JPS63218208A - Composite semipermeable membrane and its production - Google Patents

Composite semipermeable membrane and its production

Info

Publication number
JPS63218208A
JPS63218208A JP62050681A JP5068187A JPS63218208A JP S63218208 A JPS63218208 A JP S63218208A JP 62050681 A JP62050681 A JP 62050681A JP 5068187 A JP5068187 A JP 5068187A JP S63218208 A JPS63218208 A JP S63218208A
Authority
JP
Japan
Prior art keywords
membrane
aromatic amine
composite semipermeable
polyfunctional
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050681A
Other languages
Japanese (ja)
Inventor
Toshihiro Ikeda
池田 敏裕
Tadahiro Uemura
忠廣 植村
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62050681A priority Critical patent/JPS63218208A/en
Publication of JPS63218208A publication Critical patent/JPS63218208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled membrane having high desalting and water- penetrating properties, by bringing to an interfacial polycondensation of an aromatic amine contg. more than a prescribed number of amino groups in a molecule and an alicyclic acid halogenide contg. more than a prescribed number of halogenated carbonyl groups in a molecule. CONSTITUTION:A fiber reinforced polysulfone supporting membrane is dipped in an aqueous solution mixed the another aromatic amine such as methaphenylene diamine, etc., with the polyfunctional aromatic amine contg. >=3 amino groups in one molecule, such as 1,3,5-triaminobenzene, etc. The surface of the obtd. membrane is coated with a trichlorofluoroethane solution of the alicyclic halogenide contg. >=2 halogenated carbonyl groups in one molecule such as 1,3,5-cyclohexane tricaboxylic chloride, etc., after draining said aqueous solution from the obtd. membrane. And, then, the obtd. film is washed an alkaline aqueous solution, such as sodium carbonate, etc., thereby obtaining the titled membrane coated with the hyper-thin membrane layer of polyamide on the supporting membrane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液状混合物の選択分離、特に、カン水や海水
の脱塩に有用な複合半透膜およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite semipermeable membrane useful for selective separation of liquid mixtures, particularly for desalination of canned water and seawater, and a method for producing the same.

[従来の技術] 多官能芳香族アミンと多官能酸ハロゲン化物との界面重
縮合反応によってj9られるポリアミドからなる超薄膜
層を微多孔性支持膜上に被覆してなる複合半透膜は、透
過性や選択分離性の高い逆浸透膜として注目されている
。多官能の芳香族アミンと多官能の芳香族酸ハロゲン化
物とを界面重縮合反応させるものとしては、例えば、特
開昭55−147106号公報がこれまでに知られてお
り、2官能の芳香族アミンと3官能の脂環式酸ハロゲン
化物とを界面重縮合反応させる一bのとしては、例えば
、特開昭61−42302号公報がこれまでに知られて
いる。
[Prior Art] A composite semipermeable membrane is made by coating a microporous support membrane with an ultra-thin film layer made of polyamide produced by an interfacial polycondensation reaction between a polyfunctional aromatic amine and a polyfunctional acid halide. It is attracting attention as a reverse osmosis membrane with high performance and selective separation. For example, JP-A-55-147106 has been known as an interfacial polycondensation reaction between a polyfunctional aromatic amine and a polyfunctional aromatic acid halide; For example, JP-A-61-42302 has been known as a method for carrying out an interfacial polycondensation reaction between an amine and a trifunctional alicyclic acid halide.

[発明が解決しようとする問題点] しかしながら、これらの膜は、実用的な逆浸透膜に要求
される、高透過f1、高選択分離性をはじめ、耐熱性、
耐薬品性、耐122素性などの条件を充分に満たすしの
ではなかった。
[Problems to be solved by the invention] However, these membranes do not have the high permeability f1, high selective separation, heat resistance, etc. required for practical reverse osmosis membranes.
It did not fully satisfy conditions such as chemical resistance and 122 element resistance.

本発明は、これら膜性能の向上、’44Iに高い脱塩↑
(1、高い水透過性を有する複合半透膜おJ−びぞの製
造方法を提供Jることをに1的とする。
The present invention aims to improve these membrane performances and achieve high desalination in '44I↑
(1. One object of the present invention is to provide a method for manufacturing a composite semipermeable membrane having high water permeability.

[に1的を解決するための手段] 上記目的を達成ηるため本発明は下記の構成を有する。[Means to solve the problem] In order to achieve the above object, the present invention has the following configuration.

Jなわも、本発明は、 1−  (1>  多官能芳香族アミンと多官能酸ハロ
ゲン化物との界面重縮合によって1qられるポリアミド
からなる超薄膜層を微多孔性支持膜上に被覆してムる複
合ニド透膜において、多官能芳香族アミン成分として一
分子中に3個以上のアミノ以を有する芳香族アミンを含
有し、かつ、多官能酸ハロゲン化物成分として一分子中
に2個以上のハロゲン化カルボニル基を有する脂環式酸
ハロゲン化物を含0)ることを特徴とする複合半透膜。
J Nawamo, the present invention provides a method of forming a membrane by coating a microporous support membrane with an ultra-thin film layer made of polyamide produced by interfacial polycondensation of 1-(1> polyfunctional aromatic amine and polyfunctional acid halide). The composite Nido permeable membrane contains an aromatic amine having three or more amino acids in one molecule as a polyfunctional aromatic amine component, and contains two or more aromatic amines in one molecule as a polyfunctional acid halide component. 1. A composite semipermeable membrane comprising an alicyclic acid halide having a halogenated carbonyl group.

(2)  界面重縮合により、複合半透膜を得る方法に
おいで、微多孔性支持膜上に、3官能以上の芳香族アミ
ンを含有する水溶液を塗布し、次いで、該膜上に、2官
能以上の脂環式酸ハロゲン化物を含有する、水と非混和
性の有機溶媒溶液を塗イ[することにより超薄膜を形成
することを特徴とする複合半透膜の製造方法。」 に関する。
(2) In a method of obtaining a composite semipermeable membrane by interfacial polycondensation, an aqueous solution containing a trifunctional or higher-functional aromatic amine is applied onto a microporous support membrane, and then a bifunctional aromatic amine is applied onto the membrane. A method for producing a composite semipermeable membrane, which comprises forming an ultra-thin film by coating a water-immiscible organic solvent solution containing the above alicyclic acid halide. ” regarding.

本発明の複合半透膜は、実質的に分離性能を有する超薄
膜層が、実質的に分離性能を有ざない微多孔性支持膜上
に被覆されてなり、該超薄膜層は、多官能芳香族アミン
と多官能酸ハロゲン化物との界面重縮合によって得られ
る架橋ポリアミドからなる。
The composite semipermeable membrane of the present invention is comprised of an ultra-thin film layer having substantially separation performance coated on a microporous support membrane having substantially no separation performance, and the ultra-thin film layer having a polyfunctional It consists of a crosslinked polyamide obtained by interfacial polycondensation of an aromatic amine and a polyfunctional acid halide.

多官能芳香族アミンとは、−分子中に2個以上のアミノ
基を有する芳香族アミンであり、本発明はこの多官能芳
香族アミンとして一分子中に3個以上のアミノ基を有す
る芳香族アミンを含有することを特徴とする。3官能以
上のアミンとしては例えば1,3.5−トリアミノベン
ゼンを用いることができる。上記3官能以上の芳香族ア
ミンは単独で用いることしできるが、他の芳香族アミン
との混合物として用いても良い。この場合、混和するア
ミンは任意のアミンを選ぶことができるが、好ましくは
m−71ニレンジアミンを混和さけると、脱塩率、透水
性ともに向上し良好な膜性能を与える。
A polyfunctional aromatic amine is an aromatic amine having two or more amino groups in one molecule, and the present invention uses an aromatic amine having three or more amino groups in one molecule as this polyfunctional aromatic amine. It is characterized by containing an amine. As the trifunctional or higher functional amine, for example, 1,3,5-triaminobenzene can be used. The above trifunctional or higher functional aromatic amine can be used alone, but may also be used as a mixture with other aromatic amines. In this case, any amine can be selected as the amine to be mixed, but it is preferable to avoid mixing m-71 nylene diamine, as this will improve both the salt removal rate and water permeability, giving good membrane performance.

多官能酸ハロゲン化物とは、2つ以上のハロゲンを有す
るハロゲンであり、上記多官能芳香族アミンとの界面重
縮合反応によりポリアミドを与えるしのであるが、本発
明では、−分子中に2個以上のハロゲン化カルボニル基
を有する脂環式酸ハト1ゲン化物を含有することを特徴
とする。該多官能脂環式酸ハロゲン化物として、例えば
、1,3.5−シフ[lベキ1ナントリカルボン酸、1
,3−シクロヘキリーンジカルボン酸、1,4−シクロ
ヘキリンジカルボン酸等の酸ハロゲン化物を用いること
ができる。
A polyfunctional acid halide is a halogen having two or more halogens, and provides a polyamide through an interfacial polycondensation reaction with the above-mentioned polyfunctional aromatic amine. It is characterized by containing an alicyclic acid dove monogenide having the above halogenated carbonyl group. As the polyfunctional alicyclic acid halide, for example, 1,3.5-Schiff[l-power 1-nantricarboxylic acid, 1
, 3-cyclohekylenedicarboxylic acid, 1,4-cyclohekylenedicarboxylic acid, and the like can be used.

これらの酸ハロゲン化物は、単独で用いることもできる
が、伯の脂環式または芳香族酸ハロゲン化物との混合物
として用いることしできる。混和させる芳香族酸ハロゲ
ン化物としては、例えば、1゜3.5−ベンゼンI−リ
カルボン酸、プレフタル酸、インフタル酸等の酸ハロゲ
ン化物を挙げることができる。
These acid halides can be used alone or as a mixture with other alicyclic or aromatic acid halides. Examples of the aromatic acid halides to be mixed include acid halides such as 1°3.5-benzene I-ricarboxylic acid, prephthalic acid, and inphthalic acid.

多官能芳香族アミンとの反応性を考慮すると、多官能酸
ハロゲン化物は、多官能酸塩化物であることが好ましい
In consideration of reactivity with polyfunctional aromatic amines, the polyfunctional acid halide is preferably a polyfunctional acid chloride.

本発明において、好ましい微多孔性支持膜としてはポリ
エステルまたは芳香族ポリアミドから選ばれる少なくと
も一種を主成分とする布帛により強化されたポリスルボ
ン支持膜を例示することができる。
In the present invention, a preferred example of a microporous support membrane is a polysulfone support membrane reinforced with a fabric whose main component is at least one selected from polyester and aromatic polyamide.

微多孔性支持膜は、実質的には分離性能を有ざない層で
、実質的に分離性能を有する超薄膜層に強度を与えるた
めに用いられるものであり、均一な微細な孔あるいは片
面からもう一方の面まで徐々に大ぎな微細な孔をもって
いて、その微細孔の大きざはその片面の表面が1010
0n′I、下であるような構造の支持膜が好ましい。上
記の微多孔性支持膜は、ミリボア社製“ミリポアフィル
タ−VSWP”(商品名)や、東洋濾紙社製“ウルトラ
フィルターUK10”(商品名)のような各種市販材料
から選択覆ることもできるが、通常は、“オフィス・Δ
ブ・ゼイリーン・つA−ター・リリーーヂ・アンド・ア
イベロツブメン1〜・プログレス・レポートtt Nα
359 (1968)に記載された方法に従って製造で
きる。その素材にはポリスルホンや酢酸セルロース、硝
酸セルロースやポリ塩化ビニル等のポモポリマーあるい
はブレンドしたーしのが通常使用されるが、化学的、機
械的、熱的に安定性の高い、ポリスルホンを使用するの
が好ましい。さらに孔径が制御しやすく、寸法安定性の
高い、繰返し中位[A] よりなるポリスルホンを用いるのが好ましく、例えば、
上記ポリスルホンのジメブルホルムアミド(DMr)溶
液を密に織ったポリエステル布あるいは不織布の上に一
定の厚さに注型し、それをドデシル硫酸ソーダ0.5車
ω%およびDMF2重足%を含む水溶液中で湿式凝固さ
せることによって、表面の大部分が直径数10止以下の
微細な孔を有した微多孔性支持膜が得られる。
A microporous support membrane is a layer that does not substantially have separation performance, and is used to give strength to an ultra-thin film layer that does have separation performance. The other side has fine pores that gradually become larger, and the size of the fine pores is 1010 mm on one side.
A support membrane having a structure as below is preferable. The above-mentioned microporous support membrane can be selected from various commercially available materials such as "Millipore Filter-VSWP" (trade name) manufactured by Millibore and "Ultra Filter UK10" (trade name) manufactured by Toyo Roshi Co., Ltd. , usually “Office Δ
Bu Zeileen Tsu A-ter Lilyge and Iberotsubmen 1~ Progress Report tt Nα
359 (1968). Pomopolymers or blends such as polysulfone, cellulose acetate, cellulose nitrate, and polyvinyl chloride are usually used as materials, but polysulfone, which has high chemical, mechanical, and thermal stability, is used. is preferred. Furthermore, it is preferable to use a polysulfone consisting of medium repeating [A] whose pore diameter is easy to control and has high dimensional stability, for example,
The above solution of polysulfone in dimebylformamide (DMr) is cast to a certain thickness on a tightly woven polyester cloth or non-woven fabric, and then it is poured into an aqueous solution containing 0.5% of sodium dodecyl sulfate and % of DMF. By performing wet coagulation in a microporous support film, a microporous support film is obtained in which most of the surface has fine pores with a diameter of several tens of pores or less.

次に、本複合半透膜の製造方法について説明する。Next, a method for manufacturing the present composite semipermeable membrane will be explained.

複合半透膜中の実質的に分離性能を有する超薄膜層は、
前述の多官能芳香族アミンを含有する水溶液と、前述の
多官能酸ハロゲン化物を含有する水と非混和性の有機溶
媒溶液を用い、界面m綜合により形成される。
The ultra-thin membrane layer with substantial separation performance in the composite semipermeable membrane is
It is formed by interfacial integration using an aqueous solution containing the aforementioned polyfunctional aromatic amine and a water-immiscible organic solvent solution containing the aforementioned polyfunctional acid halide.

多官能芳香族アミン水溶液におけるアミノ化合物の濃度
は0.1〜10中偵%、好ましくは0゜5〜5.0重量
%であり、該水溶液にはアミノ化合物と多官能酸ハロゲ
ン化物との反応を妨害しない乙のCあれば、界面活性剤
やfi機溶媒、酸化防IL剤等が含まれていてもよい。
The concentration of the amino compound in the polyfunctional aromatic amine aqueous solution is 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight, and the aqueous solution contains a reaction mixture between the amino compound and the polyfunctional acid halide. A surfactant, a fi solvent, an antioxidant IL agent, etc. may be included, as long as they do not interfere with C.

微多孔性支持膜表面への該アミン水溶液の被覆は、該水
溶液が表面に均一にかつ連続的に被覆されればよく、公
知の塗布手段例えば、該水溶液を微多孔性支持膜表面に
コーティングする方法、微多孔性支持膜を該水溶液に浸
漬する方法等で行えばよい。
The aqueous amine solution may be coated on the surface of the microporous support membrane as long as the aqueous solution is coated uniformly and continuously on the surface, and can be coated using known coating methods, such as coating the surface of the microporous support membrane with the aqueous solution. The microporous support membrane may be immersed in the aqueous solution.

次いで過剰に塗布された該アミン水溶液を液切り工程に
より除去する。液切りの方法としては、例えば膜面を垂
直方向に保持して自然流下させる方法等がある。液切り
俊、膜面を乾燥さU、水溶液の水の全部を除去してもよ
いが、これは必ずしも必要ではない。
Next, the excessively applied amine aqueous solution is removed by a draining step. As a method for draining the liquid, for example, there is a method of holding the membrane surface vertically and allowing it to flow down by gravity. All of the water in the aqueous solution may be removed by draining and drying the membrane surface, but this is not always necessary.

次いで、前述の多官能酸ハロゲン化物の有機溶媒溶液を
塗布し、界面m綜合により架橋ポリアミド超λ9膜層を
形成させる。
Next, an organic solvent solution of the polyfunctional acid halide described above is applied, and a crosslinked polyamide ultra-λ9 film layer is formed by interfacial integration.

該溶液中の多官能酸ハ[1ゲン化物は通常0.01〜1
0重量%、好ましくは0.02〜2重量%を11機溶媒
に溶解して用い、該溶液にDMFのようなアシル化触媒
等を含有させると界面m綜合が促進され、更に好ましい
The polyfunctional acid compound in the solution is usually 0.01 to 1
It is more preferable to use 0% by weight, preferably 0.02 to 2% by weight dissolved in a solvent, and to contain an acylation catalyst such as DMF in the solution, since interfacial integration is promoted.

該心機溶媒は、水と非混和性であり、かつ酸ハ[1グン
化物を溶解し微多孔性支持膜を破壊しないことが必要で
あり、アミノ化合物および酸ハロゲン化物に対して不活
性であるものであればいずれであってし良い。好ましい
例としては炭化水素化合物、トリク[10トリフルオロ
エタンなどが挙げられるが、反応速度、溶媒の揮発性の
点からはn−ヘキサノ、トリクロロトリフルオロエタン
が好ましい。引火性という安全上の問題を考慮するとト
リクロロトリフルオロエタンを用いるのが更に好ましい
The core solvent must be immiscible with water, dissolve acid halides and not destroy the microporous support membrane, and be inert to amino compounds and acid halides. It can be any of the following. Preferred examples include hydrocarbon compounds, tric[10 trifluoroethane, etc., and n-hexano and trichlorotrifluoroethane are preferred from the viewpoint of reaction rate and solvent volatility. Considering the safety issue of flammability, it is more preferable to use trichlorotrifluoroethane.

多官能酸ハ[1グン化物のアミノ化合物水溶液相への接
触の方法は、アミノ化合物水溶液の微多孔性支持膜への
被覆方法と同様に行なった後、炭酸すトリウム等のアル
カリ水溶液で洗浄する。
The method for contacting the aqueous solution phase of the amino compound with the polyfunctional acid C[1] is carried out in the same manner as the method for coating the microporous support membrane with the aqueous solution of the amino compound, followed by washing with an aqueous alkaline solution such as sodium carbonate. .

このようにして得られた複合半透膜は、これだc)でも
十分良好な膜性能を発現するが、ざらに該超薄膜をpl
−16〜13の塩素含有水溶液に浸漬することにより膜
性能、特に、脱塩率、透水聞を飛躍的に向上覆ることが
できる。塩素発生試薬としては、塩素ガス、サラシ粉、
次亜塩素酸ナトリウム、二酸化塩素、クロラミンB1ク
ロラミンT1ハラゾーン、ジクロロジメブルヒダントイ
ン、塩素化イソシアヌル酸およびその塩などを代表例と
して挙げることができ、酸化力の強さによって温度を決
定することが好ましい。上記の塩素発生試薬の中C1次
亜塩素酸す1〜リウム水溶液が、取扱い性の点から好ま
しい。塩素含有水溶液の酸化力とp(−1の聞には重要
な関係があり、pl−1が6より低い場合は、十分/3
″酸化ツノを示さず、また、pl−113を越えるとア
ミド結合の加水分解が生じ、超f’)膜層が1t−1傷
を受けるため、ともに不適当である。
Although the composite semipermeable membrane obtained in this way exhibits sufficiently good membrane performance even in c), it is difficult to
By immersing the membrane in a chlorine-containing aqueous solution of -16 to 13, membrane performance, especially desalination rate and water permeability, can be dramatically improved. Chlorine generating reagents include chlorine gas, salami powder,
Representative examples include sodium hypochlorite, chlorine dioxide, chloramine B1, chloramine T1, halazone, dichlorodimebruhydantoin, chlorinated isocyanuric acid and its salts, and it is preferable to determine the temperature depending on the strength of oxidizing power. . Among the above-mentioned chlorine generating reagents, a C1 mono-lithium hypochlorite aqueous solution is preferred from the viewpoint of ease of handling. There is an important relationship between the oxidizing power of a chlorine-containing aqueous solution and p(-1, and if pl-1 is lower than 6, it is sufficient/3
Both of these are unsuitable because they do not show oxidized horns, and when pl-113 is exceeded, hydrolysis of the amide bond occurs and the membrane layer suffers 1t-1 damage.

従って、I) l−16〜13で塩素含有水溶液に浸漬
覆るのが好ましい。
Therefore, I) I-16 to 13 are preferably immersed in a chlorine-containing aqueous solution.

[実施例] 以下の実施例(よって更に詳細に説明]Jるか、本発明
はこれら実施例により何ら限定される−5のではない。
[Examples] The present invention is not limited in any way by the following Examples (which will be described in more detail).

なお、実施例において、JJI除率は、次式により求め
た。
In addition, in the Examples, the JJI division ratio was determined by the following formula.

膜透過液中の溶質濃度 排除キロ]=(1−−) X 100 膜供給液中の溶質濃度 本発明にJ3いて使用した繊維補強ポリスルホン支持膜
は、以下の手法により製造した。
Solute Concentration in Membrane Permeate Removal Kilometers] = (1--) X 100 Solute Concentration in Membrane Feed Solution The fiber-reinforced polysulfone support membrane used in J3 in the present invention was manufactured by the following method.

タデ30cagElコ20cutの大ぎさのポリエステ
ル繊維からなるタフタ(タテ糸、ヨコ糸とも150デニ
ールのマルチフィラメント糸、織密度タテ90木/イン
チ、ヨコ67本/インチ、厚さ160μ)をガラス板上
に固定し、その−Fにポリスルホン(ユニオン・カーバ
イト社製のUdel −P3500)の15重量%ジメ
チルホルムアミド(DMF>溶液を200μの厚みで室
温(20℃)でキ(Iストし、たたらに純水中に浸漬し
て5分間放置することによって繊維補強ポリスルホン支
持膜(以下FR−PS支持膜と略す)を作製する。この
ようにして得られたrR−PS支持膜(厚さ210−〜
215μ)の純水透過係数は、圧力IKg/d1温度2
5℃で測定して0.005〜0.01g/cd−3eC
・atIllであった。
Taffeta (multifilament yarn of 150 denier for both warp and weft, weave density: 90 pieces/inch vertically, 67 pieces/inch horizontally, thickness 160μ) made of polyester fibers of 30 bags/20 cuts is placed on a glass plate. A 15% by weight solution of polysulfone (Udel-P3500 manufactured by Union Carbide Co., Ltd.) in dimethylformamide (DMF) was applied to the -F to a thickness of 200μ at room temperature (20°C), and then tatara was applied. A fiber-reinforced polysulfone support membrane (hereinafter referred to as FR-PS support membrane) is prepared by immersing it in pure water and leaving it for 5 minutes.
215μ) is the pure water permeability coefficient of pressure IKg/d1 temperature 2
0.005-0.01g/cd-3eC measured at 5℃
・It was atIll.

実施例1〜2 FR−PS支持膜を1.3.5−トリアミノベンゼン0
.5!1ffi%、メタフェニレンジアミン1.45重
id%を有する水溶液中に1分間浸漬した。該支持膜を
垂直方向にゆっくりと引上げ、支持膜表面から余分な水
溶液を取除いた後、表1に示した組成の多官能酸塩化物
とD M F 300 ppmを含lνだトリクロロト
リフルオロエタン溶液を表面が完全に濡れるように塗イ
li L/11分間静置した。次に膜を重i!1にして
余分な溶液を液切りして除去した後、炭酸ナトリウムの
0.2車行1%水溶液に5分間浸漬した。
Examples 1-2 FR-PS support membrane with 1,3,5-triaminobenzene 0
.. It was immersed for 1 minute in an aqueous solution having 5!1 ffi% and 1.45 weight id% of metaphenylenediamine. After slowly pulling up the support membrane in the vertical direction and removing excess aqueous solution from the surface of the support membrane, a polyfunctional acid chloride having the composition shown in Table 1 and trichlorotrifluoroethane containing 300 ppm of DMF were added. The solution was applied so that the surface was completely wetted and allowed to stand for 11 minutes. Next, add the membrane! After draining and removing excess solution, the sample was immersed in a 1% aqueous solution of sodium carbonate for 5 minutes.

このようにして得られた複合半透膜を、pI−16。The composite semipermeable membrane thus obtained was pI-16.

5に調製した1500r)9m食塩水をjλ水とし、1
J Ky /′cm、25°Cの条件下で逆浸透デスト
した結果、表1に示した膜性能が得られた。
The 1500r) 9m saline solution prepared in step 5 was used as jλ water, and
As a result of reverse osmosis testing under the conditions of J Ky /'cm and 25°C, the membrane performance shown in Table 1 was obtained.

実施例3〜8 IR−113支持膜を表1に示した組成を有する))ミ
ノ水溶液中に1分間浸漬した。該支持膜を垂1「11j
向にゆっくりと引上げ、支持膜表面から余分な水溶液を
取除いた後、表1に示した組成の多官能M塩化物とDM
 F 300ppmを含んだトリクロCI トリノルオ
ロ]Lタン溶液を表面が完全に浣れるJ、うに塗(li
 シて1分間静置した。次にlluを垂直にして余分な
溶液を液切りしで除去した後、炭酸すトリウムの0.2
重量%水溶液に5分間浸漬した。
Examples 3-8 An IR-113 support membrane was immersed in an aqueous Mino solution having the composition shown in Table 1 for 1 minute. The support membrane is hung 1"11j
After removing excess aqueous solution from the surface of the support membrane, the polyfunctional M chloride and DM having the compositions shown in Table 1 were removed.
The surface can be completely covered with the trichloro CI trinorolo] L tan solution containing 300 ppm of F.
It was then left to stand for 1 minute. Next, hold the llu vertically, remove excess solution with a drainer, and add 0.2
It was immersed in a wt% aqueous solution for 5 minutes.

ざらに、膜を次亜塩素酸ナトリウム600 ppm、リ
ン酸第1カリウム0.2車量%を含んだpLl 7の水
溶液中に2分間浸漬した後、水道水で洗浄し!ご 、。
Roughly, the membrane was immersed for 2 minutes in an aqueous solution of pLl 7 containing 600 ppm of sodium hypochlorite and 0.2% by volume of monopotassium phosphate, and then washed with tap water. Go ,.

このようにして得られた複合半透膜をp if 6 。The composite semipermeable membrane thus obtained was pif 6.

5に調整した1500Dpmft塩水を原水とし、15
 KU / ctA、25℃の条件下で逆浸透テストし
た結末、表1に示した膜性能が得られた。
1500Dpmft salt water adjusted to 5 is used as raw water,
As a result of the reverse osmosis test under the conditions of KU/ctA and 25°C, the membrane performance shown in Table 1 was obtained.

なお、表1中の略記号は次のとおりである。In addition, the abbreviations in Table 1 are as follows.

TAB :L3,5−1〜リアミノベンゼンm−PDA
:メタフエニレンジアミン Cr C: L3,5−シフ[1ヘキ■ナントリカルボ
ン酸塩化物 CDC:1.4−シクロヘキサンジカルボン酸塩化物 1 M C: 1,3.5−ベンピン1へすカルボン酸
塩化物(トリメシン酸塩化物) TPC:テレフタル酸塩化物 透水量は膜面積1平方メートル当り、1日の透水量(〜
”L方メー1−ル)を示した。
TAB: L3,5-1~riaminobenzene m-PDA
: metaphenylenediamine Cr C: L3,5-Schiff[1 hexane tricarboxylic acid chloride CDC: 1,4-cyclohexanedicarboxylic acid chloride 1 M C: 1,3,5-benpine 1 hescarboxylic acid chloride (Trimesic acid chloride) TPC: Terephthalic acid chloride Water permeability is the permeation amount per day per 1 square meter of membrane area (~
"L direction mail)" was shown.

表1 [発明の効果] 本発明により、高い脱塩性、高い水透過性を有する複合
半透膜およびその製造方法を提供することができる。
Table 1 [Effects of the Invention] According to the present invention, it is possible to provide a composite semipermeable membrane having high desalting properties and high water permeability, and a method for producing the same.

Claims (7)

【特許請求の範囲】[Claims] (1)多官能芳香族アミンと多官能酸ハロゲン化物との
界面重縮合によって得られるポリアミドからなる超薄膜
層を微多孔性支持膜上に被覆してなる複合半透膜におい
て、多官能芳香族アミン成分として一分子中に3個以上
のアミノ基を有する芳香族アミンを含有し、かつ、多官
能酸ハロゲン化物成分として一分子中に2個以上のハロ
ゲン化カルボニル基を有する脂環式酸ハロゲン化物を含
有することを特徴とする複合半透膜。
(1) In a composite semipermeable membrane formed by coating a microporous support membrane with an ultra-thin layer of polyamide obtained by interfacial polycondensation of a polyfunctional aromatic amine and a polyfunctional acid halide, Alicyclic acid halogen containing an aromatic amine having three or more amino groups in one molecule as an amine component and having two or more halogenated carbonyl groups in one molecule as a polyfunctional acid halide component A composite semipermeable membrane characterized by containing a compound.
(2)3個以上のアミノ基を有する多官能芳香族アミン
が、1,3,5−トリアミノベンゼンであることを特徴
とする特許請求の範囲第(1)項記載の複合半透膜。
(2) The composite semipermeable membrane according to claim (1), wherein the polyfunctional aromatic amine having three or more amino groups is 1,3,5-triaminobenzene.
(3)多官能酸ハロゲン化物が、多官能酸塩化物である
ことを特徴とする特許請求の範囲第(1)項記載の複合
半透膜。
(3) The composite semipermeable membrane according to claim (1), wherein the polyfunctional acid halide is a polyfunctional acid chloride.
(4)2個以上のハロゲン化カルボニル基を有する脂環
式酸ハロゲン化物が、1,3,5−シクロヘキサントリ
カルボン酸、1,3−シクロヘキサンジカルボン酸、1
,4−シクロヘキサンジカルボン酸の酸ハロゲン化物か
ら選ばれる少なくとも1種であることを特徴とする特許
請求の範囲第(1)項記載の複合半透膜。
(4) The alicyclic acid halide having two or more halogenated carbonyl groups is 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1
, 4-cyclohexanedicarboxylic acid, and at least one selected from acid halides of 4-cyclohexanedicarboxylic acid.
(5)微多孔性支持膜が、ポリスルホンからなることを
特徴とする特許請求の範囲第(1)項記載の複合半透膜
(5) The composite semipermeable membrane according to claim (1), wherein the microporous support membrane is made of polysulfone.
(6)微多孔性支持膜が、ポリエステルおよび芳香族ポ
リアミドから選ばれる少なくとも1種を主成分とする布
帛によって強化されてなることを特徴とする特許請求の
範囲第(1)項記載の複合半透膜。
(6) The composite half-layer according to claim (1), wherein the microporous support membrane is reinforced with a fabric whose main component is at least one selected from polyester and aromatic polyamide. Permeable membrane.
(7)界面重縮合により、複合半透膜を得る方法におい
て、微多孔性支持膜上に、3官能以上の芳香族アミンを
含有する水溶液を塗布し、次いで、該膜上に、2官能以
上の脂環式酸ハロゲン化物を含有する、水と非混和性の
有機溶媒溶液を塗布することにより超薄膜を形成するこ
とを特徴とする複合半透膜の製造方法。
(7) In a method for obtaining a composite semipermeable membrane by interfacial polycondensation, an aqueous solution containing an aromatic amine having three or more functional groups is coated on a microporous support membrane, and then an aqueous solution containing an aromatic amine having three or more functional groups is applied onto the membrane. A method for producing a composite semipermeable membrane, comprising forming an ultra-thin film by applying a water-immiscible organic solvent solution containing an alicyclic acid halide.
JP62050681A 1987-03-05 1987-03-05 Composite semipermeable membrane and its production Pending JPS63218208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050681A JPS63218208A (en) 1987-03-05 1987-03-05 Composite semipermeable membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050681A JPS63218208A (en) 1987-03-05 1987-03-05 Composite semipermeable membrane and its production

Publications (1)

Publication Number Publication Date
JPS63218208A true JPS63218208A (en) 1988-09-12

Family

ID=12865669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050681A Pending JPS63218208A (en) 1987-03-05 1987-03-05 Composite semipermeable membrane and its production

Country Status (1)

Country Link
JP (1) JPS63218208A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015382A (en) * 1989-04-20 1991-05-14 E. I. Du Pont De Nemours And Company Microporous support layer with interfacially polymerized copolyamide membrane thereon
US5160619A (en) * 1990-09-14 1992-11-03 Nitto Denko Corporation Composite reverse osmosis membrane and production thereof
EP0718029A2 (en) 1994-12-22 1996-06-26 Nitto Denko Corporation Method for producing highly permeable composite reverse osmosis membrane
US5614099A (en) * 1994-12-22 1997-03-25 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0787525A1 (en) 1996-01-24 1997-08-06 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6026968A (en) * 1996-05-13 2000-02-22 Nitto Denko Corporation Reverse osmosis composite membrane
US6177011B1 (en) 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
US6413425B1 (en) 1997-04-10 2002-07-02 Nitto Denko Corporation Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same
US6709590B1 (en) 2000-03-23 2004-03-23 Nitto Denko Corporation Composite reverse osmosis membrane and method for producing the same
US6723422B1 (en) 1997-07-02 2004-04-20 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
WO2006038426A1 (en) 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
US7081202B2 (en) 2001-03-19 2006-07-25 Nitto Denko Corporation Composite semipermeable membrane, production method thereof, and water treatment method using the same
WO2010035807A1 (en) 2008-09-26 2010-04-01 日東電工株式会社 Composite semi-permeable membrane and method for producing same
WO2012090862A1 (en) 2010-12-28 2012-07-05 東レ株式会社 Composite semipermeable membrane
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2016056357A (en) * 2014-09-11 2016-04-21 住友ベークライト株式会社 Aromatic polyamide solution for manufacturing display element, optical element, lighting element or sensor element
CN110385046A (en) * 2018-12-29 2019-10-29 启成(江苏)净化科技有限公司 A method of big flux RO membrane is prepared with more acyl chlorides substituted cyclic macromoleculars

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015382A (en) * 1989-04-20 1991-05-14 E. I. Du Pont De Nemours And Company Microporous support layer with interfacially polymerized copolyamide membrane thereon
US5160619A (en) * 1990-09-14 1992-11-03 Nitto Denko Corporation Composite reverse osmosis membrane and production thereof
US5843351A (en) * 1994-12-22 1998-12-01 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same
EP0718029A2 (en) 1994-12-22 1996-06-26 Nitto Denko Corporation Method for producing highly permeable composite reverse osmosis membrane
US5614099A (en) * 1994-12-22 1997-03-25 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
EP0787525A1 (en) 1996-01-24 1997-08-06 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6177011B1 (en) 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6026968A (en) * 1996-05-13 2000-02-22 Nitto Denko Corporation Reverse osmosis composite membrane
US6413425B1 (en) 1997-04-10 2002-07-02 Nitto Denko Corporation Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same
US6723422B1 (en) 1997-07-02 2004-04-20 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
US6709590B1 (en) 2000-03-23 2004-03-23 Nitto Denko Corporation Composite reverse osmosis membrane and method for producing the same
US7081202B2 (en) 2001-03-19 2006-07-25 Nitto Denko Corporation Composite semipermeable membrane, production method thereof, and water treatment method using the same
WO2006038426A1 (en) 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
WO2010035807A1 (en) 2008-09-26 2010-04-01 日東電工株式会社 Composite semi-permeable membrane and method for producing same
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
WO2012090862A1 (en) 2010-12-28 2012-07-05 東レ株式会社 Composite semipermeable membrane
KR20180004841A (en) 2010-12-28 2018-01-12 도레이 카부시키가이샤 Composite semipermeable membrane
JP2016056357A (en) * 2014-09-11 2016-04-21 住友ベークライト株式会社 Aromatic polyamide solution for manufacturing display element, optical element, lighting element or sensor element
CN110385046A (en) * 2018-12-29 2019-10-29 启成(江苏)净化科技有限公司 A method of big flux RO membrane is prepared with more acyl chlorides substituted cyclic macromoleculars

Similar Documents

Publication Publication Date Title
JPS63218208A (en) Composite semipermeable membrane and its production
JPH0568293B2 (en)
JPH0494726A (en) Semipermeable dual membrane, its production and production of high-purity water
JPH0565213B2 (en)
JPH0374128B2 (en)
JPS6312310A (en) Production of semipermeable composite membrane
JPH051051B2 (en)
JP2727594B2 (en) Method for producing composite semipermeable membrane
JP3111539B2 (en) Method for producing composite semipermeable membrane
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JPH06182166A (en) Composite reverse osmosis membrane and manufacture thereof
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JPH07114944B2 (en) Method for manufacturing semipermeable composite membrane
JPH04104825A (en) Manufacture of composite membrane
JPH07114941B2 (en) Method for manufacturing semipermeable composite membrane
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
JPH04161234A (en) Manufacture of composite membrane
JP3106595B2 (en) Method for producing composite membrane for reverse osmosis method
JP2797377B2 (en) Composite semipermeable membrane and method for producing the same
JP2682038B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP3132090B2 (en) Method for producing composite membrane for reverse osmosis method
JP3418889B2 (en) Composite reverse osmosis membrane
JP2936633B2 (en) Composite semipermeable membrane
JPS62213806A (en) Semi-permeable composite membrane