JPS6099314A - Concentration of aqueous solution of organic substance - Google Patents

Concentration of aqueous solution of organic substance

Info

Publication number
JPS6099314A
JPS6099314A JP20666983A JP20666983A JPS6099314A JP S6099314 A JPS6099314 A JP S6099314A JP 20666983 A JP20666983 A JP 20666983A JP 20666983 A JP20666983 A JP 20666983A JP S6099314 A JPS6099314 A JP S6099314A
Authority
JP
Japan
Prior art keywords
membrane
porous
separation
concentration method
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20666983A
Other languages
Japanese (ja)
Other versions
JPH0420645B2 (en
Inventor
Zenjiro Honda
善次郎 本田
Hirohiko Nonaka
野中 宏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP20666983A priority Critical patent/JPS6099314A/en
Publication of JPS6099314A publication Critical patent/JPS6099314A/en
Publication of JPH0420645B2 publication Critical patent/JPH0420645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To permeate steam selectively by pervaporation process by using a separating membrane having a nonporous uniform film or nonporous skin layer of <=3mum film thickness. CONSTITUTION:Permeation rate is remarkably improved in pervaporation process if the film thickness is regulated to <=3mum for a kind of membrane material without causing severe decrease of separation coefft. A separation membrane comprising a nonporous uniform film having <=3mum film thickness is laminated on another porous film or porous diaphragm, or a laminated film or composite film formed on these porous film or porous diaphragm is used. Suitable material for the nonporous uniform film is water permselective hydrophilic polymer, such as polymers modified with cellulose, polyvinyl alcohol, or polyvinyl pyrrolidone or blended polymer thereof. As reinforcement of the uniform film, porous film or porous diaphragm of natural or synthetic polymer, rigid metal or nonmetal or other inorg. compds, are used.

Description

【発明の詳細な説明】 本発明は有機物水溶液から有機物を分離する方法に関す
る。更に詳しくは有機物水溶液を分離膜を用いてガス透
過法によシ濃縮する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating organic matter from an aqueous solution of organic matter. More specifically, the present invention relates to a method for concentrating an aqueous solution of organic matter by a gas permeation method using a separation membrane.

従来、有機物水溶液から有機物を分離する方法としては
、一般的に蒸留法が採用されてきた。
Conventionally, a distillation method has generally been adopted as a method for separating organic substances from an aqueous solution of organic substances.

蒸留法で分離不可能な共沸有機物水溶液やエネルギー的
に非効率な近沸点有機物水溶液に対しては、共沸蒸留法
や抽出・蒸留法等が用いられている。近年、膜分離技術
が発達し1一部の低濃度の有機物水溶液等の濃縮に対し
ては、逆浸透法が実用化されてきた。しかしながら、逆
浸透法は分離液の浸透圧以上の圧力を該分離液に加える
必要があるため、浸透圧が高い高濃度水溶液に対しては
適用不可能か、又はその濃縮については限界がある。
For azeotropic aqueous solutions of organic substances that cannot be separated by distillation methods and aqueous solutions of near-boiling organic substances that are energy inefficient, azeotropic distillation methods, extraction/distillation methods, etc. are used. In recent years, with the development of membrane separation technology, reverse osmosis has been put into practical use for concentrating some low-concentration organic substance aqueous solutions. However, since the reverse osmosis method requires applying a pressure higher than the osmotic pressure of the separated liquid to the separated liquid, it is not applicable to highly concentrated aqueous solutions with high osmotic pressure, or there are limits to its concentration.

一方、浸透圧の影響を受けないパーベノくレーション(
Pervaporatlon )法は新しい分離法とし
て脚光を浴びつつあシ、多くの研究例が報告されている
。例えば、エタノール水溶液の分離に関するものとして
は、特開昭54−55278号、特開昭57−1677
02号、UEIP2955502号Br1tisch 
Chemical Fingineering9(8)
、 52に1964)。
On the other hand, pervenolysis (which is not affected by osmotic pressure)
The pervaporatlon method is attracting attention as a new separation method, and many research examples have been reported. For example, regarding the separation of ethanol aqueous solutions, JP-A-54-55278 and JP-A-57-1677
No. 02, UEIP No. 2955502 Br1tisch
Chemical Finineering9(8)
, 52 in 1964).

J、ApplePol、y、Sci、、 14 、23
41 (1970) 、 J、hppl、 POny。
J,ApplePol,y,Sci,, 14, 23
41 (1970), J, hppl, POny.

Sai、、 18j51(1974)等がある。ことで
パーペバレーション法とは、膜の1次側に分離液を供給
し、膜の2次側(透過側)を減圧処するか、又はキャリ
ヤーガスを通気する事によって分離物質を気体状で膜透
過させる方法で、膜透過物を採取するためには、通常透
過側蒸気を冷却・凝縮する事によって行うものである。
Sai, 18j51 (1974), etc. The perpetuation method is a process in which a separated liquid is supplied to the primary side of the membrane, and the secondary side (permeation side) of the membrane is subjected to reduced pressure, or the separated substance is passed through the membrane in a gaseous state by passing a carrier gas through the membrane. In order to collect the membrane permeate using the permeation method, the vapor on the permeate side is usually cooled and condensed.

しかしなカラ、パーベパレーション法が共沸混合物並び
に近沸点混合物等の有機物水溶液の分離に対して、他の
分離法の実用的代替技術の域にまで到達していない理由
としては、膜透過速度が小さいとと、或は水/有機物の
分離係数が小さいことなどが考えられる。パーベパレー
ション法以外の膜分離法においては、透過速度を向上さ
せるという目的は分離膜の厚みを薄くすることによって
かなシの程度達成する事ができる。しかしパーベパレー
ショy法においては膜厚の影響は比較的少なく、膜厚を
薄くしてもこれに比例して透過速度を増大させる事がで
きない。したがって透過速度を増大させるために、分離
膜の化学構造を変える方法が用いられている。例えば特
開昭54−58278号及び特開昭57−167702
号に記載の方法の様に、水の選択的透過性の増大を目的
とする場合には、膜に−80,H,−0001,−OH
,−NH−、−1化2等の親水基を導入する方法が採用
されている。本発明者等は有機物水溶液の膜分離に関し
て鋭意検討した結果、膜の化学的構造を変える事なく、
膜の分離性能(透過速度9分離係数)を著しく向上させ
る方法を見い出し本発明に到達した0ここで透過速度と
は単位時間、単位膜面積当シに透過する液の量を重量で
表わしたもので1本明細書においてはy 、tyr2.
hr−”の単位で表示している。
However, the reason why the pervaporation method has not reached the level of a practical alternative technology to other separation methods for the separation of aqueous solutions of organic substances such as azeotropic mixtures and near-boiling point mixtures is that membrane permeation This may be due to a low speed or a low water/organic separation coefficient. In membrane separation methods other than the pervaporation method, the objective of improving the permeation rate can be achieved to some extent by reducing the thickness of the separation membrane. However, in the pervaporation method, the influence of film thickness is relatively small, and even if the film thickness is made thinner, the permeation rate cannot be increased in proportion to this. Therefore, methods of changing the chemical structure of separation membranes have been used to increase the permeation rate. For example, JP-A-54-58278 and JP-A-57-167702.
When the purpose is to increase the selective permeability of water, as in the method described in
, -NH-, and -1-hydrophilic groups have been adopted. As a result of extensive research into membrane separation of organic aqueous solutions, the inventors of the present invention have found that, without changing the chemical structure of the membrane,
We discovered a method to significantly improve the separation performance of the membrane (permeation rate 9 separation coefficient) and arrived at the present invention. Here, permeation rate is the amount of liquid that permeates per unit time and unit membrane area expressed in weight. In this specification, y, tyr2.
It is displayed in units of "hr-".

また分離係数は次の式で表わされる○分離係数−(透過
混合物中の水の重量百分V透過混合物中の有機物の重量
百分率)/(分離液中の水の重量百分船′分離液中の有
機物の重量百分率)即ち本発明は膜厚3μm以下の非多
孔性均一膜又は非多孔性スキン層を有する分離膜を用い
該層の一方の側圧有機物水溶液を気化させた気体混合物
を供給し、他方の透過側を減圧に保つか又は不活性キャ
リヤーガスと接触させ、水蒸気を選択的に透過させるこ
とを特徴とする有機物水溶液の濃縮方法に関するもので
ある0以下に本発明の有機物水溶液の分離法について詳
しく説明する。パーベパレーション法では前述したよう
に1分離液を液状で膜に供給するが、本発明による膜分
離方法は、該分離液を気化させて気体状態で膜に供給す
る方法である。
The separation coefficient is expressed by the following formula: ○ Separation coefficient - (weight percentage of water in the permeate mixture V weight percentage of organic matter in the permeate mixture) / (weight percentage of water in the separated liquid v ' weight percentage of the water in the separated liquid) (% by weight of organic matter) That is, the present invention uses a non-porous uniform membrane with a thickness of 3 μm or less or a separation membrane having a non-porous skin layer to supply a gas mixture obtained by vaporizing an organic matter aqueous solution at one side of the layer, The method for separating an aqueous organic solution of the present invention relates to a method for concentrating an aqueous solution of organic matter, characterized in that the other permeation side is maintained at reduced pressure or brought into contact with an inert carrier gas to selectively permeate water vapor. I will explain in detail. In the pervaporation method, as described above, one separated liquid is supplied to the membrane in a liquid state, but in the membrane separation method according to the present invention, the separated liquid is vaporized and supplied to the membrane in a gaseous state.

かかる本発明の気体透過法に於てパーベバレーション法
において用いられる水選択透過性膜で、膜厚10μm〜
100μmの均一膜をそのtま用いルト、バーベパレー
ション法に比べて分離係数は2倍以上1000倍以下の
範囲において向上するが透過速度は著しく低下する。し
かるにパーベパレーション法においては、上記の如く膜
厚を薄くしても透過速度の顕著な増大はみられないが、
本発明釦採用される分離法忙おいては、同じ膜材料でも
膜厚を3μm以下にする事によって分離係数の著しい低
下をまねく事なく、透過速度を著しく向上させ得ること
を見出した。しかしながら通常3μm以下の膜厚を有す
る膜は単独では機械的強度が小さく、実用的膜性能評価
に耐える事が難しい。そこで本発明においては、3μm
以下の膜厚を有する非多孔性均一膜よシなる分離膜を、
他の多孔性膜又は多孔性隔壁に積層するか、これらの多
孔性膜や多孔性隔壁上に形成させた積層膜或は複合膜を
使用する。又は該分離膜の材料を用いて3μm以下の緻
密層(非多孔性スキン層)とその下層の多孔性の支持層
とを有する不均斉構造膜を作製する事によって実用的膜
性能評価に耐え得る強度を有する分離膜が得られる。
The water selectively permeable membrane used in the pervelation method in the gas permeation method of the present invention has a membrane thickness of 10 μm to
Compared to the barbeparation method using a uniform membrane of 100 μm, the separation coefficient is improved in the range of 2 times or more and 1000 times or less, but the permeation rate is significantly lowered. However, in the pervaporation method, even if the film thickness is reduced as described above, there is no significant increase in the permeation rate;
In the separation method adopted in the present invention, it has been found that even with the same membrane material, by reducing the membrane thickness to 3 μm or less, the permeation rate can be significantly improved without causing a significant decrease in the separation coefficient. However, a film having a thickness of 3 μm or less usually has low mechanical strength when used alone, and it is difficult to withstand practical film performance evaluation. Therefore, in the present invention, 3 μm
A separation membrane such as a non-porous uniform membrane having the following membrane thickness:
A laminated membrane or a composite membrane which is laminated on another porous membrane or porous partition wall or formed on these porous membranes or porous partition walls is used. Or, by using the separation membrane material to produce an asymmetrically structured membrane having a dense layer (non-porous skin layer) of 3 μm or less and a porous support layer below it, it can withstand practical membrane performance evaluation. A separation membrane with strength can be obtained.

上記の如き膜厚が6μm以下の非多孔性均一膜からなる
分離膜を形成させる材料としては、水選択透過性を有す
るセルロース、ポリビニルアルコール或はポリビニルピ
ロリドン変性又はブレンドポリマー等の親水性ポリマー
、並びに逆浸透膜材料として用いられているセルロース
ジアセテート等の酢酸セルロース、ポリアミド、ポリベ
ンツイミダゾール、ポリベンツイミダゾールン等の縮合
系合成高分子、並びに架橋構造を有するポリアミド、ポ
リアミン、アクリロニトリル系重合体及びポリエーテル
系合成高分子等がある0ここで逆浸透膜とは例えば0.
55%Na0j水溶液に対して圧力40にり/J 、温
度25Cにおける透水速度がo、 s nfAt−8以
上、塩排除率が70%以上の性能を有する膜であるO塩
排除透過液濃度 率とは(1−) ×100%で表わさ 供給液濃度 れるものである。本発明に使用される非多孔性均一膜を
補強する多孔膜や多孔性隔壁としては。
Materials for forming the separation membrane, which is a non-porous uniform membrane with a thickness of 6 μm or less, include cellulose having water selective permeability, hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone modified or blended polymers, and Cellulose acetate such as cellulose diacetate, condensation synthetic polymers such as polyamide, polybenzimidazole, and polybenzimidazole, which are used as reverse osmosis membrane materials, as well as polyamides, polyamines, acrylonitrile polymers, and polyamides with crosslinked structures. For example, reverse osmosis membranes include ether-based synthetic polymers, etc.
O salt removal permeate concentration rate which is a membrane having performance of water permeation rate of o, snfAt-8 or more and salt rejection rate of 70% or more at a pressure of 40/J and a temperature of 25C for a 55% Na0j aqueous solution. is the feed concentration expressed as (1-) x 100%. Porous membranes and porous partition walls for reinforcing the non-porous uniform membrane used in the present invention include:

気体の透過抵抗が少なく実用的取扱いが可能な機械的強
度を有するものが使用可能である。材質としては天然高
分子、合成高分子及び剛性のある金属・非金属の無機化
合物等が用いられる0これらは公知の方法によって作製
する事ができるが、市販のマイク四フィルター、限外p
過膜、焼結金属及びセラミックス等を用いる事も可能で
ある。又、これら分離膜の形状としては平膜型、チュー
ブ型及び中空繊維盤等が用いられる。
It is possible to use materials that have low gas permeation resistance and mechanical strength that allows practical handling. The materials used include natural polymers, synthetic polymers, and rigid metal/nonmetallic inorganic compounds. These materials can be prepared by known methods, but commercially available microphone filters, ultrap
It is also possible to use membranes, sintered metals, ceramics, etc. The shapes of these separation membranes include flat membrane types, tube types, and hollow fiber discs.

本発明に使用される膜は有機物水溶液から水を選択的に
透過させる分離膜であるから、膜材料としては比較的親
水性のポリマーが用いられる。
Since the membrane used in the present invention is a separation membrane that selectively permeates water from an aqueous organic solution, a relatively hydrophilic polymer is used as the membrane material.

しかも該分離膜の膜厚が3t・10以下の薄膜であるた
め、処理さるべき有機物水溶液と膜とが直接接触スるパ
ーベバレーション法を採用したのでは該分離膜が、該分
離液のために膨潤し、たとえ多孔膜や多孔性隔壁を該分
離膜の支持体として該分離膜をその上に積層するか、又
は該多孔膜や該多孔性隔壁上に該分離膜を形成させても
該分離膜の機械的強度が低下するため、実用上の機械的
取扱いが困難となる2>=又は分離係数汐(著しく低下
するという問題を生ずる。し75為るに本発明によれば
分離膜の1次fl!lに有機物/水の混合物を気化せし
めて気体混合物としてl(給接触せしめるガス透過法を
採用するため、親水性ポリマーから形成した分離膜でも
乾燥状態で使用可能となる0したがって該分離膜力エノ
<−ペノ(レーション法の場合のように有機物水溶液に
よって膨潤せしめられることがなく、機械1勺強度の低
下が少ないために3μm以下の薄膜でも使用可能となる
。しかも、]く−ベノくレーション法においては有機物
水溶液に対する分離性盲目カニないか、又は著しく小さ
い様な盆離膜でも、本発明による方法を用いると優れた
分離性fi目の発現力(期待される0 本発明の方法によ多ガス透過法で有機物水溶液の分離・
濃縮を実施するに適した膜としては、パーペパレーショ
ン法では殆んど分離性Rヒを有しないが、ガス透過法で
は優れた分離性能を有する膜として、先ずセルロース薄
膜を多孔膜或祉多孔性隔壁上に積層乃至複合させた膜が
あげられる。例えば膜厚5μm以下のセルロース薄膜或
はシリコーン薄膜をポリエーテルスルホン限外濾過膜上
に積層させた分離膜はガス透過法によるエタノール水溶
液、酢酸水溶液等の分離・濃縮にすぐれた性能を示した
。又パーベパレーション法では分離性能を示さない逆浸
透膜である酢酸セルロースの不均斉構造膜(非多孔性ス
キン層の膜厚3μm以下)、含窒素モノマーまたはポリ
マーをプラズマ処理した逆浸透膜(ポリアクリロニトリ
ル系プラズマ重合体の複合膜として住友化学製、商品名
ソルロツクスがある。
In addition, since the separation membrane is a thin film with a thickness of 3t. Even if a porous membrane or a porous partition wall is used as a support for the separation membrane and the separation membrane is laminated thereon, or the separation membrane is formed on the porous membrane or the porous partition wall. Since the mechanical strength of the separation membrane decreases, it becomes difficult to handle it mechanically in practical use, or the separation coefficient decreases significantly.75 Therefore, according to the present invention, the separation membrane Since the gas permeation method is adopted in which the organic substance/water mixture is vaporized and brought into contact with the first fl!l as a gas mixture, even a separation membrane formed from a hydrophilic polymer can be used in a dry state. The strength of the separation membrane is that it is not swollen by an aqueous organic solution as in the case of the ration method, and there is little decrease in mechanical strength, so even a thin film of 3 μm or less can be used. - In the ventilation method, even if there is no blind crab or an extremely small separation film, the method according to the present invention provides excellent separation ability (expected 0) Separation and separation of aqueous organic matter solutions using multi-gas permeation method
As a membrane suitable for carrying out concentration, the perpeparation method has almost no separation property R, but the gas permeation method has excellent separation performance. Examples include membranes laminated or composited on the sexual septum. For example, a separation membrane in which a cellulose thin film or a silicone thin film with a thickness of 5 μm or less is laminated on a polyethersulfone ultrafiltration membrane has shown excellent performance in separating and concentrating ethanol aqueous solutions, acetic acid aqueous solutions, etc. by the gas permeation method. In addition, reverse osmosis membranes with an asymmetric structure of cellulose acetate (non-porous skin layer thickness of 3 μm or less), reverse osmosis membranes that do not exhibit separation performance using the pervaporation method, and reverse osmosis membranes plasma-treated with nitrogen-containing monomers or polymers ( A composite membrane made of polyacrylonitrile plasma polymer is available from Sumitomo Chemical under the trade name Solrox.

特開昭58−137405号公報参照。)、多孔性支持
体上圧ポリアミド薄膜をin 5itu重合で形成させ
た逆浸透膜(ポリアミド・ポリスルホン複合膜として?
i1m−Tech、 Corp、の商品名FT−!So
がある。特開昭55−147106号公報参照)等の分
離膜が後記する実施例に示す如く本発明のガス透過法に
於て優れた分離性能を示した。
See Japanese Patent Application Laid-open No. 137405/1983. ), a reverse osmosis membrane formed by in 5 in situ polymerization of a thin polyamide film on a porous support (as a polyamide/polysulfone composite membrane?
Product name of i1m-Tech, Corp. FT-! So
There is. Separation membranes such as those disclosed in JP-A-55-147106 have shown excellent separation performance in the gas permeation method of the present invention, as shown in Examples below.

パーペパレーション法においては、分離液t−液液状分
離膜に供給するため、該分離液の液温は該分離液の沸点
以下、好ましくは沸点よシ5C以上低い温度で用いられ
る。しかるに本発明においては膜の1次側に分離液を気
体混合物として供給するので膜の耐熱温度まで該分離気
体混合物の温度を上昇させ得る。分離膜に供給する該分
離気体混合物の濃度(又は分圧)が高い程、水(水蒸気
)の透過速度が大きくなるため、該分離液の液温を高め
て該分離気体混合物の分圧を高めるのが良い。従って液
温を沸点にするのが好ましい。分離膜に供給する気体の
全圧は大気圧で行うのが好ましいが、気体混合物が凝縮
しない程度まで加圧する事も可能である0分離膜の1次
側(供給側)と2次側(透過側)とKおける該分離混合
気体の蒸気圧の差は0.3 kg・crn−2以上が好
ましく、更に好ましくは05に9・crn−2以上であ
る。本発明によればこの様に厚さ5 trm以下の分離
機能を有する薄膜を用い、上記の様な蒸気圧差を有する
混合気体を用いる事によって有機物/水系混合物を気化
させた気体混合物中の水(水蒸気)分の膜透過速度が、
バーベパレーション法の場合と比肩し得る程度に向上し
、かつ分離係数鉱パーベパレーション法よシも著しく高
くすることが可能である。本発明の実施に当っては膜透
過側を減圧に保持するが、減圧度は高い膜透過速度は大
きい。少なくとも透過気体混合物が凝縮しない程度の減
圧度が必要である。通常13000Pa(100關H7
)以下、好ましくは130OPa(10關He )以下
である。
In the perpetuation method, since the separation liquid is supplied to the t-liquid liquid separation membrane, the temperature of the separation liquid is below the boiling point of the separation liquid, preferably at least 5C lower than the boiling point. However, in the present invention, since the separated liquid is supplied as a gas mixture to the primary side of the membrane, the temperature of the separated gas mixture can be raised up to the allowable temperature limit of the membrane. The higher the concentration (or partial pressure) of the separated gas mixture supplied to the separation membrane, the higher the water (water vapor) permeation rate, so increase the temperature of the separated liquid to increase the partial pressure of the separated gas mixture. It's good. Therefore, it is preferable to keep the liquid temperature at the boiling point. The total pressure of the gas supplied to the separation membrane is preferably atmospheric pressure, but it is also possible to pressurize the gas mixture to an extent that does not condense. The difference in vapor pressure between the separated mixed gas at K (side) and K is preferably 0.3 kg·crn-2 or more, more preferably 0.05 to 9·crn-2 or more. According to the present invention, water ( The membrane permeation rate for water vapor) is
The separation coefficient can be improved to a degree comparable to that of the barbeparation method, and the separation coefficient can also be significantly higher than that of the barbeparation method. In carrying out the present invention, the pressure on the membrane permeation side is maintained at reduced pressure, and the higher the degree of reduced pressure, the higher the membrane permeation rate. The degree of vacuum required is at least such that the permeate gas mixture does not condense. Normally 13000Pa (100Pa H7
) or less, preferably 130 OPa (10 degrees He) or less.

又、透過側を減圧にする代シに不活性ガスを通気する事
も可能であるが、該分離膜面上に該分離気体混合物が凝
縮しない事が必要である。このために、該分離液と気液
平衡下にある気体混合物の温度以上に該分離膜を保持す
る必要がある。従って分離膜の温度を該気体混合物よシ
2C以上高く保持することが好ましい。
It is also possible to vent inert gas instead of reducing the pressure on the permeate side, but it is necessary that the separated gas mixture does not condense on the surface of the separation membrane. For this reason, it is necessary to maintain the separation membrane at a temperature higher than the temperature of the gas mixture in vapor-liquid equilibrium with the separation liquid. Therefore, it is preferable to maintain the temperature of the separation membrane at least 2C higher than that of the gas mixture.

本発明による有機物水溶液の分離方法に適用し得る有機
化合物としては、メタノール−エタノール、n−ブ目パ
ノール、1−プロパノ−″ル1n−ブタノール、5ec
−ブタノール、tert−ブタノール、エチレングライ
コール等の脂肪族アルコール、シクロヘナサノール等の
脂環族アルコール、フェノール等の芳香族アルコール、
ギ酸、酢酸、プロピオン酸、酪酸等の有機カルボン酸、
アセトン、メチルエチルケトン等のケトン類、テトラヒ
ドロフラン、ジオキサン等の環状エーテル及びジブチル
アミン、アニリン等の有機アミン類等がある0近年、バ
イオマスからエタノールを製造する試みがなされている
が、バイオマスによって製造されるエタノール濃度は1
0重量−以下であるoしたがって、これから純エタノー
ルを製造するためには、従来はまず蒸留法によって共沸
組成の95.6重量%まで濃縮し、次いでこれにベンゼ
ン、酢エチ等のエントレーナーを添加し、第2の蒸留塔
で共沸蒸留を行ない純エタノールを製造している。しか
るに、第20共沸蒸貿塔で紘エントレーナーの還流のた
め共沸組成から僅少の水を除去するのに多量のエネルギ
ーを必要とするという欠点がある。本発明による有機物
水溶液の分離法は、とれらの共沸蒸留の代替技術として
有望である。
Examples of organic compounds that can be applied to the method for separating an organic aqueous solution according to the present invention include methanol-ethanol, n-butanol, 1-propanol, 1n-butanol, 5ec
- Aliphatic alcohols such as butanol, tert-butanol, ethylene glycol, alicyclic alcohols such as cyclohenasanol, aromatic alcohols such as phenol,
Organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid,
These include ketones such as acetone and methyl ethyl ketone, cyclic ethers such as tetrahydrofuran and dioxane, and organic amines such as dibutylamine and aniline.In recent years, attempts have been made to produce ethanol from biomass; The concentration is 1
Therefore, in order to produce pure ethanol from this, conventionally, it was first concentrated to 95.6% by weight of the azeotropic composition by distillation, and then an entrainer such as benzene or ethyl acetate was added to this. and azeotropic distillation is performed in the second distillation column to produce pure ethanol. However, there is a drawback that a large amount of energy is required to remove a small amount of water from the azeotropic composition due to the reflux of the entrainer in the 20th azeotropic distillation tower. The method for separating aqueous organic matter solutions according to the present invention is promising as an alternative technology to these azeotropic distillations.

勿論、パーベパレーション法も、この共沸蒸留の代替技
術として考えられるが、パーペパレーション法の場合は
第1の蒸留塔の留出分を凝縮し再び膜によって気化させ
るとと忙なる。この場合例えば第1蒸留塔留出のエタノ
ール/水混合蒸気が分縮しないためにIr145C以下
の冷却が必要であシ、パーベパレーション法では45C
以下に冷却された留出液を膜分離することになる。しか
るに本発明によるガス透過法を用いると、第1の蒸留塔
の留出気体混合物をそのまま膜分離することが可能なた
めに、凝縮、昇温、気化等のエネルギー面からも有利な
方法である。
Of course, the pervaporation method is also considered as an alternative technique to this azeotropic distillation, but in the case of the pervaporation method, the distillate from the first distillation column is condensed and vaporized again by the membrane, which is a hassle. In this case, for example, in order to prevent the ethanol/water mixed vapor distilled from the first distillation column from decondensing, it is necessary to cool the Ir to 145C or less;
The cooled distillate is then subjected to membrane separation. However, when the gas permeation method according to the present invention is used, it is possible to membrane-separate the distillate gas mixture from the first distillation column as it is, so it is an advantageous method in terms of energy such as condensation, temperature increase, and vaporization. .

次に実施例及び比較例を亀って、さらに詳しく説明する
が、本発明はこれによって何ら制限されるものではない
Next, the present invention will be explained in more detail by referring to Examples and Comparative Examples, but the present invention is not limited thereto.

なお、膜性能の尺度としては前述した様に透過速度(以
下Qと略す)と分離係数(以下αと略す)とがあシ、膜
性能の優劣はQとαとの総合で評価しなければならない
。又、αは1の場合には全く分離機能を示さない事を示
すため、膜性能の総合評価尺度として以下の実施例、比
較例ではQ、X(α−1)を用いることにする。
As mentioned above, the permeation rate (hereinafter abbreviated as Q) and the separation coefficient (hereinafter abbreviated as α) are used as a measure of membrane performance, and the superiority or inferiority of membrane performance must be evaluated based on the total of Q and α. No. In addition, when α is 1, it indicates that no separation function is exhibited at all, so Q and X(α-1) will be used in the following Examples and Comparative Examples as a comprehensive evaluation scale of membrane performance.

実施例1 5重量−の酢酸水溶液を大気圧下に還流し、かつこの沸
点(100G)において酢酸水溶液と気液平衡となって
いる酢酸/水の気体混合物を105Cに加温されたFT
−30膜CF’ 11 m。
Example 1 A 5 weight aqueous acetic acid solution was refluxed under atmospheric pressure, and a gaseous mixture of acetic acid/water, which was in vapor-liquid equilibrium with the acetic acid aqueous solution at its boiling point (100 G), was heated to 105C.
-30 membrane CF' 11 m.

Tech、 0orp−jJJ (U S A )逆浸
透用複合膜;架橋構造を有するポリアミドを厚み0.2
5μにて多孔性ポリスルホン膜上に形成させたもの〕と
接触させる。FT−30膜のポリアミド側を減圧側にし
て213Pa(1,6rHrrHy)にて保持した。透
過蒸気を液体窒素冷却トラップにて凝縮捕集した。
Tech, 0orp-jJJ (USA) Composite membrane for reverse osmosis; 0.2-thick polyamide with crosslinked structure
5μ formed on a porous polysulfone membrane]. The polyamide side of the FT-30 membrane was set to the reduced pressure side and maintained at 213 Pa (1,6 rHrrHy). The permeated vapor was condensed and collected in a liquid nitrogen cooling trap.

酢酸水溶液の濃度はアルカリ滴定によって決別した。透
過速度1.7 kg−m−2,hr−1、分離係数6.
0であった。
The concentration of acetic acid aqueous solution was determined by alkaline titration. Permeation rate 1.7 kg-m-2, hr-1, separation factor 6.
It was 0.

比較例1(パーペバレーション) 実施例1において分離膜忙酢酸/水気体混合物の代りに
大気圧下、5重量%の酢酸水溶液(a5C)を供給した
。透過側減圧度Fi226PFL(1゜7 myn H
f)であった。との時の透過速度0,81に9・m−2
・hr−”、分離係数1.5でいずれも実施例1の場合
よシ本小さかった。
Comparative Example 1 (Perpevalation) In Example 1, a 5% by weight acetic acid aqueous solution (a5C) was supplied under atmospheric pressure instead of the acetic acid/water gas mixture in the separation membrane. Permeate side pressure reduction degree Fi226PFL (1°7 myn H
f). When the transmission velocity is 0.81 to 9 m-2
·hr-'' and separation coefficient of 1.5, both of which were smaller than those of Example 1.

実施例2 (1) 2μmセルセルロース積層側リエーテルスルホ
ン多孔膜の作製:セルロース乙5声量部、N、N−ジメ
チルアセトアミド184.5重量部、Li0t8.5x
量部よシ作製されたセルロースの溶液を、ガラス板上に
5 m1ll(75tc++ )の厚みにて流延後、直
ちに水沈浸漬し、セルロース薄膜を作製した。この膜を
ダイセル化学工業(株)製ポリエーテルスルホン限外r
過f rDusau >上に積層し室温にて24時間放
置し、乾燥セルロースl1ltffiホlJエーテルス
ルホン膜ヲ作製した。乾燥セルロース膜部分の膜厚は2
廂であった。
Example 2 (1) Preparation of 2 μm cellulose laminated side Liethersulfone porous membrane: Cellulose Otsu 5 parts by weight, N,N-dimethylacetamide 184.5 parts by weight, Li0t8.5x
A cellulose solution prepared in bulk was cast onto a glass plate to a thickness of 5 ml (75 tc++), and immediately immersed in water to prepare a cellulose thin film. This membrane was manufactured by Daicel Chemical Industries, Ltd.
The dried cellulose was laminated on top of the membrane and left at room temperature for 24 hours to produce a dried cellulose l1ltffiholj ethersulfone membrane. The thickness of the dry cellulose membrane part is 2
It was the other side.

(2)7重量%のエタノール水、溶液を大気圧下に還流
し、かつこの時発生するエタノール/水の気体混合物を
99Cに加温された実施例2−(り項による膜のセルロ
ース積層側に供給した。この時の気体混合物を冷却管に
導き、その凝縮液のエタノール温度を測定したところ5
6重量%であった。膜の反対側を186ハ(1,4朋H
f )に減圧した。透過速度は2.2 kf・z>+、
 −hr s分離係数は181であった。
(2) 7% by weight ethanol water, the solution was refluxed under atmospheric pressure, and the gaseous mixture of ethanol/water generated at this time was heated to 99C. The gas mixture at this time was introduced into the cooling pipe, and the ethanol temperature of the condensate was measured.
It was 6% by weight. 186cm (1,4cm) on the other side of the membrane
The pressure was reduced to f). The transmission rate is 2.2 kf・z>+,
-hr s separation factor was 181.

比較例2(パーベパレーション) 実施例2−(23項において、56重量%のエタノール
/水気体温合物を膜に供給する代シに45Cの56重量
%のエタノール水溶液を供給した。透過速度8.0 k
g・tyt−2・hr−”であったが、分離係数0.9
でエタノールが水よシも選択的に透過した。
Comparative Example 2 (Pervaporation) Example 2 (In Section 23, a 56% by weight ethanol aqueous solution of 45C was supplied to the membrane in place of the 56% by weight ethanol/water vapor mixture. Permeation rate 8.0k
g・tyt−2・hr−”, but the separation coefficient was 0.9
Ethanol selectively permeated through water.

実施例S、4.5 実施例2において、実施例2−(0項記載の膜及び実施
例2−(2J項記載の評価条件の代力に、表1に記載し
た膜及び評価条件を用する他は。
Example S, 4.5 In Example 2, the membrane and evaluation conditions described in Table 1 were used as substitutes for the membrane described in Example 2-(0) and the evaluation conditions described in Example 2-(2J). Other than that.

全く同様に行なった。透過速度はやや低かったが1分離
係数が高く、実用性を有する膜であった0 一ル、1−10パノール、ヘキサン1clj次30分間
浸漬後、風乾することによυ作製した。
I did exactly the same thing. Although the permeation rate was somewhat low, the separation coefficient was high and the membrane was practical. It was fabricated by immersing it in 1 ml, 1-10 panol, and 1 clj hexane for 30 minutes, and then air drying.

比較例5. 4. 5(パーベパレーション)実施例3
,4.5においてエタノール/水気体温合物の代シに同
じ重量%のエタノール水溶液を、又比較例1に記載の膜
性能評価条件の代シに表1に記載の評価条件を用いる他
は、全く同様に行なった。分離係数が低く、実用的分離
性能に到らなかった。
Comparative example 5. 4. 5 (Pervaporation) Example 3
, 4.5, the same weight % ethanol aqueous solution was used as a substitute for the ethanol/water gas temperature mixture, and the evaluation conditions listed in Table 1 were used instead of the membrane performance evaluation conditions described in Comparative Example 1. I did exactly the same thing. The separation coefficient was low and did not reach practical separation performance.

実施例6(ガス透過) 実施例1におけるFT−50膜を用いる代りにDUB−
40膜(ダイセル化学工業(株)製ポリエーテルスルホ
ン限外濾過膜)上にトーン・シリコーン(株)製0Y5
2−205 (ジメチルシリコーン)10重置部と触媒
1重量部との混合物を塗布した後120C,30分間熱
処理して作成した複合膜(ジメチルシリコーン層の膜厚
2μm)を用い、表1の条件でガス透過法によシテスト
し7て表1のような結果を得た。
Example 6 (Gas Permeation) Instead of using the FT-50 membrane in Example 1, DUB-
0Y5 manufactured by Tone Silicone Co., Ltd. on the 40 membrane (polyethersulfone ultrafiltration membrane manufactured by Daicel Chemical Industries, Ltd.)
2-205 A composite membrane (dimethyl silicone layer thickness: 2 μm) prepared by applying a mixture of 10 parts of dimethyl silicone and 1 part by weight of catalyst and then heat-treating at 120C for 30 minutes was used under the conditions shown in Table 1. The material was tested using a gas permeation method, and the results shown in Table 1 were obtained.

比較例6(バーベパレーション) 表1の条件でパーベバレーション法でデストした以外は
実施例6と同様紀行ない表1のような結果を得た。
Comparative Example 6 (Barbeparation) The results shown in Table 1 were obtained in the same manner as in Example 6 except that the pervelation method was used under the conditions shown in Table 1.

Claims (1)

【特許請求の範囲】 1 膜厚3μm以下の非多孔性均−膜又祉非多孔性スキ
ン層を有する分離膜を用い亀該層の一方の側に有機物水
溶液を気化させた気体混合物を供給し、他方の透過側を
減圧に保つか又は不活性キャリヤーガスと接触させ、水
蒸気を選択的に透過させることを特徴とする有機物水溶
液の濃縮方法。 2 分離膜が膜厚3μm以下の非多孔性均一膜を多孔膜
又は多孔性隔壁に積層してなる膜である特許請求の範囲
第1項記載の濃縮方法。 3 分離膜が多孔性膜又は多孔性隔壁からなる支持体上
に非多孔性スキン層が設けられた複合膜である特許請求
の範囲第1項記載の濃縮方法。 4 分離膜が非多孔性スキン層とこれを支持する同一材
料の多孔性構造から形成された不均斉構造膜である特許
請求の範囲第1項記載の濃縮方法。 5 非多孔性均一膜がセル0−2薄膜である特許請求の
範囲第2項記載の濃縮方法0 6 非多孔性均一膜がシリコーン薄膜である特許請求の
範囲第2項記載の濃縮方法0 7 非多孔性スキン層がポリアミドである特許請求の範
囲第5項記載の濃縮方法。 8 分離膜が多孔性支持体上にポリアミド薄膜を1ns
itu這合で形成させた逆浸透膜である特許請求の範囲
第7項記載の濃縮方法0 9 分離膜が含窒素モノマーまたはポリマーをプラズマ
処理した逆浸透膜である特許請求の範囲第3項記載の濃
縮方法。 10 分離膜が膜厚3μm以下の非多孔性スキン層を有
する酢酸セルロースの不均斉構造膜である特許請求の範
囲第4項記載の濃縮方法011 分離膜の両側での混合
気体の蒸気圧差力(0、B ky層以上である特許請求
の範囲第1項乃至第10項の何れか1項に記載の濃縮方
法012 分離膜が0.35重量−Na C3を水溶液
を供給液として、圧力40 kg//l、#、温度25
Cに於ける逆浸透性能評価した場合の透水速度が0.5
 n?/m′田及びNaCjt排除率が70%以上の性
能を有する逆浸透膜である特許請求の範囲第1項記載の
濃縮方法。
[Claims] 1. A separation membrane having a non-porous homogeneous membrane or a non-porous skin layer with a thickness of 3 μm or less is used, and a gas mixture obtained by vaporizing an organic aqueous solution is supplied to one side of the layer. A method for concentrating an aqueous solution of an organic substance, characterized in that the other permeation side is maintained at a reduced pressure or brought into contact with an inert carrier gas to selectively permeate water vapor. 2. The concentration method according to claim 1, wherein the separation membrane is a membrane formed by laminating a non-porous uniform membrane with a thickness of 3 μm or less on a porous membrane or a porous partition wall. 3. The concentration method according to claim 1, wherein the separation membrane is a porous membrane or a composite membrane in which a non-porous skin layer is provided on a support made of a porous partition wall. 4. The concentration method according to claim 1, wherein the separation membrane is an asymmetric structure membrane formed from a non-porous skin layer and a porous structure of the same material supporting the non-porous skin layer. 5 The concentration method according to claim 2, wherein the non-porous uniform membrane is a cell 0-2 thin film. 6 The concentration method according to claim 2, wherein the non-porous uniform membrane is a silicone thin film. 7 6. A method of concentration according to claim 5, wherein the non-porous skin layer is polyamide. 8 The separation membrane is a polyamide thin film on a porous support for 1 ns.
The concentration method according to claim 7, which is a reverse osmosis membrane formed by ITU mixing. 9 The concentration method according to claim 3, wherein the separation membrane is a reverse osmosis membrane in which a nitrogen-containing monomer or polymer is plasma-treated. concentration method. 10 The concentration method according to claim 4, wherein the separation membrane is an asymmetric structure membrane of cellulose acetate having a non-porous skin layer with a thickness of 3 μm or less. 0, B ky layer or more Concentration method according to any one of claims 1 to 10 012 The separation membrane is 0.35 weight by weight - Na C3 aqueous solution is used as the feed liquid, and the pressure is 40 kg. //l, #, temperature 25
The water permeation rate when evaluating reverse osmosis performance in C is 0.5
n? 2. The concentration method according to claim 1, wherein the reverse osmosis membrane is a reverse osmosis membrane having a NaCjt rejection rate of 70% or more.
JP20666983A 1983-11-02 1983-11-02 Concentration of aqueous solution of organic substance Granted JPS6099314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20666983A JPS6099314A (en) 1983-11-02 1983-11-02 Concentration of aqueous solution of organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20666983A JPS6099314A (en) 1983-11-02 1983-11-02 Concentration of aqueous solution of organic substance

Publications (2)

Publication Number Publication Date
JPS6099314A true JPS6099314A (en) 1985-06-03
JPH0420645B2 JPH0420645B2 (en) 1992-04-06

Family

ID=16527164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20666983A Granted JPS6099314A (en) 1983-11-02 1983-11-02 Concentration of aqueous solution of organic substance

Country Status (1)

Country Link
JP (1) JPS6099314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248418A (en) * 1987-04-02 1988-10-14 Ube Ind Ltd Separation of gaseous mixture
JPS6415103A (en) * 1987-04-08 1989-01-19 Union Carbide Corp Composite membrane for separating increased fluid
JPH0768134A (en) * 1993-06-29 1995-03-14 Ube Ind Ltd Method for removing moisture in oil
JP2021522990A (en) * 2018-04-30 2021-09-02 インテグリス・インコーポレーテッド Polyamide coated filter membranes, filters and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084036A (en) * 1974-08-14 1978-04-11 Monsanto Company Asymmetric hollow acrylic fibers
JPS5482380A (en) * 1977-11-25 1979-06-30 Uop Inc Gas separating membrane and manufacture
US4209307A (en) * 1974-08-14 1980-06-24 Monsanto Company Method for filtering through highly permeable acrylic hollow fibers
JPS57167702A (en) * 1981-04-10 1982-10-15 Asahi Chem Ind Co Ltd Separating membrane and separating and/or concentrating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084036A (en) * 1974-08-14 1978-04-11 Monsanto Company Asymmetric hollow acrylic fibers
US4209307A (en) * 1974-08-14 1980-06-24 Monsanto Company Method for filtering through highly permeable acrylic hollow fibers
JPS5482380A (en) * 1977-11-25 1979-06-30 Uop Inc Gas separating membrane and manufacture
JPS57167702A (en) * 1981-04-10 1982-10-15 Asahi Chem Ind Co Ltd Separating membrane and separating and/or concentrating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248418A (en) * 1987-04-02 1988-10-14 Ube Ind Ltd Separation of gaseous mixture
JPH0527443B2 (en) * 1987-04-02 1993-04-21 Ube Industries
JPS6415103A (en) * 1987-04-08 1989-01-19 Union Carbide Corp Composite membrane for separating increased fluid
JPH0565211B2 (en) * 1987-04-08 1993-09-17 Union Carbide Chem Plastic
JPH0768134A (en) * 1993-06-29 1995-03-14 Ube Ind Ltd Method for removing moisture in oil
JP2021522990A (en) * 2018-04-30 2021-09-02 インテグリス・インコーポレーテッド Polyamide coated filter membranes, filters and methods

Also Published As

Publication number Publication date
JPH0420645B2 (en) 1992-04-06

Similar Documents

Publication Publication Date Title
US4983303A (en) Method of separating a particular component from its liquid solution
JPH0334969B2 (en)
JPH03137919A (en) Filming method for separating organic liquid
JPH031056B2 (en)
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Franken et al. Pervaporation process using a thermal gradient as the driving force
JPH02261521A (en) Concentration method for water/ketone
JPH02222717A (en) Gas separating membrane and separation of gas
JPH09103663A (en) Polyether imide film
CA2026660A1 (en) Dehydration of organic oxygenates
JPH05177111A (en) Dehydration of water-organic matter solution
JPS6099314A (en) Concentration of aqueous solution of organic substance
JPH0542288B2 (en)
JPH03151029A (en) Method for dehydration of oxygen containing organic compound
WO1988004569A1 (en) Process for separating liquid mixture
JPH0114801B2 (en)
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JPH0693986B2 (en) Gas separation membrane and gas separation method
JPS61167405A (en) Separation of liquid mixture
JPH0157604B2 (en)
JP2782770B2 (en) Pervaporation separation method of organic matter aqueous solution
JP2782769B2 (en) Pervaporation separation method of organic matter aqueous solution
JPS60106504A (en) Separation of aqueous solution of organic substance using membrane
JPS6144524B2 (en)
JPH0423569B2 (en)