をつくる方法である。この場合、重
要なのは、溶媒の選定であり、溶媒として選択透
過膜を浸さないものでありかつ多孔質膜素材にな
るポリマーを溶解するものを選ばなければならな
い。
On the other hand, the above method is a method in which a polymer solution or a polymer solution containing an additive is applied onto a selectively permeable membrane, and then the solvent or the solvent and the additive are removed to form a porous membrane. In this case, what is important is the selection of the solvent, which must not immerse the selectively permeable membrane and which dissolves the polymer that will become the porous membrane material.

添加剤としては、多孔質の孔を積極的にあけよ
うとする働きをして多孔質膜素材のポリマーの非
溶剤や塩化リチウム、炭酸カルシウムなどの塩あ
るいは酸化チタン、シリカなどの無機物などであ
る。この添加剤も選択透過膜をおかさないもので
なければならない。
Additives include non-solvents for polymers used as porous membrane materials, salts such as lithium chloride and calcium carbonate, and inorganic substances such as titanium oxide and silica, which act to actively open pores in the porous membrane. . This additive must also not damage the selectively permeable membrane.

ポリマー溶液を選択透過膜の上に塗布する方法
としては、浸漬法、コーテイング法、スプレーコ
ーテイング法等、選択透過膜をいためなければい
かなる方法でもよい。塗布後、ポリマー溶液の溶
媒と混合する非溶剤中に浸漬し、脱溶媒をして多
孔質膜とする。
The polymer solution may be applied onto the selectively permeable membrane by any method such as dipping, coating, spray coating, etc. that does not damage the selectively permeable membrane. After coating, it is immersed in a non-solvent that mixes with the solvent of the polymer solution, and the solvent is removed to form a porous membrane.

この方法は平膜ばかりでなく、中空糸膜にも適
用される。
This method is applicable not only to flat membranes but also to hollow fiber membranes.

本発明の複合膜の形態は、平膜状,中空糸状等
いかなる形態でも可能である。
The composite membrane of the present invention can have any shape such as a flat membrane or a hollow fiber.

(発明の効果) 本発明の方法によれば、容易に複合膜を製造す
ることができ、かつ得られる複合膜は、その取り
扱いの容易さ、耐久性の良さを利用し、選択透過
膜の気体透過性、選択性の特性に応じて、いろい
ろの混合気体の分離用に用いることができる。
(Effects of the Invention) According to the method of the present invention, it is possible to easily produce a composite membrane, and the resulting composite membrane takes advantage of its ease of handling and good durability, and allows the gas of the selectively permeable membrane to be Depending on the characteristics of permeability and selectivity, it can be used for separating various gas mixtures.

例えば、選択透過膜が酸素と窒素の分離に適し
ていれば空気から酸素富化空気を製造する装置に
組みこんで、エンジン、暖房器具等の燃焼効率の
向上に、あるいは清浄な酸素富化空気として呼吸
器系疾患者の治療機械として、あるいは人工肺な
どに利用することができる。また、水素と一酸化
炭素や水素と窒素の分離に適していれば、水性ガ
スの生成プロセスやアンモニア合成プロセスでの
水素の回収に、さらにヘリウムと空気の分離に適
していれば、液化ヘリウムを使う極低温装置にお
ける回収ヘリウムガスの精製などに利用できる。
For example, if a selectively permeable membrane is suitable for separating oxygen and nitrogen, it can be incorporated into equipment that produces oxygen-enriched air from air to improve the combustion efficiency of engines, heating equipment, etc., or it can be used to produce clean oxygen-enriched air. It can be used as a treatment machine for people with respiratory problems, or as an artificial lung. In addition, if it is suitable for separating hydrogen and carbon monoxide or hydrogen and nitrogen, it can be used for hydrogen recovery in water gas generation processes and ammonia synthesis processes, and if it is suitable for separating helium and air, liquefied helium can be used. It can be used to purify recovered helium gas in cryogenic equipment.

(実施例) 以下実施例をあげて本発明を説明するが、本発
明はこれらに限定されるものではない。本実施例
中に「部」とあるは重量部を示す。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited thereto. In the examples, "parts" indicate parts by weight.

実施例 1 ポリ4−メチルペンテン4部、シクロヘキセニ
ルパーオキサイド6部および精製蒸留したシクロ
ヘキセン90部よりなるドープを針状の供給口か
ら、該供給口を水と接しながら水面上に連続的に
供給し、ポリ4−メチルペンテンの非多孔質な超
薄膜を水面上に形成させる。この超薄膜の上から
ポリプロピレン多孔質膜(厚さ25μm、孔径範囲
0.02〜0.2μm、平均孔径0.14μm(1400Å)、空孔
率38%、透気度800秒)を連続的に押しつけ、同
時に多孔質膜側から減圧吸引して超薄膜をポリプ
ロピレン多孔質膜にのせて引きあげる。
Example 1 A dope consisting of 4 parts of poly-4-methylpentene, 6 parts of cyclohexenyl peroxide, and 90 parts of purified distilled cyclohexene was continuously supplied onto the water surface from a needle-shaped supply port while the supply port was in contact with water. Then, a non-porous ultra-thin film of poly-4-methylpentene is formed on the water surface. A polypropylene porous membrane (thickness 25 μm, pore size range) is placed on top of this ultra-thin membrane.
0.02 to 0.2 μm, average pore diameter 0.14 μm (1400 Å), porosity 38%, air permeability 800 seconds) and simultaneously apply vacuum suction from the porous membrane side to place the ultra-thin membrane on the polypropylene porous membrane. and pull it up.

上述のごとく製造したポリ4−メチルペンテン
の超薄膜とポリプロピレン多孔質支持膜(支持膜
の平均孔径0.14μm)からなる膜(ポリ4−メチ
ルペンテンの薄膜の厚さ0.09μm)の上に、別に
調製したポリスルホン10部、メチルセルソルブ5
部およびジメチルホルムアミド80部よりなる溶液
を約20μmの厚さでキヤストし、直ちに水浴中に
入れゲル化させることにより、選択透過膜の上に
ポリスルホン多孔膜(保護膜)を設けた。風乾
後、この膜を多孔板上にのせ、減圧吸引して安定
化させた。
Separately, on a membrane (thickness of the thin film of poly4-methylpentene 0.09 μm) consisting of the ultra-thin film of poly-4-methylpentene produced as described above and a porous polypropylene support film (average pore diameter of the support film 0.14 μm). 10 parts of prepared polysulfone, 5 parts of methylcellosolve
A porous polysulfone membrane (protective membrane) was provided on the selectively permeable membrane by casting a solution of 80 parts of dimethylformamide and 80 parts of dimethylformamide to a thickness of about 20 μm, and immediately placing it in a water bath to gel it. After air drying, the membrane was placed on a perforated plate and stabilized by vacuum suction.

全体の厚さを計ることにより求めたポリスルホ
ン多孔質の厚さは約2μmであつた。
The thickness of the polysulfone porous material was determined to be approximately 2 μm by measuring the total thickness.

又、表面に形成されたポリスルホン多孔膜の表
面の電子顕微鏡観察により孔径を求めると、100
〜500Åの微孔が多数存在しその平均孔径は
0.023μm(230Å)であつた。
In addition, when the pore diameter was determined by electron microscopy of the surface of the polysulfone porous membrane formed on the surface, it was found to be 100
There are many micropores of ~500Å, and the average pore diameter is
It was 0.023 μm (230 Å).

なお空孔率を求めるため、ガラス板上に同じポ
リスルホン溶液を塗布、同じ操作をすることによ
つて、ポリスルホン多孔膜だけをつくり、単離し
て空隙率を求めると65%であつた。この複合膜の
酸素透過速度を測定すると1.1×10-4c.c.
(STP)/cm2・sec・cmHg、選択性(酸素/窒素)
は3.8であつた。
In order to determine the porosity, the same polysulfone solution was coated on a glass plate and the same procedure was performed to make only a polysulfone porous membrane, which was isolated and the porosity was determined to be 65%. The oxygen permeation rate of this composite membrane is 1.1×10 -4 cc
(STP)/ cm2・sec・cmHg, selectivity (oxygen/nitrogen)
was 3.8.

又、この膜を10枚重ねて1ケ月放置しておいて
も何ら性能に変化はなかつた。
Furthermore, even if 10 layers of this film were stacked and left for one month, there was no change in performance.

実施例 2 密に織つた「ダクロン」製不織布にポリスルホ
ン溶液をキヤステイングして得られたポリスルホ
ン多孔質膜(厚さ40μm、表面孔径50〜600Å、
平均孔径0.025μm(250Å)、透気度82秒、空孔率
70%)を用意する。
Example 2 Polysulfone porous membrane (thickness 40 μm, surface pore diameter 50-600 Å,
Average pore diameter 0.025 μm (250 Å), air permeability 82 seconds, porosity
70%).

ビス(3−アミノプロピル)テトラメチルジシ
ロキサン1部をエタノール49.5部に溶解せしめ、
更に水49.5部を加えて撹拌した。この溶液に上記
ポリスルホン多孔質膜を5分間浸漬したのち、膜
を水溶液より引き出し垂直にして室温にて10分間
ドレインした。ついで4,4′−ジフエニルメタン
ジイソシアネートの、1重量%のn−ヘキサン溶
液中に3分間浸漬したのち室温にて60分間乾燥し
ポリスルホン多孔膜の表面にビス(3−アミノプ
ロピル)テトラメチルシロキサンと4,4′−ジフ
エニルメタンジイソシアネートとの界面重合によ
るポリ尿素の選択透過膜を形成させた。
Dissolve 1 part of bis(3-aminopropyl)tetramethyldisiloxane in 49.5 parts of ethanol,
Furthermore, 49.5 parts of water was added and stirred. After immersing the polysulfone porous membrane in this solution for 5 minutes, the membrane was pulled out of the aqueous solution and held vertically for draining at room temperature for 10 minutes. Next, it was immersed in a 1% by weight n-hexane solution of 4,4'-diphenylmethane diisocyanate for 3 minutes and then dried at room temperature for 60 minutes to coat the surface of the polysulfone porous membrane with bis(3-aminopropyl)tetramethylsiloxane. A selectively permeable membrane of polyurea was formed by interfacial polymerization of polyurea and 4,4'-diphenylmethane diisocyanate.

この複合膜の酸素透過速度は、1.1×10-5c.c.
(STP)/cm2・sec・cmHg,選択性(酸素/窒素)
は5.3であり、透過速度により選択透過膜の厚さ
を計算すると約0.1μmであつた。
The oxygen permeation rate of this composite membrane is 1.1×10 -5 cc
(STP)/ cm2・sec・cmHg, selectivity (oxygen/nitrogen)
was 5.3, and the thickness of the selectively permeable membrane was calculated from the permeation rate to be approximately 0.1 μm.

これとは別に、ナイロン5部、塩化カルシウム
15部、メタノール80部よりなるナイロン溶液を調
製する。このナイロン溶液を前記複合膜の選択透
過膜側の表面に約50μmの厚さでコーテイングし
て、直ちに水中に浸漬して、脱塩及び脱溶媒をし
て、固乾し保護膜を有する複合膜を製造した。
Apart from this, 5 parts of nylon, calcium chloride
Prepare a nylon solution consisting of 15 parts of methanol and 80 parts of methanol. This nylon solution is coated on the permselective membrane side surface of the composite membrane to a thickness of approximately 50 μm, and immediately immersed in water to desalt and remove the solvent, and then solidified to form a composite membrane with a protective membrane. was manufactured.

全体の厚さから求めた保護膜の厚さは約2μm
であつた。また、表面を電子顕微鏡で観察して孔
径を求めると0.1〜0.5μmであり、平均孔径は
0.35μm(350Å)であつた。
The thickness of the protective film determined from the overall thickness is approximately 2μm
It was hot. In addition, when the pore size is determined by observing the surface with an electron microscope, it is 0.1 to 0.5 μm, and the average pore size is
It was 0.35 μm (350 Å).

空隙率を実施例1と同様にモデル多孔質をつく
り求めると72%であつた。
The porosity was determined by creating a model porous material in the same manner as in Example 1, and was found to be 72%.

この複合膜の酸素透過速度は0.7×10-5c.c.
(STP)/cm2・sec・cmHgで選択性は4.6であつ
た。
The oxygen permeation rate of this composite membrane is 0.7×10 -5 cc
The selectivity was 4.6 (STP)/cm 2 sec cmHg.

実施例 3 セルローストリラウレート3部を25℃にてテト
ラヒドロフラン10部に溶解した。そこに2−(2
−エトキシエトキシ)エタノール7部を加え均一
な重合体溶液を得た。この溶液をガラス板上にて
300μmの厚さとなるように流延し、室温にて90
秒間放置テトラヒドロフランの一部を揮散させ、
ついでガラス板上の膜を0℃のメタノール中に二
時間浸漬しゲル化を完成させた。
Example 3 3 parts of cellulose trilaurate were dissolved in 10 parts of tetrahydrofuran at 25°C. There 2-(2
-ethoxyethoxy) 7 parts of ethanol was added to obtain a homogeneous polymer solution. Pour this solution onto a glass plate.
Cast to a thickness of 300 μm and 90 μm at room temperature.
Leave for a second to volatilize some of the tetrahydrofuran,
The membrane on the glass plate was then immersed in methanol at 0° C. for 2 hours to complete gelation.

ついでこの膜を枠に緊張状態で固定し、室温で
真空下に20時間乾燥した。この膜の厚さは40μm
である。この膜は、支持膜と分離膜とが連続的に
つながつている所謂表面緻密層をもつ非対称膜で
ある。得られた膜の酸素透過速度は、11.5×10-6
c.c.(STP)/cm2・sec・cmHgであり、これより計
算した緻密層(これが分離膜となる)の厚さは
0.44μmであつた。又、酸素と窒素の選択性は2.4
であつた。
The membrane was then fixed under tension on a frame and dried under vacuum at room temperature for 20 hours. The thickness of this film is 40μm
It is. This membrane is an asymmetric membrane having a so-called surface dense layer in which a support membrane and a separation membrane are continuously connected. The oxygen permeation rate of the obtained membrane was 11.5×10 -6
cc(STP)/ cm2・sec・cmHg, and the thickness of the dense layer (this becomes the separation membrane) calculated from this is:
It was 0.44 μm. Also, the selectivity between oxygen and nitrogen is 2.4
It was hot.

つぎにこの膜の表面に、実施例2で用いたナイ
ロン溶液を約50μmの厚さでコーテイングし風乾
し平均孔径0.35μm(350Å)の保護膜を形成させ
て複合膜を得た。この複合膜の酸素透過速度は
5.1×10-6c.c.(STP)/cm2・sec・cmHg、選択性
は2.1であつた。
Next, the surface of this membrane was coated with the nylon solution used in Example 2 to a thickness of about 50 μm and air-dried to form a protective film with an average pore diameter of 0.35 μm (350 Å) to obtain a composite membrane. The oxygen permeation rate of this composite membrane is
The value was 5.1×10 −6 cc (STP)/cm 2 ·sec·cmHg, and the selectivity was 2.1.

実施例 4 ポリスルホン20部、ジメチルホルムアミド70
部、メチルセロソルブ10部からなる溶液を芯液と
して用い、環状スリツトより吐出させ、25℃の水
中に浸漬し凝固させることにより、外径450μm、
内径290μmのポリスルホン中空糸膜を得た。こ
の膜の平均孔径は0.025μmであつた。
Example 4 20 parts of polysulfone, 70 parts of dimethylformamide
A solution of 10 parts of methyl cellosolve was used as a core liquid, and the solution was discharged from an annular slit and immersed in water at 25°C to solidify.
A polysulfone hollow fiber membrane with an inner diameter of 290 μm was obtained. The average pore size of this membrane was 0.025 μm.

とれとは別に下記式のジアミン 1部をエタノール/水の混合溶媒(エタノール/
水=8/2重量比)99部に溶解した溶液を調製
し、この溶液にさきに製造したポリスルホン中空
糸膜を10分間浸漬し、室温にて10分間乾燥し、つ
いで4,4′−ジフエニルメタンジイソシアネート
の1重量%のn−ヘキサン溶液に5分間中空の中
に液が入らないようにして浸漬し、中空糸の外側
に界面重合によるポリ尿素の選択透過膜を形成す
る。
In addition to tore, diamine of the following formula 1 part was added to a mixed solvent of ethanol/water (ethanol/
A solution was prepared by dissolving 99 parts of water (8/2 weight ratio), and the polysulfone hollow fiber membrane prepared earlier was immersed in this solution for 10 minutes, dried at room temperature for 10 minutes, and then The hollow fibers are immersed in a 1% by weight solution of enylmethane diisocyanate in n-hexane for 5 minutes so that no liquid enters the hollow fibers, thereby forming a selectively permeable membrane of polyurea by interfacial polymerization on the outside of the hollow fibers.

この中空糸膜一本を、ポリカーボネート製のパ
イプにつめ両端部を接着剤で固め、長さ20cmの中
空糸モジユールをつくり、気体透過性能をガスク
ロマトグラフを用い測定したところ、酸素透過速
度は2.1×10-5c.c.(STP)/cm2・sec・cmHgであ
り、選択性(酸素/窒素)は4.9であつた。
This single hollow fiber membrane was attached to a polycarbonate pipe and both ends were fixed with adhesive to create a 20 cm long hollow fiber module.The gas permeation performance was measured using a gas chromatograph, and the oxygen permeation rate was 2.1 × It was 10 -5 cc (STP)/cm 2 ·sec · cmHg, and the selectivity (oxygen/nitrogen) was 4.9.

とれと別にジアセチルセルロース10部、グリセ
リン5部およびアセトン85部よりなるジアセテー
ト溶液を調製する。この溶液にさきの中空糸膜を
中空糸の中にジアセテート溶液が入らないように
して浸漬し、直ちに水中に入れ中空糸の外側に平
均孔径0.020μm(200Å)の多孔質保護膜をつく
る。
Separately, prepare a diacetate solution consisting of 10 parts of diacetyl cellulose, 5 parts of glycerin, and 85 parts of acetone. The hollow fiber membrane is immersed in this solution, taking care not to allow the diacetate solution to enter the hollow fiber, and immediately placed in water to form a porous protective membrane with an average pore diameter of 0.020 μm (200 Å) on the outside of the hollow fiber.

又、この中空糸複合膜を16本束ねて、ポリカー
ボネート製のパイプにつめ、両端部を接着してモ
ジユールをつくつた。酸素透過速度は、1.1×
10-5c.c.(STP)/cm2・sec・cmHg、選択性は4.2
であつた。
Additionally, 16 of these hollow fiber composite membranes were bundled together, packed into a polycarbonate pipe, and both ends were glued together to create a module. Oxygen permeation rate is 1.1×
10 -5 cc (STP)/ cm2・sec・cmHg, selectivity is 4.2
It was hot.

また、この中空糸の外側に多量の空気を流して
中空糸膜がパイプの中で動いて、お互いがこすれ
たようにした後で性能を測定したが、性能には何
ら変化はなかつた。
Performance was also measured after a large amount of air was flowed outside the hollow fibers so that the hollow fiber membranes moved inside the pipe and rubbed against each other, but there was no change in performance.

Claims (1)

【特許請求の範囲】[Claims] 1 5〜1000μmの厚さの多孔質支持膜層および
0.5μm以下の厚さを有する気体の選択透過性を有
する非多孔質膜からなる非多孔質膜層の積層体の
上に、高分子化合物と溶媒より主としてなるかあ
るいは高分子化合物、添加剤および溶媒より主と
してなる溶液を塗布し、ついで該溶媒あるいは該
溶媒と該添加剤を除去して該非多孔質膜の上に平
均孔径100Å以上の孔を有する厚さ300μm以下の
多孔質保護膜層を形成せしめることを特徴とする
気体分離用複合膜の製造法。
1. A porous support membrane layer with a thickness of 5 to 1000 μm and
On a laminate of non-porous membrane layers consisting of a non-porous membrane having a gas selective permeability and having a thickness of 0.5 μm or less, a layer consisting mainly of a polymer compound and a solvent, or a polymer compound, additives and A solution consisting mainly of a solvent is applied, and then the solvent or the solvent and the additive are removed to form a porous protective film layer having a thickness of 300 μm or less and having pores with an average pore diameter of 100 Å or more on the non-porous membrane. A method for producing a composite membrane for gas separation, characterized by:
JP57169572A 1982-09-30 1982-09-30 Composite membrane for gas separation and its production Granted JPS5962305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169572A JPS5962305A (en) 1982-09-30 1982-09-30 Composite membrane for gas separation and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169572A JPS5962305A (en) 1982-09-30 1982-09-30 Composite membrane for gas separation and its production

Publications (2)

Publication Number Publication Date
JPS5962305A JPS5962305A (en) 1984-04-09
JPH0260370B2 true JPH0260370B2 (en) 1990-12-17

Family

ID=15888956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169572A Granted JPS5962305A (en) 1982-09-30 1982-09-30 Composite membrane for gas separation and its production

Country Status (1)

Country Link
JP (1) JPS5962305A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199001A (en) * 1983-04-25 1984-11-12 Asahi Chem Ind Co Ltd Composite membrane for gas separation and its manufacture
JPS61408A (en) * 1984-06-11 1986-01-06 Toyobo Co Ltd Hollow yarn composite membrane
JPS6157159U (en) * 1984-09-21 1986-04-17
JPS621404A (en) * 1985-06-27 1987-01-07 Mitsubishi Rayon Co Ltd Poly-composite hollow fiber membrane and its manufacturing process
JPS62186922A (en) * 1986-02-12 1987-08-15 Asahi Chem Ind Co Ltd Novel composite membrane
JP2530133B2 (en) * 1986-12-02 1996-09-04 富士写真フイルム株式会社 Microporous membrane
JPH0677673B2 (en) * 1988-05-12 1994-10-05 出光興産株式会社 Selective gas permeable flat membrane
JPH09122461A (en) * 1995-10-31 1997-05-13 Nitto Denko Corp Polyimide semipermeable membrane
JPH09225273A (en) * 1996-02-23 1997-09-02 Nitto Denko Corp Laminated asymmetric membrane and its production
DE10102295A1 (en) * 2001-01-19 2002-08-08 Gkn Sinter Metals Gmbh Graduated filters and processes for their manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849408A (en) * 1981-09-19 1983-03-23 Nitto Electric Ind Co Ltd Manufacture of semipermeable membrane
JPS58150402A (en) * 1982-01-04 1983-09-07 メムテック・ノース・アメリカ・コーポレイション Modified membrane system and filtration thereby
JPS58199005A (en) * 1982-05-18 1983-11-19 Matsushita Electric Ind Co Ltd Module of permoselective membrane of gas
JPS5959214A (en) * 1982-09-28 1984-04-05 Asahi Glass Co Ltd Gas separating composite membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504045U (en) * 1973-05-18 1975-01-16

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849408A (en) * 1981-09-19 1983-03-23 Nitto Electric Ind Co Ltd Manufacture of semipermeable membrane
JPS58150402A (en) * 1982-01-04 1983-09-07 メムテック・ノース・アメリカ・コーポレイション Modified membrane system and filtration thereby
JPS58199005A (en) * 1982-05-18 1983-11-19 Matsushita Electric Ind Co Ltd Module of permoselective membrane of gas
JPS5959214A (en) * 1982-09-28 1984-04-05 Asahi Glass Co Ltd Gas separating composite membrane

Also Published As

Publication number Publication date
JPS5962305A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
US6536604B1 (en) Inorganic dual-layer microporous supported membranes
CA2145451C (en) Process for producing composite membranes
Chung A review of microporous composite polymeric membrane technology for air-separation
WO2015046141A1 (en) Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module
JPH0260370B2 (en)
WO2018221684A1 (en) Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
JPS62227423A (en) Gas separating membrane
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
JPH07114937B2 (en) Separation membrane
JPS58166018A (en) Continuous manufacture of polymethyl pentene film
JPS6274406A (en) Separating membrane
JPH09501865A (en) Composite gas separation membrane and method for producing the same
JPH0224574B2 (en)
Selyanchyn et al. Incorporation of CO 2 philic moieties into a TiO 2 nanomembrane for preferential CO 2 separation
JPH0112530B2 (en)
JPS5959220A (en) Preparation of composite permeable membrane for separating gas
JPS62227409A (en) Method for repairing permselective composite membrane
JPS6227022A (en) Stabilizing method for membrane
JPH0322206B2 (en)
JPH055529B2 (en)
JPS61111121A (en) Composite membrane for separating gas
JPS6274405A (en) Separating membrane
US20230182070A1 (en) Stacked membranes and their use in gas separation
WO2021132218A1 (en) Gas separation membrane, gas separation membrane element and gas production method
JP4883683B2 (en) Organopolysiloxane for gas separation membrane