JPH0456653B2 - - Google Patents

Info

Publication number
JPH0456653B2
JPH0456653B2 JP58213771A JP21377183A JPH0456653B2 JP H0456653 B2 JPH0456653 B2 JP H0456653B2 JP 58213771 A JP58213771 A JP 58213771A JP 21377183 A JP21377183 A JP 21377183A JP H0456653 B2 JPH0456653 B2 JP H0456653B2
Authority
JP
Japan
Prior art keywords
membrane
separation
porous
permeate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58213771A
Other languages
Japanese (ja)
Other versions
JPS60106504A (en
Inventor
Zenjiro Honda
Hirohiko Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP21377183A priority Critical patent/JPS60106504A/en
Publication of JPS60106504A publication Critical patent/JPS60106504A/en
Publication of JPH0456653B2 publication Critical patent/JPH0456653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は有機物水溶液から有機物を分離する方
法に関するものである。従来、有機物水溶液から
有機物を分離する方法としては一般的に蒸留法が
採用されてきた。蒸留法では分離可能な共沸有機
物水溶液やエネルギー的に非効率な近沸点有機物
水溶液に対しては、共沸蒸留法や抽出蒸留法等が
用いられている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating organic matter from an aqueous solution of organic matter. Conventionally, a distillation method has generally been adopted as a method for separating organic substances from an aqueous solution of organic substances. For azeotropic aqueous solutions of organic substances that can be separated by distillation methods and aqueous solutions of near-boiling organic substances that are energy inefficient, azeotropic distillation methods, extractive distillation methods, etc. are used.

近年、膜分離技術が発達し、一部の低温度有機
物水溶液等の濃縮に対しては逆浸透法が実用化さ
れてきた。しかしながら、逆浸透法は分離液の浸
透圧以上の圧力を該分離液に加える必要があるた
め、浸透圧が高い高濃度水溶液に対しては適用が
不可能か、又はその濃縮については限界がある。
In recent years, membrane separation technology has developed, and reverse osmosis has been put into practical use for concentrating some low-temperature aqueous solutions of organic substances. However, since reverse osmosis requires applying a pressure higher than the osmotic pressure of the separated liquid to the separated liquid, it cannot be applied to highly concentrated aqueous solutions with high osmotic pressure, or there are limits to its concentration. .

最近、有機物水溶液の分離に対してパーベパレ
ーシヨン(Pervaparation)法が新しい分離法と
して注目される様になつた。パーベパレーシヨン
法とは膜の1次側(供給液側)に分離液を供給
し、膜の2次側(透過側)を減圧にするか、又は
不活性ガスをキヤリヤーガスとして通気する事に
よつて被分離物質を気体状で膜透過させる方法
で、膜透過物を採取するためには、通常透過蒸気
を冷却凝縮することにより行なう。このパーベパ
レーシヨン法は浸透圧の影響を受けいないこと、
該分離液の濃度に係らず分離が可能となること等
の利点があり、特に従来の蒸留法では分離困難な
共沸混合物に対する適用が数多く報告されてい
る。しかしながら従来報告されている膜では膜透
過速度(m3/m2・日)が小さいこと或は分離係数
(αA B)が小さいことなどのため実用化には到つて
いない。ここで分離係数(αA B)とは次の式で表
わされるものである。
Recently, the pervaparation method has attracted attention as a new separation method for separating aqueous solutions of organic substances. The perveparation method involves supplying a separated liquid to the primary side (feed liquid side) of the membrane, and reducing the pressure on the secondary side (permeation side) of the membrane, or passing inert gas as a carrier gas. Therefore, in a method in which the substance to be separated is passed through a membrane in a gaseous state, the membrane permeate is usually collected by cooling and condensing the permeated vapor. This perveparation method is not affected by osmotic pressure;
It has advantages such as being able to perform separation regardless of the concentration of the separated liquid, and there have been many reports of its application to azeotropic mixtures that are difficult to separate using conventional distillation methods. However, conventionally reported membranes have not been put into practical use because of their low membrane permeation rate (m 3 /m 2 ·day) or small separation coefficient (α A B ). Here, the separation coefficient (α A B ) is expressed by the following formula.

αA B=(透過液中A成分の重量%/透過液中B成分の重
量%)/(供給液中A成分の重量%/供給液中B成分の
重量%) 本発明者らは、先に有機物水溶液に対して分離
機能を有する膜厚3μm以下の非多孔性均一膜又
は非多孔性スキン層(緻密層)を有する分離膜を
用い、該膜の一方の側に有機物水溶液を気化させ
た気体混合物を供給し、他方の透過側を減圧に保
つか、又は不活性キヤリーガスと接触させ、水蒸
気を選択的に透過させる方法が、有機物水溶液の
分離に対して従来のパーベパレーシヨン法で評価
した場合の透過速度と比較して、従来報告されて
いる様な透過速度の著しい低下をもたらす事な
く、分離係数を向上させ得ることを見い出し特許
出願した(昭和58年11月2日付特許出願)。即ち
この方法はパーベパレーシヨン法において、膜の
1次側に分離液を供給する代りに、該膜の1次側
に該分離液の気体混合物を供給する方法である。
本発明者らは有機物水溶液の分離法について上記
ガス透過による分離法をさらに鋭意検討した結
果、本発明に到つたものである。
α A B = (weight% of component A in permeate/weight% of component B in permeate)/(weight% of component A in feed solution/weight% of component B in feed solution) A non-porous uniform membrane with a thickness of 3 μm or less or a separation membrane having a non-porous skin layer (dense layer) having a separation function for an organic aqueous solution was used, and the organic aqueous solution was vaporized on one side of the membrane. Selective permeation of water vapor by supplying a gas mixture and keeping the other permeate side under vacuum or in contact with an inert carrier gas has been evaluated in conventional perveparation methods for the separation of aqueous organic solutions. It was discovered that the separation coefficient could be improved compared to the permeation rate in the case where the permeation rate was previously reported without causing a significant decrease in the permeation rate, and a patent application was filed (patent application dated November 2, 1981). . That is, this method is a method in which a gas mixture of the separated liquid is supplied to the primary side of the membrane instead of supplying the separated liquid to the primary side of the membrane in the perveparation method.
The present inventors further studied the above-mentioned gas permeation separation method as a method for separating an aqueous solution of organic matter, and as a result, they arrived at the present invention.

即ち本発明は分離膜を介し、該膜の一方の側に
有機物水溶液を供給し、他方の透過側を減圧に保
つか又は不活性キヤリヤーガスを接触させ、該分
離膜と該有機物水溶液との間に不活性疎水性多孔
膜を介在せしめて、該多孔膜及び分離膜を通して
水蒸気を選択的に透過せしめることを特徴とする
有機物水溶液の膜分離法に係わるものである。
That is, in the present invention, an organic aqueous solution is supplied to one side of the membrane through a separation membrane, and the other permeate side is kept under reduced pressure or an inert carrier gas is brought into contact between the separation membrane and the organic aqueous solution. This invention relates to a method for membrane separation of an aqueous solution of an organic substance, which is characterized by interposing an inert hydrophobic porous membrane and allowing water vapor to selectively permeate through the porous membrane and the separation membrane.

本発明の方法に於てはパーベパレーシヨン法と
同じく分離膜の1次側に有機物水溶液を供給し、
該分離膜の2次側を減圧にするか、又は不活性ガ
スを通気するが、該分離膜の1次側に不活性疎水
性多孔膜を重ねる事により、該分離液と該分離膜
との間に上記多孔膜による空隙をつくり出し、こ
の膜の1次側にある空隙にガスを生ぜしめる。こ
れにより同一の分離膜を用いたパーベパレーシヨ
ン法に比べて著しい透過速度の低下をまねく事な
く、分離係数を向上させ得る事を見い出した。こ
こで不活性疎水性多孔膜とは分離の条件、即ち分
離溶液の組成、分離液の温度及び不活性疎水性多
孔膜内の気体混合物の全圧において、多孔膜内に
該分離液が液体状で浸透しない膜をいう。従つて
この不活性疎水性多孔膜内にはこの多孔膜の1次
側(分離液供給側)において接触している分離液
との気液平衡によつて生じる気体混合物が存在す
る。本発明の方法に於ては不活性疎水性多孔膜の
2次側に分離膜が重ねられているが、この分離膜
には上気の如き分離液の気液平衡によつて発生し
た気体混合物が接触している。従つて、本発明の
方法は見掛け上は、パーベパレーシヨン法である
が、分離膜を通過する水/有機物混合物の透過機
構は蒸気透過であつて、これにより分離係数が向
上したものと考えられる。なお、本発明の実施に
当つては不活性疎水性多孔膜と分離膜とは相互に
密着していてもよいが、両膜の間に他の多孔性膜
や多孔性隔壁等が挿入されて相互に隔てられてい
ても良い。
In the method of the present invention, as in the perveparation method, an organic aqueous solution is supplied to the primary side of the separation membrane,
The secondary side of the separation membrane is reduced in pressure or an inert gas is passed through it, but by overlaying an inert hydrophobic porous membrane on the primary side of the separation membrane, the separation between the separated liquid and the separation membrane is prevented. A void is created in between by the porous membrane, and gas is generated in the void on the primary side of this membrane. It has been found that this method can improve the separation coefficient without significantly reducing the permeation rate compared to the perveparation method using the same separation membrane. Here, an inert hydrophobic porous membrane is defined as a liquid state within the porous membrane under the separation conditions, that is, the composition of the separation solution, the temperature of the separation liquid, and the total pressure of the gas mixture within the inert hydrophobic porous membrane. A membrane that does not permeate. Therefore, within this inert hydrophobic porous membrane, there exists a gas mixture produced by vapor-liquid equilibrium with the separated liquid that is in contact with the primary side (separated liquid supply side) of this porous membrane. In the method of the present invention, a separation membrane is layered on the secondary side of an inert hydrophobic porous membrane, and this separation membrane contains a gas mixture generated by vapor-liquid equilibrium of a separated liquid such as upper air. are in contact. Therefore, although the method of the present invention is apparently a perveparation method, the permeation mechanism of the water/organic substance mixture passing through the separation membrane is vapor permeation, and it is thought that this improves the separation coefficient. It will be done. Note that in carrying out the present invention, the inert hydrophobic porous membrane and the separation membrane may be in close contact with each other, but other porous membranes, porous partitions, etc. may be inserted between the two membranes. They may be separated from each other.

本発明に使用される不活性疎水性多孔膜の膜材
料としては、水との接触角が大きいテトラフルオ
ロエチレン、ヘキサフルオロプロピレン等の含フ
ツ素モノマーからなる単独重合体並びに共重合体
が好ましいが、他の疎水性ポリマー例えばポリエ
チレン、ポリプロピレン等のポリオレフイン系ポ
リマー並びにアクリル系等のビニル重合体等でも
良い。これらの膜材料からつくられた疎水性多孔
膜の孔径は0.05μm〜100μmで、好ましくは1μm
〜50μmであり、空孔率は30〜90%、好適には60
〜80%である。膜厚は50μm〜3mmが適当であ
り、70μm〜1mmが好ましい。疎水性多孔膜の透
過能力は空気の場合1〜200/分・cm2,70cmHg
である。
As membrane materials for the inert hydrophobic porous membrane used in the present invention, homopolymers and copolymers made of fluorine-containing monomers such as tetrafluoroethylene and hexafluoropropylene, which have a large contact angle with water, are preferred. , other hydrophobic polymers such as polyolefin polymers such as polyethylene and polypropylene, and vinyl polymers such as acrylic polymers may also be used. The pore diameter of the hydrophobic porous membrane made from these membrane materials is 0.05 μm to 100 μm, preferably 1 μm.
~50 μm, and the porosity is 30-90%, preferably 60
~80%. The film thickness is suitably 50 μm to 3 mm, preferably 70 μm to 1 mm. The permeability of hydrophobic porous membrane is 1 to 200/min・cm 2 for air, 70cmHg
It is.

又分離膜としては上記本出願人の出願に係わる
昭和58年11月2日付の特許出願明細書に記載の膜
が好ましい。例えばセルロース膜(再生セルロー
ス膜及びセルロース膜)、ポリビニルアルコール
膜の外、従来逆浸透膜として用いられている酢酸
セルロース、ポリアミド、ポリベンツイミダゾー
ル、ポリベンツイミダゾロン等の縮合系合成高分
子の膜及び架橋構造を有するポリエーエル、ポリ
アミン、ポリアミド、ポリビニルアルコールール
等の架橋ポリマーからなる膜で膜厚3μm以下の
ものが好適である。ここで逆浸透膜とは、例えば
NaCl0.35重量%水溶液に対し、温度25℃、圧力
40Kg/cm2における逆浸透性能評価が、透水速度
0.3Kg/cm2以上、NaCl排除率70%以上の性能を有
する膜である。かかる膜厚3μm以下の非多孔性
均一膜よりなる分離膜をスキン層とその下層に多
孔性の支持層とよりなる不均斉構造膜、或は上記
分離膜を多孔性膜或は多孔性隔壁に積層するか、
これらの多孔膜或は多孔性隔壁上にスキン層を形
成させた積層膜或は複合膜が好ましい。かかる多
孔膜や多孔性隔壁としては気体の透過抵抗が少な
く、実用的取扱いが可能な機械的強度を有するも
のが使用可能である。材質としては天然高分子、
合成高分子及び剛性のある金属、非金属の無機化
合物等が用いられる。これらは公知の方法によつ
て作製することが出来るが、市販のマイクロフイ
ルター、限外過膜、焼結金属及びセラミツクス
等を用いることも可能である。液温は分離液の沸
点以下であれば高い程良い。又分離液に加える圧
力は通常大気圧であるが、不活性疎水性多孔膜に
分離液が液状で浸透しない程度の大きさの圧力は
加える事が可能である。該分離膜の2次側を減圧
にする場合はその圧力は100torr以下、好適には
10torr以下である。
As the separation membrane, the membrane described in the specification of the patent application dated November 2, 1982, filed by the present applicant is preferred. For example, in addition to cellulose membranes (regenerated cellulose membranes and cellulose membranes), polyvinyl alcohol membranes, membranes of condensed synthetic polymers such as cellulose acetate, polyamide, polybenzimidazole, and polybenzimidazolone, which are conventionally used as reverse osmosis membranes, A membrane made of a crosslinked polymer having a crosslinked structure, such as polyether, polyamine, polyamide, polyvinyl alcohol, etc., and having a thickness of 3 μm or less is suitable. Here, the reverse osmosis membrane is, for example,
Temperature 25℃, pressure for NaCl 0.35% by weight aqueous solution
Reverse osmosis performance evaluation at 40Kg/ cm2 indicates water permeation rate.
The membrane has a performance of 0.3Kg/cm 2 or more and a NaCl rejection rate of 70% or more. The separation membrane made of such a non-porous uniform membrane with a thickness of 3 μm or less can be used as an asymmetric structure membrane consisting of a skin layer and a porous support layer below the skin layer, or the above separation membrane can be used as a porous membrane or a porous partition wall. Laminate or
Laminated membranes or composite membranes in which a skin layer is formed on these porous membranes or porous partition walls are preferred. As such porous membranes and porous partition walls, those having low gas permeation resistance and mechanical strength that allow practical handling can be used. The material is natural polymer,
Synthetic polymers, rigid metals, nonmetallic inorganic compounds, etc. are used. These can be produced by known methods, but commercially available microfilters, ultrafiltration membranes, sintered metals, ceramics, etc. can also be used. The higher the liquid temperature is, the better, as long as it is below the boiling point of the separated liquid. Further, the pressure applied to the separated liquid is usually atmospheric pressure, but it is possible to apply such a pressure that the separated liquid does not permeate the inert hydrophobic porous membrane. When reducing the pressure on the secondary side of the separation membrane, the pressure should be 100 torr or less, preferably
It is less than 10torr.

本発明の実施に当り不活性疎水性多孔膜に浸透
しない溶液でも、該溶液に圧力を加えるか、又は
透過側を減圧にする事によつて、該不活性疎水性
多孔膜に該溶液が浸透する様になる。該溶液が該
不活性疎水性多孔膜に浸透し始める圧力又は減圧
度を本発明においては臨界液浸透圧力又は臨界液
浸透減圧度と呼称する。本発明になる不活性疎水
性多孔膜と分離膜との積層又は複合膜を用いる有
機物/有機物又は有機物/水混合物の分離におい
て、透過側を減圧にする場合、分離膜を隔てた不
活性疎水性多孔膜内が臨界液浸透減圧度に達しな
い様に、透過側の減圧度を調整するか、又は該不
活性疎水性多孔膜内の有機物又は水の蒸気圧を高
めるべく供給液の液温を高めて実施する必要があ
る。
In carrying out the present invention, even if the solution does not permeate through the inert hydrophobic porous membrane, the solution can be permeated through the inert hydrophobic porous membrane by applying pressure to the solution or reducing pressure on the permeate side. It becomes like that. In the present invention, the pressure or degree of vacuum at which the solution begins to permeate the inert hydrophobic porous membrane is referred to as critical fluid osmotic pressure or critical fluid osmotic pressure degree. In the separation of organic matter/organic matter or organic matter/water mixture using the laminated or composite membrane of the present invention of an inert hydrophobic porous membrane and a separation membrane, when reducing the pressure on the permeate side, the inert hydrophobic membrane separated by the separation membrane Either adjust the degree of vacuum on the permeate side so that the inside of the porous membrane does not reach the critical fluid permeation vacuum, or adjust the temperature of the feed liquid to increase the vapor pressure of organic matter or water within the inert hydrophobic porous membrane. It is necessary to increase and implement this.

本発明に於ては不活性疎水性多孔膜と分離膜と
を積層させる代りに、不活性疎水性多孔膜の片面
上に直接分離膜を形成させた複合膜とすることも
可能である。この場合は分離膜材料(ポリマー)
をベンゼンやクロロホルム等の非水溶性溶媒に溶
解後、水面上に流延し、引続き該流延膜上に不活
性疎水性多孔膜を重ねる事によつて、ポリマー薄
膜を該不活性疎水性多孔膜上に転写し、複合膜を
作成する。ポリマー溶媒が水溶性の場合には、水
面上に流延する代りに、水面に設置された平滑な
流延板上に流延する事も可能である。積層膜とは
乾燥薄膜を多孔膜に重ねた膜で、複合膜とは含溶
媒薄膜又は流延薄膜と多孔膜とを重ねて、脱溶媒
後は一体となつた膜である。又これら不活性疎水
性多孔膜と分離膜との積層膜又は複合膜の形状
は、平板型、チユーブ型及び中空繊維型等のいず
れでも良い。
In the present invention, instead of laminating an inert hydrophobic porous membrane and a separation membrane, it is also possible to form a composite membrane in which a separation membrane is directly formed on one side of an inert hydrophobic porous membrane. In this case, the separation membrane material (polymer)
is dissolved in a water-insoluble solvent such as benzene or chloroform, and then cast onto the water surface, followed by overlaying an inert hydrophobic porous membrane on top of the cast membrane. Transfer onto a membrane to create a composite membrane. When the polymer solvent is water-soluble, instead of being cast onto the water surface, it can also be cast onto a smooth casting plate placed on the water surface. A laminated membrane is a membrane in which a dry thin film is laminated on a porous membrane, and a composite membrane is a membrane in which a solvent-containing thin membrane or a cast thin membrane and a porous membrane are laminated, and after the solvent is removed, they are integrated. Further, the shape of the laminated membrane or composite membrane of the inert hydrophobic porous membrane and the separation membrane may be any of flat plate type, tube type, hollow fiber type, etc.

本発明による方法によつて分離され得る有機物
水溶液の有機物としては、メタノール、エタノー
ル、n−プロパノール、i−プロパノール、n−
ブタノール、sec−ブタノール、ter−ブタノー
ル、エチレングライコール等の脂肪族アルコー
ル、ギ酸、酢酸、プロピオン酸、酪酸等の脂肪族
カルボン酸、アセトン、メチルエチルケトン、シ
クロヘキサノン等のケトン類等がある。
Examples of organic substances in the organic aqueous solution that can be separated by the method of the present invention include methanol, ethanol, n-propanol, i-propanol, n-
Examples include aliphatic alcohols such as butanol, sec-butanol, ter-butanol, and ethylene glycol; aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid; and ketones such as acetone, methyl ethyl ketone, and cyclohexanone.

以上本発明の方法を有機物水溶液、即ち水/有
機物の液体混合物中の水と有機物の分離法につい
て説明したが、本発明の方法は有機物/有機物の
液体混合物の分離にも適用し得る。即ち疎水性多
孔性膜に浸透しない有機物としてグリセリン、ホ
ルムアミド等があり、これらの混合物又はこれら
と上記の如き他の有機物との混合物の分離に対し
ても本発明を適用し得る。なお膜性能の尺度とし
ては、前述した様に透過速度(以下Qと略す)と
分離係数(以下αと略す)とがあり、膜性能の優
劣はQとαとの総合で評価しなければならない。
又、αは1の場合には全く分離機能を示さない事
を示すため、膜性能の総合評価尺度として以下の
例ではQ×(α−1)を用いることにする。
Although the method of the present invention has been described above with respect to a method for separating water and organic matter in an aqueous organic matter solution, that is, a liquid mixture of water/organic matter, the method of the present invention can also be applied to the separation of a liquid mixture of organic matter/organic matter. That is, organic substances that do not permeate a hydrophobic porous membrane include glycerin, formamide, etc., and the present invention can also be applied to the separation of mixtures of these or mixtures of these and other organic substances as described above. As mentioned above, as a measure of membrane performance, there are permeation rate (hereinafter abbreviated as Q) and separation coefficient (hereinafter abbreviated as α), and the superiority or inferiority of membrane performance must be evaluated based on the combination of Q and α. .
In addition, since α indicates that no separation function is exhibited at all when α is 1, Q×(α−1) will be used in the following example as a comprehensive evaluation scale of membrane performance.

次に実施例及び比較例をもつて、さらに詳しく
説明するが、これによつて本発明は何ら制限され
るものではない。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例 1 不活性疎水性多孔膜としてポリフロンペーパー
5L(ダイキン(株)製、登録商標、膜厚550μm、空孔
率75vol%、最大気孔径45μm、ポリテトラフルオ
ロエチレン製)を用い、これにセロフアン(膜厚
22μm)を重ねて、電磁撹拌型浸透気化装置を用
い10重量%のエタノール水溶液の分離を行なつ
た。ポリフロンペーパー5L側に60℃の該エタノ
ール水溶液を接触させ、セロフアン側(膜透過
側)を266paに減圧した。その結果透過速度
Q0.74Kg・m-2・hr-1、分離係数α水エタノ哀襦
Example 1 Polyflon paper as an inert hydrophobic porous membrane
5L (manufactured by Daikin Corporation, registered trademark, film thickness 550 μm, porosity 75 vol%, maximum pore diameter 45 μm, made of polytetrafluoroethylene) was used, and cellophane (film thickness
(22 μm) were overlapped, and a 10% by weight aqueous ethanol solution was separated using a magnetic stirring type pervaporation device. The ethanol aqueous solution at 60°C was brought into contact with the 5L side of Polyflon paper, and the pressure on the cellophane side (membrane permeation side) was reduced to 266 pa. The resulting permeation rate
Q0.74Kg・m -2・hr -1 , separation coefficient α water ethanol

Claims (1)

【特許請求の範囲】 1 分離膜を介し、該膜の一方の側に有機物水溶
液を供給し、他方の透過側を減圧に保つか又は不
活性キヤリヤーガスと接触させ、該分離膜と該有
機物水溶液との間に、分離条件下で有機物水溶液
が液体状では浸透しない不活性疎水性多孔膜を介
在せしめて、該多孔膜及び分離膜を通して水蒸気
を選択的に透過せしめることを特徴とする有機物
水溶液の膜分離法。 2 分離膜が膜厚3μm以下の非多孔性均一膜又
は非多孔性スキン層を有する膜である特許請求の
範囲第1項記載の膜分離法。
[Claims] 1. An organic aqueous solution is supplied to one side of the membrane through a separation membrane, and the other permeate side is maintained at a reduced pressure or brought into contact with an inert carrier gas, and the separation membrane and the organic aqueous solution are connected to each other. an inert hydrophobic porous membrane through which the organic substance aqueous solution does not permeate in liquid form under separation conditions, and selectively allows water vapor to permeate through the porous membrane and the separation membrane. Separation method. 2. The membrane separation method according to claim 1, wherein the separation membrane is a non-porous uniform membrane with a thickness of 3 μm or less or a membrane having a non-porous skin layer.
JP21377183A 1983-11-14 1983-11-14 Separation of aqueous solution of organic substance using membrane Granted JPS60106504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21377183A JPS60106504A (en) 1983-11-14 1983-11-14 Separation of aqueous solution of organic substance using membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21377183A JPS60106504A (en) 1983-11-14 1983-11-14 Separation of aqueous solution of organic substance using membrane

Publications (2)

Publication Number Publication Date
JPS60106504A JPS60106504A (en) 1985-06-12
JPH0456653B2 true JPH0456653B2 (en) 1992-09-09

Family

ID=16644759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21377183A Granted JPS60106504A (en) 1983-11-14 1983-11-14 Separation of aqueous solution of organic substance using membrane

Country Status (1)

Country Link
JP (1) JPS60106504A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933198A (en) * 1985-10-11 1990-06-12 Lee Eric K L Production of low-ethanol beverage by membrane extraction
US5013447A (en) * 1989-07-19 1991-05-07 Sepracor Process of treating alcoholic beverages by vapor-arbitrated pervaporation
JPS63294903A (en) * 1987-05-27 1988-12-01 Agency Of Ind Science & Technol Separation of aqueous solution of organic liquid
US9283523B2 (en) 2012-05-25 2016-03-15 Pbi Performance Products, Inc. Acid resistant PBI membrane for pervaporation dehydration of acidic solvents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892415A (en) * 1981-11-30 1983-06-01 Asahi Glass Co Ltd Separation of liquid mixture
JPS5895521A (en) * 1981-11-30 1983-06-07 Kuraray Co Ltd Liquid separation method using membrane
JPS6097003A (en) * 1983-11-02 1985-05-30 Agency Of Ind Science & Technol Membrane separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892415A (en) * 1981-11-30 1983-06-01 Asahi Glass Co Ltd Separation of liquid mixture
JPS5895521A (en) * 1981-11-30 1983-06-07 Kuraray Co Ltd Liquid separation method using membrane
JPS6097003A (en) * 1983-11-02 1985-05-30 Agency Of Ind Science & Technol Membrane separation method

Also Published As

Publication number Publication date
JPS60106504A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
JPH03137919A (en) Filming method for separating organic liquid
JPH0457372B2 (en)
US4758251A (en) Separation of gases through gas enrichment membrane composites
JPH07500283A (en) How to remove alcohol from liquid
JPH08318141A (en) Liquid mixture separation membrane
JPH0456653B2 (en)
CA2073099A1 (en) Separation of organic oxygenates
US5552054A (en) Composite membrane, its application and process for the dehydration of organic solvents
JPH0686916A (en) Method for separating organic oxide
JPH03221130A (en) Fluoropolymer-based separation membrane
JPS5892402A (en) Preparation of composite membrane having selective permeability of organic substance
JPH07241447A (en) Membrane and method for concentrating oxygen-containing organic compound
JPS5840102A (en) Separation of mixed liquid
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JPH0157604B2 (en)
JPH01123618A (en) Composite gas separation membrane
JPH0221288B2 (en)
JPS6099314A (en) Concentration of aqueous solution of organic substance
JPS63294903A (en) Separation of aqueous solution of organic liquid
JPS5858106A (en) Separation of mixed liquid
JP2958030B2 (en) Separation method of organic solvent mixture
JPH0576739A (en) Novel imperforate film and method for concentrating aqueous mixture of organic oxygenated matter using the same
JPS61230705A (en) Separation membrane for liquid mixture
JPS5858105A (en) Composite separation membrane
JPS588505A (en) Semi-permeable composite membrane