JPS63123406A - Manufacture of semipermeable composite membrane - Google Patents

Manufacture of semipermeable composite membrane

Info

Publication number
JPS63123406A
JPS63123406A JP61270082A JP27008286A JPS63123406A JP S63123406 A JPS63123406 A JP S63123406A JP 61270082 A JP61270082 A JP 61270082A JP 27008286 A JP27008286 A JP 27008286A JP S63123406 A JPS63123406 A JP S63123406A
Authority
JP
Japan
Prior art keywords
membrane
composite membrane
thin film
super
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61270082A
Other languages
Japanese (ja)
Other versions
JPH07114944B2 (en
Inventor
Tetsuo Inoue
哲男 井上
Tadahiro Uemura
忠廣 植村
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61270082A priority Critical patent/JPH07114944B2/en
Publication of JPS63123406A publication Critical patent/JPS63123406A/en
Publication of JPH07114944B2 publication Critical patent/JPH07114944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Abstract

PURPOSE:To enhance the performance of a composite membrane by treating specifically a super-thin film in preparing a semipermeable composite membrane consisting of a porous substrate membrane and a super-thin film constituted mainly of crosslinking polypiperazine amide. CONSTITUTION:In preparing a semipermeable composite membrane consisting of a porous substrate made from polysulfone or the like as stock, having micropores of several tens - several thousands of Angstrom on its surface and a super-thin film of crosslinking polypiperazine amide prepared by the interface reaction of amine carrying two or more secondary amino radicals and a polyfunctional aromatic acid halide, said super-thin film is contacted with water solution containing chlorine of pH 1.0-10 in a state of no pressure difference between both faces of the membrane under the normal pressure giving penetrating flow to the membrane. As a result, the performance of the semipermeable composite membrane, thus prepared particularly salt elution eliminating ratio, can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液状混合物の成分を選択透過分離するための
半透性複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semipermeable composite membrane for permselectively separating components of a liquid mixture.

〔従来の技術〕[Conventional technology]

多孔性支持膜上に直接活性層を被膜した例として米国特
許第3.744.642号明細書、同第3.926.7
98号明細書、特開昭55−147106号公報、特開
昭53−pH10/16号公報、特開昭58−2430
3号公報などがあり、この型の複合膜は高透過水性を実
現しようとすると、活性層を非常に薄く塗るため、多孔
性支持膜のきず、あるいは異物などによって欠点を生じ
易く、一般にその工業的生産において、安定に再現性よ
く高性能膜を得るのが困難と言われている。
Examples of coating an active layer directly on a porous support membrane include U.S. Pat. No. 3.744.642 and U.S. Pat. No. 3.926.7.
Specification No. 98, JP-A-55-147106, JP-A-53-pH10/16, JP-A-58-2430
In order to achieve high water permeability with this type of composite membrane, the active layer is coated very thinly, so defects are likely to occur due to scratches on the porous support membrane or foreign matter, and it is generally difficult for the industry to achieve high water permeability. It is said that it is difficult to obtain high-performance membranes stably and reproducibly in commercial production.

しかし、耐塩素性、耐熱性、耐薬品性を有するとされて
いる膜が多く最近ピペラジンを芳香族多官能酸ハロゲン
化物で架橋した高透過性複合膜が提案され注目された。
However, there are many membranes that are said to have chlorine resistance, heat resistance, and chemical resistance, and recently a highly permeable composite membrane in which piperazine is crosslinked with an aromatic polyfunctional acid halide has been proposed and has attracted attention.

(例えば特表昭56−500062号公報、米国特許第
4.259.183号明細書、PBレポート8O−12
7574) また、このピペラジン系複合膜の改良も研究されている
。(例えば、特開昭59−179103号公報、特開昭
57−27101号公報、特開昭57−27102号公
報、特開昭57−5565公報) [発明が解決しようとする問題点] しかしながら、このピペラジン系複合膜は、低圧で高い
透過性を有するものの、塩化ナトリウムの排除率が50
%程度と低く脱塩プロセスでの実用上゛問題点があった
。特に、半導体の製造に用いられる超純水の製造用途に
は、この低排除率に由来する有機成分除去能力に問題で
あった。
(For example, Japanese Patent Publication No. 56-500062, U.S. Patent No. 4.259.183, PB Report 8O-12
7574) Improvements to this piperazine-based composite membrane are also being studied. (For example, JP-A-59-179103, JP-A-57-27101, JP-A-57-27102, JP-A-57-5565) [Problems to be solved by the invention] However, Although this piperazine-based composite membrane has high permeability at low pressure, the sodium chloride rejection rate is 50%.
There was a practical problem in the desalination process because it was as low as about 1.5%. Particularly, in the production of ultrapure water used in the production of semiconductors, there has been a problem in the ability to remove organic components due to this low rejection rate.

また、改良研究がされている複合膜も、上記の膜性能と
ほぼ同じであり、また、水の透過性が乏しくなるなど満
足のいくものが得られていなかった。
In addition, the composite membranes that have been studied for improvement have almost the same performance as the above-mentioned membranes, and also have poor water permeability, resulting in unsatisfactory results.

本発明者らはこのような半透性複合膜の性能向上につい
て鋭意検討した結果、本発明に到達したのである。
The present inventors have arrived at the present invention as a result of intensive studies on improving the performance of such semipermeable composite membranes.

[問題点を解決するための手段] 上記目的を達成するため本発明は下記の構成からなる。[Means for solving problems] In order to achieve the above object, the present invention consists of the following configuration.

すなわち、本発明は、多孔性支持膜と界面反応によって
得られる架橋ポリピペラジンアミドからなる超薄膜を有
する半透性複合膜を製造する際に、該超薄膜をpH’1
.O〜10の塩素含有水溶液に常圧で接触することを特
徴とする半透性複合膜の製造方法に関する。
That is, in the present invention, when producing a semipermeable composite membrane having an ultra-thin membrane made of cross-linked polypiperazine amide obtained by interfacial reaction with a porous support membrane, the ultra-thin membrane is adjusted to pH'1.
.. The present invention relates to a method for producing a semipermeable composite membrane, which is characterized by contacting with an aqueous solution containing chlorine of O to 10 at normal pressure.

本発明に使用される多孔性支持体膜とはその表面に数十
〜数〒オングストロームの微細孔を有する支持膜であっ
て、ポリスルホン、ポリ塩化ビニル、塩素化塩化ビニル
、ポリカーボネート、ポリアクリロニトリル、セルロー
ズエステル等を素材とする公知のものが含まれる。この
中、本発明には多孔性のポリスルホン支持膜が特に有効
である。
The porous support membrane used in the present invention is a support membrane having micropores of several tens to several angstroms on its surface, and is made of polysulfone, polyvinyl chloride, chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, cellulose. This includes known materials made from esters and the like. Among these, porous polysulfone support membranes are particularly effective in the present invention.

多孔性ポリスルホンの製膜はポリスルホンをジメチルホ
ルムアミド等の非プロトン性極性溶媒の溶液にして例え
ばポリエステル$1iIffからなる織物ま1は不織布
上に流延し、次いで実質的に水からなる媒体中で凝固(
ゲル化)する、いわゆる湿式製膜等によって行なう。こ
のようにして得られた多孔性ポリスルホンは表面には数
十〜数百オングストローム程度の大きさで表面から裏面
にいくほど大きくなる微細孔を有する。
Porous polysulfone membranes can be formed by casting polysulfone in a solution in an aprotic polar solvent such as dimethylformamide onto a nonwoven fabric, and then coagulating it in a medium consisting essentially of water. (
gelation), so-called wet film forming. The porous polysulfone thus obtained has micropores on the surface having a size of several tens to several hundred angstroms and increasing in size from the front surface to the back surface.

本発明において、界面反応によって得られる超薄膜は、
架橋ポリピペラジンアミドを主成分とするものであり、
該架橋ポリピペラジンアミドは2つ以上の2級アミノ基
を有するアミンと、多官能芳香族酸ハロゲン化物の界面
反応によって得ることができる。
In the present invention, the ultra-thin film obtained by interfacial reaction is
The main component is cross-linked polypiperazine amide,
The crosslinked polypiperazine amide can be obtained by an interfacial reaction between an amine having two or more secondary amino groups and a polyfunctional aromatic acid halide.

本発明゛において、ピペラジンは下記の構造式でまた、
1分子内に2級アミノ基を2個以上有する炭素数5〜1
5でかつ環構造を有する多官能アミンとは例えば次の構
造式で表わされるものである。
In the present invention, piperazine has the following structural formula and also has the following structural formula:
5 to 1 carbon atoms having two or more secondary amino groups in one molecule
The polyfunctional amine having 5 and a ring structure is, for example, represented by the following structural formula.

HO−CH2−CH(I)H、HO−CHp−CHz−
CHa−CNHこれらの内で特に好ましいのは、1.3
−ジー(4−ピペリジル)−プロパンulC)−t C
)+2>、−C>)lでおる。
HO-CH2-CH(I)H, HO-CHp-CHz-
CHa-CNH Particularly preferred among these is 1.3
-di(4-piperidyl)-propaneulC)-tC
)+2>, -C>)l.

ここで重要なことは、ピペラジンに対して1分子内に2
級アミノ基を2個以上有する環構造を有する多官能アミ
ンの比率であり、重量比としてピペラジン1に対して0
.05〜0.7であることが好ましく、ざらには0.1
〜0.5であることが、膜性能の脱塩率、造水量のバラ
ンスから考えて好ましい。
What is important here is that for piperazine, 2
It is the ratio of polyfunctional amine having a ring structure having two or more grade amino groups, and the weight ratio is 0 to 1 piperazine.
.. It is preferable that it is 05 to 0.7, and roughly 0.1
-0.5 is preferable in view of the balance between membrane performance, desalination rate, and amount of water produced.

また、多官能試薬とは、該2級アミンと反応して、架橋
ポリアミドまたはポリウレアを形成することのできるも
のであればいずれでもよく、例えば、トリメシン酸ハラ
イド、ベンゾフェノンテトラカルボン酸ハライド、トリ
メリット酸ハライド、ビロメット酸ハライド、イソフタ
ル酸ハライド、テレフタル酸ハライド、ナフタレンジカ
ルボン酸ハライド、ジフェニルジカルボン酸ハライド、
ピリジンジカルボン酸ハライド、ベンゼンジスルホン酸
ハライド、ベンゼンジスルホン酸ハライド、トリレンジ
イソシアネート、ビス(P−イソシアネートフェニル〉
メタンなどが挙げられるが、製膜溶媒に対する溶解性及
び複合逆浸透膜の性能を考慮するとトリメシン酸クロラ
イド、イソフタル酸クロライド、テレフタル酸クロライ
ドおよびこれらの混合物が好ましく、特に耐久性の面か
らは架橋構造の導入の点でトリメシン酸クロライドが好
ましい。
The polyfunctional reagent may be any agent that can react with the secondary amine to form a crosslinked polyamide or polyurea, such as trimesic acid halide, benzophenone tetracarboxylic acid halide, trimellitic acid halide, etc. Halide, birometic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalene dicarboxylic acid halide, diphenyldicarboxylic acid halide,
Pyridinedicarboxylic acid halide, benzenedisulfonic acid halide, benzenedisulfonic acid halide, tolylene diisocyanate, bis(P-isocyanate phenyl)
Examples include methane, but trimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and mixtures thereof are preferred from the viewpoint of solubility in the membrane forming solvent and performance of the composite reverse osmosis membrane.In particular, from the viewpoint of durability, crosslinked structures are preferred. Trimesoyl chloride is preferred in terms of the introduction of.

本発明の複合逆浸透膜は前記ピペラジン、環構造を有す
る2級アミンを主成分として含有する水溶液(以下総称
して組成物という)を多孔性支持膜の少なくとも片面に
被覆し、次いで風乾及び/又は加熱処理により、水の一
部又は全部を蒸発させた後、水と非混和性で、多孔性支
持膜を溶解することのない溶媒に溶解した多官能試薬を
主成分とした溶液を塗布し、架橋反応を行わせた後、乾
燥することによって得られる。
In the composite reverse osmosis membrane of the present invention, at least one side of a porous support membrane is coated with an aqueous solution (hereinafter collectively referred to as a composition) containing the piperazine and a secondary amine having a ring structure as main components, and then air-dried and/or Alternatively, after evaporating some or all of the water by heat treatment, a solution mainly composed of a polyfunctional reagent dissolved in a solvent that is immiscible with water and does not dissolve the porous support membrane is applied. , obtained by carrying out a crosslinking reaction and then drying.

本発明の複合逆浸透膜を得る組成物の成分濃度は該ピペ
ラジン、環構造を有する2級アミンについては、0.1
〜10重量%、好ましくは1〜4重量%であり、ピペラ
ジンと環構造を有する2級アミンの組成比は、ピペラジ
ン1重ω部に対し、環構造を有する2級アミンが0.1
〜0.5重量部であることが膜性能の面から好ましい。
The component concentration of the composition for obtaining the composite reverse osmosis membrane of the present invention is 0.1 for the piperazine and the secondary amine having a ring structure.
-10% by weight, preferably 1-4% by weight, and the composition ratio of piperazine and secondary amine having a ring structure is 0.1% by weight of the secondary amine having a ring structure per 1-fold ω part of piperazine.
The amount is preferably 0.5 parts by weight from the viewpoint of membrane performance.

更に組成物が多孔性支持膜表面に濡れ性を向上させ、均
一に付着させるために界面活性剤を加えると効果があり
、中でもアニオン系の界面活性剤が好ましく、ドデシル
硫酸ナトリウム、アルキルベンゼンスルホン酸ナトリウ
ムなどから選ぶことができるが、アルキルジフェニルエ
ーテルジスルホン酸ナトリウムが特に良好な膜性能のも
のを得る上で有効である。その界面活性剤としては一般
に0.01〜2重量%程度用いると良い。これらの組成
物には多孔性支持膜を劣化させない水溶性有機溶媒を加
えても良い。また、アルカリ性金属化合物、例えばリン
酸ナトリウムを加えるとさらに効果を増すことがある。
Furthermore, it is effective to add a surfactant to improve the wettability of the composition to the surface of the porous support membrane and make it adhere uniformly.Among them, anionic surfactants are preferred, such as sodium dodecyl sulfate and sodium alkylbenzene sulfonate. Although sodium alkyl diphenyl ether disulfonate is particularly effective in obtaining a membrane with good performance. The surfactant is generally preferably used in an amount of about 0.01 to 2% by weight. A water-soluble organic solvent that does not deteriorate the porous support membrane may be added to these compositions. Additionally, the effect may be further enhanced by adding an alkaline metal compound, such as sodium phosphate.

また、該多官能試薬としては通常0.01〜2.0重量
%をn−ヘキサン又はトリクロロトリフルオロエタン等
に溶解して用いる。
The polyfunctional reagent is usually used by dissolving 0.01 to 2.0% by weight in n-hexane, trichlorotrifluoroethane, or the like.

多孔性支持膜への組成物の被覆には公知の塗イ5手段が
いずれも適用可能であり、例えば、支持膜の上に組成物
をコーティングする方法、支持膜を組成物に浸漬する方
法などが挙げられる。これらのうち、組成物をコーティ
ングする方法は多孔性支持膜の片面に均一に被覆するこ
とができ、また作業性の面からも好ましい。多孔性支持
膜を組成物に浸漬する方法で行なう場合には、被覆工程
で予め、多孔性支持膜の他の片面に組成物が付着しない
ような手段をとることが好ましい。このような被覆工程
で余分な組成物を除去するための液切り工程を設けるの
が一般的である。液切りの方法としては例えば膜面を垂
直方向に保持して自然流下させる方法等がある。
Any of the five known coating methods can be applied to coating the porous support membrane with the composition, such as coating the composition on the support membrane, dipping the support membrane in the composition, etc. can be mentioned. Among these methods, the method of coating the composition is preferable from the viewpoint of uniform coating on one side of the porous support membrane, and also from the viewpoint of workability. When the porous support membrane is immersed in the composition, it is preferable to take measures in advance to prevent the composition from adhering to the other side of the porous support membrane in the coating step. In such a coating process, a draining process is generally provided to remove excess composition. As a method for draining the liquid, for example, there is a method of holding the membrane surface vertically and allowing it to flow down by gravity.

被覆した多孔性支持膜の乾燥には、風乾又は加熱乾燥器
等を用いて通常、室温〜150℃の範囲、時間はその方
法、つまり熱の導入法又は乾燥器の形式によって、乾燥
速度が異なるので、それらに合せて1〜60分間の範囲
で選択する。ざらに多官能試薬の水と非混和性溶液を塗
布し液切り後、風乾または加熱処理して半透膜を得る。
The coated porous support membrane is dried using air drying or a heated dryer, etc., usually in the range of room temperature to 150°C, and the drying speed varies depending on the method, that is, the heat introduction method or the type of dryer. Therefore, select a time period of 1 to 60 minutes accordingly. A water-immiscible solution of a polyfunctional reagent is applied to a colander, the liquid is drained off, and a semipermeable membrane is obtained by air drying or heat treatment.

この乾燥工程は通常、室温〜150℃の範囲で行ない、
時間は温度に応じて決定する。このようにして、架橋ポ
リピペラジンアミドの超薄膜が形成する。
This drying step is usually carried out at a temperature ranging from room temperature to 150°C,
The time is determined depending on the temperature. In this way, an ultra-thin film of cross-linked polypiperazine amide is formed.

この超薄膜をpH1,0〜10の塩素含有水溶液に浸漬
すると、得られた半透性複合膜の性能、特に溶出排除率
が向上する。塩素発生試薬としては、塩素ガス、サラシ
粉、次亜塩素酸ナトリウム、二酸化塩素、クロラミンB
1クロラミンT1ハラゾーン、ジクロロジメチルヒダン
トイン、塩素化イソシアヌル酸およびその塩などを代表
例として挙げることができ、酸化力の強さによって濃度
を決定することが好ましい。上記の塩素発生試薬の中で
、次亜塩素酸ナトリウム水溶液が、取り扱い性の点から
好ましい。塩素含有水溶液の酸化力とpHの間には重要
な関係があり、IIがアルカリ側になるほど、酸化力が
弱くなる。これは酸化力の強い次亜塩素酸(HCαO)
がpHによって、その存在状態が変化するためである。
When this ultra-thin membrane is immersed in a chlorine-containing aqueous solution with a pH of 1.0 to 10, the performance of the resulting semipermeable composite membrane is improved, particularly the elution exclusion rate. Chlorine generating reagents include chlorine gas, salami powder, sodium hypochlorite, chlorine dioxide, and chloramine B.
Typical examples include chloramine T1 halazone, dichlorodimethylhydantoin, chlorinated isocyanuric acid and its salts, and the concentration is preferably determined depending on the strength of oxidizing power. Among the above-mentioned chlorine generating reagents, a sodium hypochlorite aqueous solution is preferred from the viewpoint of ease of handling. There is an important relationship between the oxidizing power and pH of a chlorine-containing aqueous solution, and the more alkaline II is, the weaker the oxidizing power becomes. This is hypochlorous acid (HCαO), which has strong oxidizing power.
This is because its state of existence changes depending on the pH.

次亜塩酸はH+とCQO−に解離する。この解離はpH
に影響され、p)−19以上では、はとんど次亜塩素酸
は次亜塩素酸イオンとして存在し、pH6.5では約9
0%が解離しない次亜塩素酸として存在する。
Hypochlorite dissociates into H+ and CQO-. This dissociation occurs at pH
At pH 6.5, hypochlorous acid mostly exists as hypochlorite ion at p) -19 or higher, and at pH 6.5 it is approximately 9
0% is present as undissociated hypochlorous acid.

本発明において好ましい塩素処理はトICQOによって
生ずると考えられ、pHl0以上では実質的にHCrL
Oが存在せず好ましくない。またpHが高ければ、アミ
ド結合の加水分解が生じ、超薄膜が損傷を受けるためp
H13以下、好ましくはpH10以下の塩素含有水溶液
が好適に用いられる。
In the present invention, the preferable chlorination treatment is thought to be caused by ICQO, and at pH 10 or higher, substantially HCrL
O is not present and is not preferred. In addition, if the pH is high, hydrolysis of amide bonds will occur and the ultra-thin film will be damaged.
A chlorine-containing aqueous solution having a pH of 13 or less, preferably 10 or less is suitably used.

また本発明においては、塩素処理は常圧で行なう必要が
おる。常圧とは、膜に対して透過流を与えるような、膜
の両面の圧力差がないことを意味し、単に大気圧のもと
に処理を行なうことを意味していない。例えば、膜の両
面の圧力が等しく加圧されていれば問題はない。しかし
ながら塩素処理は膜を塩素含有水溶液に単に浸漬するだ
けでよく、この点を考えれば、特にオートクレーブ中な
どで加圧する必要はない。
Further, in the present invention, the chlorine treatment must be carried out at normal pressure. Atmospheric pressure means that there is no pressure difference between the two sides of the membrane that would provide a permeate flow to the membrane, and does not simply mean that the process is carried out under atmospheric pressure. For example, there is no problem if the pressure on both sides of the membrane is equal. However, the chlorine treatment can be carried out by simply immersing the membrane in a chlorine-containing aqueous solution, and considering this point, there is no need to apply pressure in an autoclave or the like.

また膜の両面に圧力差が存在し、水を透過しながら塩素
処理すると、一般に水透過性が減少して好ましくないが
、圧力差がO〜1.2kq/CITVで水透過速度が無
視できる程度であれば、特に問題は生じない。
In addition, there is a pressure difference on both sides of the membrane, and if water is permeated while being treated with chlorine, the water permeability will generally decrease, which is undesirable. If so, no particular problem will occur.

塩素処理を行なうと、溶出排除率が向上する。Chlorination improves the elution exclusion rate.

また、水透過性は、実用性に問題にならない程度に減少
する。塩素処理を行わない半透性複合膜と比較して、有
機成分排除率が向上し、水の透過性の経時における劣化
の度合が軽減される。この理由は、生成した架橋ポリピ
ペラジンアミドは完全にアミド結合のみで結合しておら
ず、一部に2級アミン末端基(>NH>が生じている。
In addition, water permeability is reduced to such an extent that it does not pose a problem for practical use. Compared to a semipermeable composite membrane without chlorination, the organic component rejection rate is improved and the degree of deterioration of water permeability over time is reduced. The reason for this is that the produced crosslinked polypiperazine amide is not completely bonded only through amide bonds, but has secondary amine terminal groups (>NH>) in some parts.

塩素処理を行なうことによって2級アミン末端基がクロ
ルアミン(>NCQ)に変化し、さらに分解して減少す
るため、超薄膜層の分子構造が安定化するものと考えら
れる。
It is thought that by performing the chlorine treatment, the secondary amine terminal group changes to chloramine (>NCQ), which is further decomposed and reduced, thereby stabilizing the molecular structure of the ultra-thin film layer.

塩素処理剤として、次亜塩素酸ナトリウムを使用する場
合遊離塩素の濃醍は10〜2oooppm。
When using sodium hypochlorite as a chlorination agent, the concentration of free chlorine is 10 to 2 oooppm.

膜性能のバランスを考えると、100〜1000ppm
の範囲が好ましい。
Considering the balance of membrane performance, 100 to 1000 ppm
A range of is preferred.

塩素処理時間は2分〜20時間、遊離塩素濃度が低く、
処理pHが高い場合、処理時間は長時間が好ましく、逆
に遊離塩素濃度高く、処理pHが低い場合、処理時間は
短時間が好ましい。
Chlorination time is 2 minutes to 20 hours, free chlorine concentration is low,
When the treatment pH is high, a long treatment time is preferred; on the other hand, when the free chlorine concentration is high and the treatment pH is low, a short treatment time is preferred.

[実施例] 以下に実施例により具体的に説明するが、本発明はこれ
らに限定されるものではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited thereto.

以下の実施例において、選択分離性能として、食塩の排
除率は電気伝導度の測定による通常の手段によって決定
された。
In the following examples, the rejection rate of common salt as selective separation performance was determined by conventional means by measuring electrical conductivity.

また、透過性能として、水透過速度は単位面積、単位時
間当りの水の透過量で決定した。ざらに、次式で定義さ
れるmを用いて透過性能の劣化の度合を示した。
In addition, as permeation performance, the water permeation rate was determined by the amount of water permeation per unit area and unit time. Roughly speaking, the degree of deterioration of the transmission performance was shown using m defined by the following formula.

log  (J2/Jl) 10(]  (T2/TI ) Jl:Tt待時間後水の透過量 J2 :T2時間後の水の透過量  T2 >TI参考
例 タテ30cm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニール
のマルチフィラメント糸、織密度タテ90本/インヂ、
ヨコ67本/インチ、厚さ160μ)をガラス板上に固
定し、その上にポリスルホン(ユニオン・カーバイト社
製の商品名Udel P−3500>の16重母%ジメ
チルホルムアミド(DMF)溶液を200μの厚みで室
温(20’C)でキャストし、ただちに純水中に浸漬し
て5分間放置することによって繊維補強ポリスルホン支
持膜(以下FR−PS支持膜と略す)を作製する。
log (J2/Jl) 10(] (T2/TI) Jl: Amount of water permeated after Tt waiting time J2: Amount of water permeated after T2 hours T2 > TI reference example Polyester fiber with a size of 30 cm vertically and 20 cm horizontally Taffeta (multifilament yarn of 150 denier both warp and weft, weave density 90 pieces/inch)
A 16% dimethylformamide (DMF) solution of polysulfone (manufactured by Union Carbide, trade name: Udel P-3500) was fixed at 200 μm on a glass plate. A fiber-reinforced polysulfone support membrane (hereinafter abbreviated as FR-PS support membrane) is produced by casting the membrane at room temperature (20'C) to a thickness of 200C, immediately immersing it in pure water, and leaving it for 5 minutes.

このようにして得られたFR−PS支持膜(厚さく21
0〜215μ)の純水透過係数は、圧力1kpH/cl
TfS温度25°Cで測定して09OO5〜0゜01 
CI/cJ −sec −atmであった。
The FR-PS support film thus obtained (thickness: 21
0~215μ) pure water permeability coefficient at a pressure of 1kpH/cl
Measured at TfS temperature 25°C 09OO5~0°01
CI/cJ-sec-atm.

実施例1〜4、比較例1 参考例によって得られるFR−PS支持膜にピペラジン
1.0重量%、1,3−ジー(4−ピペリジル)−プロ
パン0.2重量%、アルキルジフェニルエーテルジスル
ホン酸ナトリウム0.5重重%、リン酸三ナトリウム1
.0重量%含んだ水溶液(組成物)を塗布し、70’C
の熱風で1分間乾燥した。
Examples 1 to 4, Comparative Example 1 1.0% by weight of piperazine, 0.2% by weight of 1,3-di(4-piperidyl)-propane, and sodium alkyl diphenyl ether disulfonate were added to the FR-PS support membrane obtained in the reference example. 0.5% by weight, trisodium phosphate 1
.. Apply an aqueous solution (composition) containing 0% by weight and heat at 70'C.
It was dried with hot air for 1 minute.

しかる後にトリクロロトリフルオロエタンにイソフタル
酸クロライドとトリメシン酸クロライドの混合物(重母
比4:1)を0.5重量/容積%溶解した溶液を塗布し
、その後100’Cの熱風で5分間処理した。
Thereafter, a solution of 0.5% by weight/volume of a mixture of isophthalic acid chloride and trimesic acid chloride (dew ratio 4:1) dissolved in trichlorotrifluoroethane was applied, and then treated with hot air at 100'C for 5 minutes. .

このようにして得られた複合膜を表1に示す遊離塩素を
含有しpH7,0に調整した水溶液に5分間浸漬した復
、水通水で洗浄した。次いでこの複合膜をpH6,5に
調整した5 00 pl)mの食塩水を原水として7.
5kMo(,25℃条件下で20時間逆浸透テストを行
なった結果、表1に示した膜性能が得られた。
The composite membrane thus obtained was immersed for 5 minutes in an aqueous solution containing free chlorine and adjusted to pH 7.0 as shown in Table 1, and then washed with running water. 7. Next, this composite membrane was treated with 500 pl)m of saline solution adjusted to pH 6.5 as raw water.
As a result of performing a reverse osmosis test for 20 hours under conditions of 5kMo(, 25°C), the membrane performance shown in Table 1 was obtained.

実施例5〜8、比較例2 実施例1〜4において、遊離塩素濃度500pl)mの
水溶液を用いて、表2に示すI)Hに調整した水溶液に
5分間浸漬した。他は同様にして1qだ複合膜の性能を
示す。
Examples 5 to 8, Comparative Example 2 In Examples 1 to 4, the samples were immersed for 5 minutes in an aqueous solution adjusted to I)H shown in Table 2 using an aqueous solution with a free chlorine concentration of 500 pl)m. The other properties show the performance of the 1q composite membrane in the same manner.

実施例9〜pH 実施例1〜3において、遊離塩素濃度500pl)m、
I)810に調整した水溶液に表3に示す時間浸漬し、
伯は同様にして得た複合膜の性能を示す。
Example 9 - pH In Examples 1 to 3, the free chlorine concentration was 500 pl) m,
I) immersed in an aqueous solution adjusted to 810 for the time shown in Table 3,
The numbers indicate the performance of composite membranes obtained in the same manner.

実施例12 実施例3、比較例1で得られた複合膜を用いて、実施例
1〜4、比較例1と同じ条件下で200時間逆浸透テス
トを行なった。結果を表4に示す。
Example 12 Using the composite membranes obtained in Example 3 and Comparative Example 1, a reverse osmosis test was conducted for 200 hours under the same conditions as Examples 1 to 4 and Comparative Example 1. The results are shown in Table 4.

実施例13 実施例3、比較例1で得られた複合膜を用いて、ioo
oppmのイソプロピルアルコールを原水とし7.5k
(J/cnf、25℃の条件下で20時間逆浸透テスト
を行なった。結果を表5に示す。
Example 13 Using the composite membrane obtained in Example 3 and Comparative Example 1, ioo
7.5k using oppm isopropyl alcohol as raw water
(J/cnf, reverse osmosis test was conducted for 20 hours under the conditions of 25°C. The results are shown in Table 5.

実施例14、比較例3 実施例3、比較例1の組成物中の1,3−ジー(4−ピ
ペリジル)−プロパンを0重1%とし、他は同様にして
複合膜を得た。膜性能を表6に示す。
Example 14, Comparative Example 3 A composite membrane was obtained in the same manner except that 1,3-di(4-piperidyl)-propane in the composition of Example 3 and Comparative Example 1 was adjusted to 0% by weight and 1%. Membrane performance is shown in Table 6.

表1 表2 表5 表6 [発明の効果] 本発明においては、従来の複合膜の製造法に比較して塩
排除率が10%向上し、ざらには有機成分排除率が向上
し、水透過性の劣化の度合が小さい膜を提供することが
できるようになった。
Table 1 Table 2 Table 5 Table 6 [Effects of the invention] In the present invention, the salt rejection rate is improved by 10% compared to the conventional composite membrane manufacturing method, and the organic component rejection rate is improved, and the water It is now possible to provide a membrane with a small degree of permeability deterioration.

Claims (1)

【特許請求の範囲】[Claims] 多孔性支持膜と、界面反応によつて得られる架橋ポリピ
ペラジンアミドを主成分としてなる超薄膜とを有する半
透性複合膜を製造する際に、該超薄膜をpH1.0〜1
0の塩素含有水溶液に常圧で接触することを特徴とする
半透性複合膜の製造方法。
When producing a semipermeable composite membrane having a porous support membrane and an ultra-thin membrane mainly composed of cross-linked polypiperazine amide obtained by interfacial reaction, the ultra-thin membrane is heated to pH 1.0 to 1.
1. A method for producing a semipermeable composite membrane, which comprises contacting an aqueous solution containing 0 chlorine at normal pressure.
JP61270082A 1986-11-13 1986-11-13 Method for manufacturing semipermeable composite membrane Expired - Fee Related JPH07114944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270082A JPH07114944B2 (en) 1986-11-13 1986-11-13 Method for manufacturing semipermeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270082A JPH07114944B2 (en) 1986-11-13 1986-11-13 Method for manufacturing semipermeable composite membrane

Publications (2)

Publication Number Publication Date
JPS63123406A true JPS63123406A (en) 1988-05-27
JPH07114944B2 JPH07114944B2 (en) 1995-12-13

Family

ID=17481278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270082A Expired - Fee Related JPH07114944B2 (en) 1986-11-13 1986-11-13 Method for manufacturing semipermeable composite membrane

Country Status (1)

Country Link
JP (1) JPH07114944B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334280A (en) * 1999-05-27 2000-12-05 Nitto Denko Corp Production of multiple reverse osmosis membrane
JP2002095938A (en) * 2000-09-21 2002-04-02 Toyobo Co Ltd Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in
CN104307380A (en) * 2014-10-31 2015-01-28 苏州腾纳环保科技有限公司 Reverse osmosis composite membrane
CN108970425A (en) * 2018-08-23 2018-12-11 师帅帅 A kind of high-salt wastewater processing polymer film and preparation method thereof
WO2019054119A1 (en) 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334280A (en) * 1999-05-27 2000-12-05 Nitto Denko Corp Production of multiple reverse osmosis membrane
JP2002095938A (en) * 2000-09-21 2002-04-02 Toyobo Co Ltd Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in
JP4543296B2 (en) * 2000-09-21 2010-09-15 東洋紡績株式会社 Composite semipermeable membrane, method for producing the same, and composite semipermeable membrane separation element incorporating the same
CN104307380A (en) * 2014-10-31 2015-01-28 苏州腾纳环保科技有限公司 Reverse osmosis composite membrane
WO2019054119A1 (en) 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same
CN111050891A (en) * 2017-09-15 2020-04-21 日东电工株式会社 Composite semipermeable membrane and method for producing same
KR20200053549A (en) 2017-09-15 2020-05-18 닛토덴코 가부시키가이샤 Composite semipermeable membrane and manufacturing method thereof
EP3682964A4 (en) * 2017-09-15 2021-06-16 Nitto Denko Corporation Composite semipermeable membrane and method for manufacturing same
CN108970425A (en) * 2018-08-23 2018-12-11 师帅帅 A kind of high-salt wastewater processing polymer film and preparation method thereof

Also Published As

Publication number Publication date
JPH07114944B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPH0568293B2 (en)
JPH051051B2 (en)
JPH0374128B2 (en)
JPS63218208A (en) Composite semipermeable membrane and its production
JPH0380049B2 (en)
JPH0565213B2 (en)
JPS63123406A (en) Manufacture of semipermeable composite membrane
JP3111539B2 (en) Method for producing composite semipermeable membrane
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP2000093771A (en) Fluid separation membrane and its manufacture
KR960004616B1 (en) Composite semipermeable membrane and the production thereof
CN112755806A (en) Chlorine-resistant reverse osmosis membrane and preparation method thereof
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
JPS62213806A (en) Semi-permeable composite membrane
JP2505440B2 (en) Method for manufacturing semipermeable composite membrane
JP3106595B2 (en) Method for producing composite membrane for reverse osmosis method
JPS62262712A (en) Production of semipermeable membrane
JP3132090B2 (en) Method for producing composite membrane for reverse osmosis method
JP2682038B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP2003117360A (en) Method for manufacturing semipermeable membrane
JPS62180709A (en) Production of semipermeable composite membrane
JPS62279809A (en) Production of semipermeable composite membrane
JPH11179175A (en) Production of composite separation membrane
JPH07114941B2 (en) Method for manufacturing semipermeable composite membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees