JPS6097003A - Membrane separation method - Google Patents

Membrane separation method

Info

Publication number
JPS6097003A
JPS6097003A JP58204937A JP20493783A JPS6097003A JP S6097003 A JPS6097003 A JP S6097003A JP 58204937 A JP58204937 A JP 58204937A JP 20493783 A JP20493783 A JP 20493783A JP S6097003 A JPS6097003 A JP S6097003A
Authority
JP
Japan
Prior art keywords
membrane
porous layer
prepared
porous
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204937A
Other languages
Japanese (ja)
Inventor
Tadahiro Uemura
忠廣 植村
Yoshinari Fusaoka
良成 房岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58204937A priority Critical patent/JPS6097003A/en
Publication of JPS6097003A publication Critical patent/JPS6097003A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation

Abstract

PURPOSE:To enhance separation efficiency and a permeation speed, in separating a solution mixture by a pervaporation method, by allowing the solution mixture to pass through a non-porous layer through a porous layer. CONSTITUTION:A porous layer comprises a layer having substantially no separation capacity and a pore size of about 100-several mum and is prepared by using polysulfone, cellulose acetate, cellulose nitrate, a homopolymer or copolymer of vinyl chloride or a blend thereof. A non-porous layer comprises a layer having no piercing pore observable by an electronic microscope and has a thickness of 100-10,000Angstrom and is prepared by using polyurea, polyetheramide, polyether urea, polyamide, polyether, a homopolymer or block or graft copolymer of polyvinyl halide or a blend thereof.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は多孔性層とこれと素材の異なる非多孔性層を有
する複合膜を用いてパーベーパレーション法(浸透気化
法)で混合液体を分離する方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention provides a method for separating a mixed liquid by a pervaporation method using a composite membrane having a porous layer and a non-porous layer made of a different material. It is related to.

〔従来技術とその問題点〕[Prior art and its problems]

膜による分離技術は近年盛んに検討されておりその一部
は実用化に到っているものもある。実用化された例は、
たとえば逆浸透膜による海水淡水化、イオン交換膜によ
る製塩、限外濾過膜による電着塗料の回収など多くのプ
ロセスに見い出すことができる。膜による分離は従来の
蒸留法にとってかわる省エネルギーの分離法どして多方
面から注目されており、さらに蒸留法では分離できない
共沸混合物の分離や異性体の分離などに適用できること
から近年、米国、ヨーロッパ、日本などを中心に研究が
盛んである。
Separation technologies using membranes have been actively studied in recent years, and some of them have even been put into practical use. Practical examples include:
For example, it can be found in many processes such as seawater desalination using reverse osmosis membranes, salt production using ion exchange membranes, and recovery of electrodeposition paint using ultrafiltration membranes. Separation using membranes has attracted attention from various fields as an energy-saving separation method that can replace conventional distillation methods.Furthermore, it has been widely used in the United States and Research is active mainly in Europe and Japan.

このような膜分離の一つの手法として、パーベーパレー
ション法が研究されている。この技術は膜を介してその
片側に混合液体を供給し、その反対側を減圧にするか又
は気体を流すことによって膜中で混合液体を蒸発させ、
膜と混合液体との親和性の差により、混合液体を各成分
に分離するものである。この技術の特徴は逆浸透法のよ
うに浸透圧による濃度的な制限がないため低濃度の混合
液体の分離に限定されることなく、全ての範囲の濃度の
混合液体の分離が可能であること、また共沸混合物や、
沸点の接近した溶媒、異性体(たとえばオルト、パラ異
性体やシス、トランス異性体)の分離が可能であること
などがある。
A pervaporation method is being researched as one method for such membrane separation. This technique supplies a mixed liquid through the membrane on one side and evaporates the mixed liquid in the membrane by applying a vacuum or flowing gas to the other side.
The mixed liquid is separated into each component based on the difference in affinity between the membrane and the mixed liquid. The feature of this technology is that unlike reverse osmosis, there is no concentration limit due to osmotic pressure, so it is not limited to separating mixed liquids with low concentrations, but can separate mixed liquids with a whole range of concentrations. , and also azeotropes,
These include solvents with similar boiling points and the ability to separate isomers (for example, ortho and para isomers, and cis and trans isomers).

しかし現在のところパーベーパレーション法が実用に到
っていないのは、第1に、一般に分縮率α(α= VX
/ XV :原液にお【jるA成分の分率×。
However, the reason why the pervaporation method has not reached practical use at present is that firstly, the decomposition rate α (α = VX
/ XV: Fraction of component A in the stock solution x.

日成分の分率×、透過液におけるA成分の分率■1B成
分の分率y)が蒸留の分ll1lj率に比べて同等か又
はやや優れている押爪で膜を介することのメリットが十
分発揮できていないこと、第2に、透過速度Q(Q−F
/T−3:Fは透過l、■は時間。
The fraction of the component x, the fraction of the A component in the permeate, the fraction y of the 1B component in the permeate, is equivalent to or slightly better than the fraction of distillation.There are sufficient advantages of passing the membrane with a pusher claw. The second problem is that the permeation rate Q (Q-F
/T-3: F is transmission l, ■ is time.

Sは膜面積)が実用上低いレベルにあって、少くとも現
在知られている透過速度の10倍程度の膜が必要とされ
ているためである。
This is because the membrane area (S: membrane area) is at a practically low level, and a membrane with a permeation rate of at least 10 times the currently known permeation rate is required.

パーベーパレーションン大については、古くから数多く
の特許1文献が知られているが最近では特開昭58−4
0102.58−40103.58−40104.51
−40105.58−58106.58−58107.
58−5810f3.58−95521.58−955
22.58−95523、などに種々の分離方法が示さ
れている。
Regarding pervaporation, many patent documents have been known for a long time, but recently, Japanese Patent Application Laid-Open No. 58-4
0102.58-40103.58-40104.51
-40105.58-58106.58-58107.
58-5810f3.58-95521.58-955
22.58-95523, etc., various separation methods are shown.

これらの特許2文献の中には分離方法によって混合液中
の被透過成分の選択透過性が逆転するものもある。
In some of these patent documents, the permselectivity of the components to be permeated in the mixed liquid is reversed depending on the separation method.

一方、複合膜は物質分−1能を右する高分子索lを極力
薄く設けることにより透過速度0を向II!しめること
を目的とし、一般【こはそれ自体分1lII竹能を有さ
ない多孔性層と、これとは別の素材である前記物質分蘭
能を石づる高分子素材の非多孔411層を 体化した構
造としたしの(,主に逆階透払1ガス分頗膜の分野で盛
んに細穴開発され(きIこ。
On the other hand, in the composite membrane, the permeation rate of 0 can be reduced to 0 by providing as thin a polymer cord as possible, which determines the substance function. A porous layer that does not have any properties per se, and a non-porous layer of a polymeric material that has the properties of the above-mentioned substance, which is a different material, are used for the purpose of This structure has been extensively developed mainly in the field of inverted diaphragm gas membranes.

〔発明の目的) 本発明者らは複合膜をバーベーパレージ臼ン法に適用し
、高いαと^いQをIHるへく鋭怠検h・1シた結采、
より効果的に混合液体を分m1llする71j仏を見い
出し本発明を完成した。
[Purpose of the invention] The present inventors applied a composite membrane to the barbage parage milling method, and achieved high α and high Q by IH.
The present invention was completed by discovering a method for distributing mixed liquids more effectively.

〔発明の構成〕[Structure of the invention]

すなわち本弁明は、実質的に分離能を右さむい多孔性層
と該多孔性層と素材の責なる非多孔性層を右する複合膜
によりパーベーパレーション法で混合液を分離するに際
して該混合液体を多孔M層を経て非多孔性層を通過さセ
ることを特徴どりる脱汁11111j 2人に関りるも
のである。
In other words, this defense is based on the fact that when a mixed liquid is separated by a pervaporation method using a composite membrane that has a porous layer that has a substantially opposite separation ability and a non-porous layer that is responsible for the porous layer and the material, the mixed liquid This involves two people.

ここに言う多孔11層とは実質的に分離性能を有さない
層で、数多くの貫通孔を有する。平膜あるいは中空膜な
どの形態を有し、その孔径は約100〜数ミクロン程度
のものであり、電子顕微鏡によって孔どして確認できる
。さらに好ましくは1片面の微細孔の大きさが約100
〜数自人ぐらいでもう一方の面に向かって孔径が徐々に
大きくなり、もう一方の而では数ミクロンぐらいのもの
である。また、この多孔付層の素材は各種の有機高分子
、無機物から選択することができるが。
The porous 11 layer referred to herein is a layer having substantially no separation performance and has many through holes. It has the form of a flat membrane or a hollow membrane, and its pore diameter is about 100 to several microns, and can be confirmed by drilling with an electron microscope. More preferably, the size of the micropores on one side is about 100.
The pore diameter gradually increases toward the other side, and is about several microns on the other side. Further, the material for this porous layer can be selected from various organic polymers and inorganic materials.

通常は加工しやすさの点から有機高分子であり。It is usually an organic polymer because of its ease of processing.

ポリスルホンや酢酸セルロース、硝酸セルロースや塩化
ビニル等のホモポリマーあるいは]ポリマーあるいはこ
れらをブレンドしたものが使用される。多孔性層として
使用可能な多孔性膜としてはたとえばポリスルホンのジ
メチルホルムアミド(IMF)溶液をガラス板のトに一
定の厚さに汀型し、それを水中あるいは水溶液中、たと
えばドデシル硫酸ソーダ0.5小r%およびDMF2重
量%を含む水溶性中で湿式凝固させることによつ5− て1表面の大部分が直径約100オンゲスト[」−ム以
下の微細)j孔を有した多孔性膜が得られる。
Homopolymers or polymers such as polysulfone, cellulose acetate, cellulose nitrate, and vinyl chloride, or blends of these are used. Porous membranes that can be used as porous layers include, for example, a solution of polysulfone in dimethylformamide (IMF) poured onto a glass plate to a certain thickness, and then soaked in water or an aqueous solution, for example, 0.5% sodium dodecyl sulfate. By wet coagulation in an aqueous solution containing a small amount of r% and 2% by weight of DMF, a porous membrane having a majority of its surface with fine pores of about 100 mm or less in diameter is prepared. is obtained.

この多孔tlt膜は編織布あるいは不織布のトで汀q1
4してもよい。
This porous TLT membrane is made of woven fabric or non-woven fabric.
It may be 4.

また、非多孔性層とは少なくとも電子顕微鏡で観察可能
な貫通孔が存在しない層であり、即さは100人〜10
000Aであるのが好ましい。厚みがこの範囲より薄い
と使用中にきずついたりし。
In addition, a non-porous layer is a layer that does not have at least through holes that can be observed with an electron microscope, and the
000A is preferred. If the thickness is thinner than this range, it may get damaged during use.

また厚すぎるとQが不十分となる。このような非多孔性
層は多孔性層と胃なる素材が用いられる。
Also, if it is too thick, Q will be insufficient. As such a non-porous layer, a porous layer and a material are used.

たとえば、各種の有機高分子、無機物から選択すること
ができるが、一般には有機高分子が好ましく、たとえば
ポリウレア、ポリエーテルアミド。
For example, it can be selected from various organic polymers and inorganic materials, but organic polymers are generally preferred, such as polyurea and polyetheramide.

ポリエーテルウレア、ポリアミド、ポリエステル。Polyether urea, polyamide, polyester.

ポリエーテルポリハロゲン化ビニル等のホモポリマーあ
るいはブロック、グラフトコポリマー、あるいはブレン
ドしたものが便口1される。好ましくは耐溶剤性、耐久
性面から架橋高分子、特に好ましくはト記ポリマーの架
橋物が使用される。架橋性ポリマーは溶剤に不溶(゛あ
りそれ自身を合成し6− てから摸にすることは不可能であるため別途作成した多
孔性!19[T′711[′wAせしめることで複合膜
を形成することかでき、坦在ではこの方法で作られた複
合膜が複合膜の主流となっている。このように複合膜と
は、実質的な分11!11 t7+能を右する薄い41
多孔層の部分ど、:f′れを支持づる多1111mの部
分!)・ら成る膜である。複合膜としては逆浸透膜どし
て。
A homopolymer such as polyether polyvinyl halide, a block copolymer, a graft copolymer, or a blend is used for the defecation port 1. Preferably, from the viewpoint of solvent resistance and durability, a crosslinked polymer, particularly a crosslinked product of the above polymer, is used. Since crosslinkable polymers are insoluble in solvents and cannot be synthesized and then imitated, a composite membrane is formed by separately creating a porous !19[T'711['wA]. Composite membranes made by this method are the mainstream of composite membranes in modern times.In this way, composite membranes are made of thin 41.
The part of the porous layer: the part of 1111m that supports f'! ). A reverse osmosis membrane is a composite membrane.

NS−100,NS−200(ノース・スターrtll
用途に開発されたもの′C−は、プリズム膜〈モレ4j
ントネ1)なとが知られている。これら複合膜の形態は
中空糸のものや平膜のものがあるが9本発明はもちろん
形態tこ3Lって制限を受−&〕ることはない1このよ
うイ1複合膜の断面形態の代表例はあとの実施例の中で
透過型電イ顕m鏡にまって小igれる。
NS-100, NS-200 (North Star rtll
The product 'C- developed for this purpose is a prism film <More 4j
1) Nato is known. The forms of these composite membranes include hollow fibers and flat membranes, but the present invention is of course not limited to the form. A typical example will be shown in the later examples by standing in a transmission electron microscope.

J、lこ、ここに占うバーl゛\−ベレーションン人と
(ま膜の11面に2成分、t: /、−1,tイ1′ロ
スL 17)成分からなる均一り混合液体を接し、Cお
♂、混rダ液体のそれぞねの成分ど119成分どの親和
性の差で分離を行ない膜のもう一つの面において輿空で
引くかあるいは不活性気体を流すことによって膜を通過
してきた成分を気体としてとり出し、これを冷却したり
することによって液体を回収Jる膜分離方法である。
J, lko, here's the fortune teller l゛\-A homogeneous mixed liquid consisting of Veronians and (2 components on the 11 sides of the membrane, t: /, -1, t1' loss L 17) components. The 119 components of the mixed liquid are separated based on the difference in affinity, and then the membrane is separated on the other side of the membrane by drawing air or flowing an inert gas. This is a membrane separation method in which the components that have passed through the membrane are taken out as a gas, and the liquid is recovered by cooling the gas.

本発明で分離される混合液体は2成分あるいは多成分の
均一混合液体であり1例えばベンサン/トルエン、ベン
ゼン/′シクロヘキサン、ベンゼン、/1)−ベキ1ノ
ン、0−キシレン27′p−キシレンなどの有機物混合
系、水/メタノール、水/Jタノール、水/ I+−プ
ロピルアルコール、水/1so−1[]ピルアル」−ル
、水/アセ1〜ン、水/ジ第4−サン、水/ジメチル小
ルムアミド、水/耐酸などの水/有機物混合系などをあ
げることができる。
The mixed liquid separated in the present invention is a homogeneous mixed liquid of two or multiple components, such as benzane/toluene, benzene/'cyclohexane, benzene, /1)-bequinone, 0-xylene, 27'p-xylene, etc. Organic mixture system, water/methanol, water/Jtanol, water/I+-propyl alcohol, water/1so-1[]pyral, water/acetane, water/di-quaternary alcohol, water/ Examples include dimethyl small lumamide, water/organic mixture systems such as water/acid resistant.

特c: iI者の系の分離に顕著な効宋があり、たとえ
ば水、ノノルコール系の分離に有用である。これらの混
合液体を本発明の方法によって効ψ的に分離することが
有効CあることLJ 、以1・の実施例によって詳細に
説明づるが1本発明の解釈はかかる実施例によって限定
されるものではない。
Special feature c: It has a remarkable effect on the separation of II systems, and is useful for the separation of water and nonorkol systems, for example. The fact that it is effective to effectively separate these mixed liquids by the method of the present invention will be explained in detail with the following examples, but the interpretation of the present invention is not limited by these examples. isn't it.

参考例1 ポリスルホン微多孔膜の装設。Reference example 1 Installation of polysulfone microporous membrane.

ポリスルポン15重重部、ジメチルボルノ、アミド85
重吊部のキャスト液を調整し7だ。
Polysulpon 15 parts, dimethylborno, amide 85
I adjusted the casting liquid in the heavy lifting part and it was 7.

このキャスト液を傷のない乾燥したガラス根土に210
μmの厚さでキャストした。その後直ちにこのキャスト
シた膜をカフス板ごと水の中へすばやく静かに一定のス
ピード(入れた。−4ぐにポリスルホン微多孔膜がガラ
ス板からはく離してくるが、10分間はど水そうの中に
人ねでおき、ぞの後取り出して水道水でよく洗浄した後
熟溜水で保育した。このようにして得られたポリスルホ
ン微多孔膜はキャス]・詩に空気に接しくいたhの面は
微孔、カフス板に接していた面の付近は比較的大きな孔
がおいていることが電子顕微鏡写真により確かめられた
Apply this casting solution to dry glass root soil without scratches.
It was cast to a thickness of μm. Immediately after that, the cast membrane was quickly and quietly put into water along with the cuff plate at a constant speed.The polysulfone microporous membrane peeled off from the glass plate after 4 seconds, but it was kept in a drain for 10 minutes. The polysulfone microporous membrane obtained in this way was made of a polysulfone microporous membrane. Electron micrographs confirmed that there were relatively large holes near the surface that was in contact with the cuff plate.

実施例コ ダウネ1製Jビアミ〕/ (1チレシシアミン変成ボリ
エビク[Jルヒド1」ン)の3%、水溶液を調整した。
EXAMPLE A 3% aqueous solution of J Biami]/(1 tileshicyamine modified Boryevik [J Ruhid 1]) was prepared.

これとIJ別に、イソフタル酸り[]ライドの19− %ヘキサン溶液を調整した。Apart from this and IJ, 19- % hexane solution was prepared.

参考例1で作成したポリスルホン微多孔膜のキャスト時
に空気に接していた面にTビアミン水溶液を均一にン1
いだ後、膜を垂直にして液切りを30秒t’i <rつ
だ。次に膜を水平に保ちイソフタル酸クロライド溶液を
均一に注いで1分間緒持した後、その膜を120℃で1
0分間熱風循環乾燥器で乾燥を行なった。このようにし
、て1qられた複合膜【1ポリスル小ン膜の片面にエビ
アミン架橋ポリマーによる活性層を有することが電子顕
微鏡写真より確かめられた。この複合膜のJピアミン架
橋ポリマーtこよる活性層を気相に向1って浸透気化ン
入による分1ii11fl能を湿度30℃、10%エタ
ノール水溶液、気相側圧力10mm1−I Qで測定し
た結束を第1表に示した。
A T-biamine aqueous solution was uniformly applied to the surface of the polysulfone microporous membrane prepared in Reference Example 1 that was in contact with air during casting.
After soaking, hold the membrane vertically and drain the liquid for 30 seconds. Next, the membrane was held horizontally and the isophthalic acid chloride solution was uniformly poured into the membrane, and the solution was left for 1 minute.
Drying was performed in a hot air circulation dryer for 0 minutes. It was confirmed from electron micrographs that the composite membrane prepared in this way had an active layer made of shrimp amine crosslinked polymer on one side of the polysulfite membrane. The active layer of this composite membrane made of J Piamine cross-linked polymer T was oriented toward the gas phase, and its permeation capacity was measured at a humidity of 30°C, a 10% ethanol aqueous solution, and a pressure of 10 mm on the gas phase side. The binding is shown in Table 1.

実施例2 33%■ピアミン水溶液を、2%ポリエチレンイミン水
溶′a(J変えた以外は実施例1と同様にして!!!8
1膜した膜を実施例1と同様にして評価した結束を第1
表に小寸。
Example 2 33% Piamine aqueous solution was replaced with 2% polyethyleneimine aqueous solution'a (J was changed in the same manner as in Example 1!!!8
One film was evaluated in the same manner as in Example 1.
Small size on the front.

−1()− 実施例3 イソフタル酸りロライド1%ヘキリ−ン溶液を。-1()- Example 3 Isophthalic acid chloride 1% hekylene solution.

トリレンジイソシアネート1%ヘキサン溶液に変イソフ
タル酸クロライド1%ヘキサン溶液に変えた以外は実施
例2と同様にして製膜した膜を。
A membrane was formed in the same manner as in Example 2, except that the 1% hexane solution of tolylene diisocyanate was replaced with a 1% hexane solution of modified isophthalic acid chloride.

実施例1と同様にして評価した結果を第1表に示す。な
お、このようにして得られた膜の透過型電子顕微鏡写真
を第1図に示す。。
Table 1 shows the results of evaluation in the same manner as in Example 1. A transmission electron micrograph of the membrane thus obtained is shown in FIG. .

実施例5 メタフェニレンジアミンの2%水溶液を調製した。これ
とは別にトリメソイルクロライドの0.1%フレオンT
F溶液を調製した。
Example 5 A 2% aqueous solution of metaphenylenediamine was prepared. Apart from this, 0.1% Freon T of trimesoyl chloride
A F solution was prepared.

参考例1で作成したポリスルホン微多孔膜の単膜を2%
メタフェニレンジアミン水溶液に1分間浸漬した後、液
切りを30秒行なった。次にその膜をトリメソイルクロ
ライド溶液に10秒間浸漬」ノた後、液切りを行ない室
温で乾燥させた。このようにして得られた膜の浸透気化
法による分離性能を実施例1と同様にして測定した。そ
の結果を第1表に示す。またこの膜の透過型電子顕微鏡
写真を第2図に示す。非多孔層および多孔層が観察され
た。
2% of the single membrane of the polysulfone microporous membrane prepared in Reference Example 1
After being immersed in the metaphenylenediamine aqueous solution for 1 minute, the liquid was drained for 30 seconds. Next, the membrane was immersed in a trimesoyl chloride solution for 10 seconds, then drained and dried at room temperature. The separation performance of the thus obtained membrane by pervaporation method was measured in the same manner as in Example 1. The results are shown in Table 1. A transmission electron micrograph of this film is shown in FIG. Non-porous and porous layers were observed.

実施例6 フルフリルアルコール2重量部、硫酸2重ω部。Example 6 2 parts by weight of furfuryl alcohol, 2 parts by weight of sulfuric acid.

イソプロピルアルコール20重量部、ドデシル硫酸ナト
リウム0.7重量部、水75.3重聞部0混合溶液を調
整した。
A mixed solution of 20 parts by weight of isopropyl alcohol, 0.7 parts by weight of sodium dodecyl sulfate, and 75.3 parts by weight of water and 0 parts by weight was prepared.

参考例1で作成したポリスルホン微多孔膜の単膜を上記
混合溶液に15分間浸漬した後、1分間液切りを行なっ
た。次にその膜を150℃で15分間熱風循環乾燥器で
乾燥を行なった。このようにして得られた膜の浸透気化
法による分離性能を実施例1と同様にして測定した。そ
の結果を第1表に示した。
A single membrane of the polysulfone microporous membrane prepared in Reference Example 1 was immersed in the above mixed solution for 15 minutes, and then drained for 1 minute. Next, the membrane was dried at 150° C. for 15 minutes in a hot air circulating dryer. The separation performance of the thus obtained membrane by pervaporation method was measured in the same manner as in Example 1. The results are shown in Table 1.

実施例7 東し製PEC−1000膜の浸透気化法による分離性能
を、実施例1ど同様にして測定した。
Example 7 The separation performance of Toshi's PEC-1000 membrane by the pervaporation method was measured in the same manner as in Example 1.

その結果を第1表に示した。またこの膜の透過型電子類
m鏡写真を第3図に示す。非多孔性層と多孔性層を観察
することができる。
The results are shown in Table 1. Furthermore, a transmission type electron mirror photograph of this film is shown in FIG. A non-porous layer and a porous layer can be observed.

比較例1〜7 実施例1〜7で作成された複合膜について、それぞれの
膜の活性層側を原液側に向ける以外は実13− 第1表 *)αはα で表す。
Comparative Examples 1 to 7 Composite membranes prepared in Examples 1 to 7 were prepared in Table 1, except that the active layer side of each membrane was directed toward the stock solution side.

14−14-

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本願発明に係る複合膜の非多孔層付近の面
に垂直な断面の微細粒子構造を示す電子顕微鏡写真(9
0000倍)である。第1図は実施例4に、第2図は実
施例5に、第3図は実施例6にそれぞれ係るものである
。 特許出願人 工 業 技 術 院 長 15−
Figures 1 to 3 are electron micrographs (9
0000 times). FIG. 1 relates to Example 4, FIG. 2 to Example 5, and FIG. 3 to Example 6. Patent applicant Director of Institute of Industrial Technology 15-

Claims (1)

【特許請求の範囲】[Claims] 実質的に分離能を有さない多孔性層と該多孔性層と素材
の異なる非多孔性層を有する複合膜によりパーベーパレ
ーション法で混合液体を分離するに際して該混合液体を
多孔性層を経て非多孔性層を通過させることを特徴とす
る膜分離方法。
When a mixed liquid is separated by a pervaporation method using a composite membrane having a porous layer having substantially no separation ability and a non-porous layer made of a material different from the porous layer, the mixed liquid is passed through the porous layer. A membrane separation method characterized by passing through a non-porous layer.
JP58204937A 1983-11-02 1983-11-02 Membrane separation method Pending JPS6097003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204937A JPS6097003A (en) 1983-11-02 1983-11-02 Membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204937A JPS6097003A (en) 1983-11-02 1983-11-02 Membrane separation method

Publications (1)

Publication Number Publication Date
JPS6097003A true JPS6097003A (en) 1985-05-30

Family

ID=16498820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204937A Pending JPS6097003A (en) 1983-11-02 1983-11-02 Membrane separation method

Country Status (1)

Country Link
JP (1) JPS6097003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106504A (en) * 1983-11-14 1985-06-12 Daicel Chem Ind Ltd Separation of aqueous solution of organic substance using membrane
EP0543574A2 (en) * 1991-11-18 1993-05-26 Texaco Development Corporation Membrane separation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106504A (en) * 1983-11-14 1985-06-12 Daicel Chem Ind Ltd Separation of aqueous solution of organic substance using membrane
JPH0456653B2 (en) * 1983-11-14 1992-09-09 Daicel Chem
EP0543574A2 (en) * 1991-11-18 1993-05-26 Texaco Development Corporation Membrane separation process

Similar Documents

Publication Publication Date Title
US5658460A (en) Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying
JP3379963B2 (en) Reverse osmosis composite membrane and reverse osmosis treatment method of water using the same
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
US20080277334A1 (en) Process for Producing Semipermeable Composite Membrane
WO2013016574A1 (en) Method to improve forward osmosis membrane performance
US20080053893A1 (en) Semipermeable Composite Membrane and Process for Producing the Same
US6325218B1 (en) Polyion complex separation membrane with a double structure
JPS6410241B2 (en)
JPH0825539A (en) Production of composite semipermeable membrane
JPS6312310A (en) Production of semipermeable composite membrane
GB2218011A (en) Composite semipermeable membrane
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
JP3111539B2 (en) Method for producing composite semipermeable membrane
JPS6097003A (en) Membrane separation method
JP3681219B2 (en) Polysulfone porous separation membrane
JPH0790152B2 (en) Composite reverse osmosis membrane
JPS6028803A (en) Selective permeable membrane and its manufacture
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
JPH0114801B2 (en)
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JPS63123406A (en) Manufacture of semipermeable composite membrane
JPH08973A (en) Composite semipermeable membrane and its preparation
KR0123279B1 (en) Method for semipermeable composite membrane
JPH09239248A (en) Method for treatment of pervaporation membrane