JPS62213806A - Semi-permeable composite membrane - Google Patents

Semi-permeable composite membrane

Info

Publication number
JPS62213806A
JPS62213806A JP61055473A JP5547386A JPS62213806A JP S62213806 A JPS62213806 A JP S62213806A JP 61055473 A JP61055473 A JP 61055473A JP 5547386 A JP5547386 A JP 5547386A JP S62213806 A JPS62213806 A JP S62213806A
Authority
JP
Japan
Prior art keywords
membrane
semi
solution
water
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61055473A
Other languages
Japanese (ja)
Inventor
Tatsuro Sasaki
達朗 佐々木
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61055473A priority Critical patent/JPS62213806A/en
Publication of JPS62213806A publication Critical patent/JPS62213806A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare a composite membrane of high permeability and chlorine resistance which performs permselective separation for producing super-pure water by providing an activated layer of polypierazinicarbonyl ethylene on a substrate membrane. CONSTITUTION:An activated layer of semi-permeable composite membrane having a major constitution unit shown in the formula is provided on a porous substrate membrane having micro-pores of less than diameter number 100Angstrom on the major part of its surface. Said activated layer comprises poly [1-(1- piperazinicarbonyl)ethlene] as major component. Said macromole is used in a solution of 0.1-10wt% concentration, and preferably 0.01-2wt% of an anion family surface-active agent is added. Further, if alkali metallic compound or a small quantity of polyfunctional amino compound is added, selective separability and durability are increased. Said macromole solution is spread over the substrate membrane. After being dried up in a room temperature -150 deg.C, water of polyfunctional reagent and non-miscible solution are spread, dried and heat treated to prepare a semi-permeable membrane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液状混合物の成分を選択透過分離するための
半透膜に関するものであり、特にカン水を脱塩して淡水
化することができ、また染色廃水や、電着塗料廃水等の
公害発生原因である汚水等から、その中に含まれる汚染
あるいは有効物質を選択的に除去又は回収し、ひいては
、廃水のクローズド化に奇与し、ざらには、半導体の製
造に用いられる超純水の製造に用いることができる、高
性能半透性複合膜に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semipermeable membrane for selectively permeating and separating components of a liquid mixture, and particularly for desalinating and desalinating can water. It also selectively removes or recovers pollutants or effective substances contained therein from wastewater that causes pollution, such as dyeing wastewater and electrocoated paint wastewater, and ultimately contributes to the closure of wastewater. More specifically, the present invention relates to a high-performance semipermeable composite membrane that can be used to produce ultrapure water used in the production of semiconductors.

(従来技術) 従来工業的に利用されている半透膜には、酢酸セルロー
ズから作った非対称膜として、例えば米国特許第3,1
33,132号明細書及び同第3゜133.137号明
細書等に記載されたロブ型の膜がある。しかし、この膜
は、耐加水分解性、耐微生物性、rI4薬品性などに問
題があり、特に透過性を向上しようとすると耐圧性、耐
久性を兼ねそなえた膜が製造できず、一部使用されてい
るが広範囲の用途に実用化されるに至っていない。これ
らの酢酸セルローズ非対称膜の欠点をなくした新しい素
材に対する研究は米国、日本を中心に盛んに行なわれて
いるが、芳香族ポリアミド、ポリアミドヒドラジド(米
国特許第3,567.632号明細日)、ポリアミド酸
(特公昭50−121168号公報)、架橋ポリアミド
酸(特公昭52−152879号公報)、ポリイミダゾ
ピロロン、ポリスルホンアミド、ポリベンズイミダゾー
ル、ポリベンズイミダシロン、ポリアリーレンオキシド
など、その一部の欠点を改良する素材は得られているも
のの、選択分離性あるいは透過性等の面では酢酸セルロ
ーズ膜より劣っている。
(Prior art) Semipermeable membranes conventionally used industrially include asymmetric membranes made from cellulose acetate, for example, U.S. Pat.
There are lob-type membranes described in Patent No. 33,132 and Patent No. 3.133.137. However, this membrane has problems with hydrolysis resistance, microbial resistance, rI4 drug resistance, etc. In particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability, so it is used in some cases. However, it has not yet been put to practical use in a wide range of applications. Research into new materials that eliminate the drawbacks of these cellulose acetate asymmetric membranes is being actively conducted mainly in the United States and Japan, but aromatic polyamides, polyamide hydrazides (U.S. Patent No. 3,567,632), Some of them, such as polyamic acid (Japanese Patent Publication No. 50-121168), crosslinked polyamic acid (Japanese Patent Publication No. 52-152879), polyimidazopyrrolone, polysulfonamide, polybenzimidazole, polybenzimidacylon, polyarylene oxide, etc. Although materials have been obtained that improve the drawbacks of cellulose acetate membranes, they are inferior to cellulose acetate membranes in terms of selective separation and permeability.

一方、ロブ型とは型を異にする半透膜として多孔性支持
股上に実質的に膜性能を有する活性層を被覆した複合膜
が開発されている。複合膜においては、活性層と多孔性
支持膜を各々の用途に最適な素材を選ぶことが可能とな
り、製膜技術の自由度が増す。また常時湿潤状態で保存
しな【プればならないロブ型膜とは異なり乾燥状態での
保存が可能であるなどの利点がある。
On the other hand, a composite membrane has been developed, which is a semipermeable membrane of a different type from the lobe type, in which a porous support crotch is coated with an active layer having substantially membrane performance. In composite membranes, it becomes possible to select the most suitable materials for the active layer and porous support membrane for each application, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike lobe-type membranes that must be kept constantly wet.

これらの複合膜には多孔性支持膜上に直接活性層を被覆
した型のものと、多孔性支持膜上にゲル化層を介して活
性層を被覆した型のものとの2種類がある。前者の具体
例は米国特許第3.744゜642号明細書、同第3,
926,798号明細書、特開昭55−147106号
公報、同53−14046号公報、特開昭58−243
03@公報、特表昭56−500062号公報、米国特
許第4,259.183号明細書、PBレポート80−
127574などがおり、耐塩素性、耐熱性、耐薬品性
を有するとされているものの、高透過性を実現しようと
すると、活性層を非常に薄く塗るため、多孔性支持体の
きず、あるいは異物などによって欠点を生じやすく、一
般にその工業的生産において、安定に再現性よく高性能
膜を得るのが困難と言われている。また、後者の具体例
としては、特開昭49−133282号公報、特公昭5
5−49524@公報、特公昭55−38164号公報
、PBレポート80−182090.特公昭59−27
202号公報、特開昭56−40403号公報などが知
られている。
There are two types of composite membranes: one in which the active layer is directly coated on a porous support membrane, and one in which the active layer is coated on the porous support membrane through a gelling layer. Specific examples of the former are U.S. Pat.
926,798 specification, JP-A-55-147106, JP-A-53-14046, JP-A-58-243
03@ Publication, Special Publication No. 56-500062, U.S. Patent No. 4,259.183, PB Report 80-
127574, etc., and is said to have chlorine resistance, heat resistance, and chemical resistance, but when trying to achieve high permeability, the active layer is applied very thinly, so it may cause scratches on the porous support or foreign matter. It is said that it is generally difficult to obtain high-performance membranes with good reproducibility in industrial production. Further, as specific examples of the latter, JP-A-49-133282, JP-A-5
5-49524 @ Publication, Special Publication No. 55-38164, PB Report 80-182090. Special Public Service 1986-27
202, Japanese Patent Application Laid-Open No. 56-40403, etc. are known.

これらの半透膜の特徴は、前述のゲル化層を設けない複
合膜で問題となった、工業生産時の製膜の困難性は解消
されるものの、低圧下で逆浸透処理に供する場合に、水
の透過性が低くなり、満足すべき膜性能が得られないこ
とが多く、また逆浸透膜を実際に使用する上で重要な耐
塩素性が十分ではなかった。
The characteristics of these semipermeable membranes are that although they eliminate the difficulty of membrane formation during industrial production that was a problem with the aforementioned composite membranes without a gelling layer, they are difficult to form when subjected to reverse osmosis treatment under low pressure. In many cases, water permeability was low, and satisfactory membrane performance could not be obtained, and chlorine resistance, which is important for the actual use of reverse osmosis membranes, was insufficient.

また、最近特に半導体分野および食品分野では、脱塩性
能の高いことよりも高透水性、耐塩素性を有する膜が望
まれているが、満足する膜が得られていないのが現状で
あった。
Furthermore, in recent years, especially in the semiconductor and food fields, membranes with high water permeability and chlorine resistance have been desired rather than high desalination performance, but it has not been possible to obtain membranes that satisfy these requirements. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、高透水性、耐塩素性をともに有する膜を
得ることを目的に鋭意検討した結果、下式〔I〕を主な
くり返し単位とする重合体が効果あることを見い出し、
本発明に到達したものである。
As a result of intensive studies aimed at obtaining a membrane having both high water permeability and chlorine resistance, the present inventors found that a polymer having the following formula [I] as a main repeating unit is effective,
This has led to the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は下記の構成からなる。 In order to achieve the above object, the present invention consists of the following configuration.

「 活性層とこれを支持する支持膜とからなる半透性複
合膜において、活性層は下記(1)を主な構成ユニット
とすることを特徴とする半透性複合膜。
"A semipermeable composite membrane consisting of an active layer and a supporting membrane that supports the active layer, wherein the active layer has the following (1) as a main constituent unit.

C=0 本発明において式〔I〕を主なくり返し単位とする重合
体とは、ポリ(1−(1−ピペラジニルカル・ボニル)
エチレン〕で代表され、例えばHakrOIIIOl、
 Ch’em、 Rapid、 Commo、n、 1
9B2,3.909に記載の方法で合成される。また多
官能試薬とは、該重合体中の2級アミンと反応して、架
橋ポリアミドまたはポリウレアを形成することのできる
ものであればいずれでもよく、例えば、トリメシン酸ハ
ライド、ベンゾフェノンテトラカルボン酸ハライド、ト
リメリット酸ハライド、ピロメット酸ハライド、イソフ
タル酸ハライド、テレフタル酸ハライド、ナフタレンジ
カルボン酸ハライド、ジフェニルジカルボン酸ハライド
、ピリジンジカルボン酸ハライド、ベンゼンジスルホン
酸ハライド、トリレンジイソシアネート、ビス(P−イ
ソシアネートフエニル)メタンなどが挙げられるが、製
膜溶媒に対する溶解性及び複合逆浸透膜の性能を考慮す
ると1〜リメシン酸クロライド、イソフタル酸クロライ
ド、テレフタル酸クロライドおよびこれらの混合物が好
ましい。
C=0 In the present invention, a polymer having formula [I] as a main repeating unit is poly(1-(1-piperazinylcarbonyl)
ethylene], such as HakrOIIIOl,
Ch'em, Rapid, Commo, n, 1
9B2, 3.909. The polyfunctional reagent may be any agent that can react with the secondary amine in the polymer to form a crosslinked polyamide or polyurea, such as trimesic acid halide, benzophenonetetracarboxylic acid halide, Trimellitic acid halide, pyrometic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarboxylic acid halide, pyridinedicarboxylic acid halide, benzenedisulfonic acid halide, tolylene diisocyanate, bis(P-isocyanate phenyl)methane In consideration of the solubility in the membrane forming solvent and the performance of the composite reverse osmosis membrane, 1 to rimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and mixtures thereof are preferred.

本発明における活性層とは実質的に分離性能を支配する
層であり、前記重合体と多官能試薬の反応生成物を主成
分としてなるが、製膜を容易とするため、また性能を改
善するために多価アルコール類、水溶性ポリマー等の添
加物を加えてもよく、また重合体と多官能試薬の反応を
促進する上でアルカリ性金属塩、例えばリン酸ナトリウ
ム、水酸化す1〜リウム等の塩酸捕捉剤を加えることも
効果があり、さらには相関移動触媒やアシル化触媒を併
用することもよい効果をもたらすことがある。
The active layer in the present invention is a layer that substantially controls separation performance, and is mainly composed of a reaction product of the polymer and a polyfunctional reagent, and is used to facilitate membrane formation and improve performance. For this purpose, additives such as polyhydric alcohols and water-soluble polymers may be added, and alkaline metal salts such as sodium phosphate, mono-lithium hydroxide, etc. may be added to promote the reaction between the polymer and the polyfunctional reagent. It is also effective to add a hydrochloric acid scavenger, and furthermore, the combined use of a phase transfer catalyst or an acylation catalyst may also have a good effect.

この活性層をざざえる支持膜は、実質的には分離性能を
有ざない多孔性支持膜であり、均一な微細な孔あるいは
片面からもう一方の面まで徐々に大ぎな微細な孔をもっ
ていて、その微細孔の大きさはその片面の表面が約10
0〜1000人である ゛ような構造の支持膜が好まし
い。上記の多孔性支持膜は、ミリポアフィルタ(VSW
P)や東洋濾紙(UKlo)のような各種市販材料から
選択することもできるが、通常は゛オフィス・オブ・セ
イリーン・ウオータリー、リサーチ・アンド・ディベロ
ップメント・プログレス・レポート”N、359 (1
968)に記載された方法に従って製造できる。その素
材にはポリスルホンや酢酸セルローズ、硝酸セルローズ
やポリ塩化ビニール等のホモポリマあるいはブレンドし
たものが通常使用され、例えば、ポリスルホンのジメチ
ルホルムアミド(DMF>溶液を密に織ったポリエステ
ル布あるいは不織布の上に一定の厚さに注型し、それを
ドデシル硫酸ソーダ0.5重間%及びDMF2m間%含
む水溶液中で湿式凝固させることによって、表面の大部
分が直径数100Å以下の微細な孔を有した多孔性支持
膜が得られる。
The support membrane that disturbs the active layer is a porous support membrane that has virtually no separation performance, and has uniform fine pores or fine pores that gradually become larger from one side to the other. The size of the micropores on one side is about 10
It is preferable to use a supporting membrane having a structure in which the number of particles is 0 to 1,000. The above porous support membrane is a Millipore filter (VSW)
You can choose from a variety of commercially available materials, such as P) and Toyo Roshi (UKlo), but typically ``Office of Saline Watery, Research and Development Progress Report'' N, 359 (1).
968). Homopolymers or blends of polysulfone, cellulose acetate, cellulose nitrate, and polyvinyl chloride are usually used as the material. By casting the mold to a thickness of 0.5% by weight and wet solidifying it in an aqueous solution containing 0.5% by weight of sodium dodecyl sulfate and 2% by weight of DMF, the majority of the surface has micropores with a diameter of several hundred angstroms or less. A sexually supporting membrane is obtained.

次に本発明の製造方法の例を示す。本発明の複合半透膜
は、前記ポリ(1−(1−ピペラジニルカルボニル)エ
チレン〕を主成分として含有する水溶液(以下総称して
組成物という)を多孔性支持膜の少なくとも片面に被覆
し、次いで風乾及び/又は加熱処理により、水の一部又
は全部を蒸発させた鴇、水と非混和性で、多孔性支持膜
を溶解することのない溶媒に溶解した多官能試薬を主成
分とした溶液を塗布し、架橋反応を行なわせた後、乾燥
することによって得られる。
Next, an example of the manufacturing method of the present invention will be shown. In the composite semipermeable membrane of the present invention, at least one side of a porous support membrane is coated with an aqueous solution (hereinafter collectively referred to as a composition) containing the poly(1-(1-piperazinylcarbonyl)ethylene) as a main component. Then, air drying and/or heat treatment is performed to evaporate some or all of the water, and the main component is a polyfunctional reagent dissolved in a solvent that is immiscible with water and does not dissolve the porous support membrane. It can be obtained by applying a solution of 100% by weight, causing a crosslinking reaction, and then drying.

本発明の複合半透性膜を得る組成物濃度は該重合体が0
.1〜10重量%、好ましくは1〜4重足%であり、更
に組成物が多孔性支持膜表面に濡れ性を向上させ、均一
に付着させるために界面活性剤を加えると効果があり、
中でもアニオン系の界面活性剤が好ましいく、ドデシル
硫酸ナトリウム、アルキルベンゼンスルホン酸ナトリウ
ムなどから選ぶことができる。
The concentration of the composition for obtaining the composite semipermeable membrane of the present invention is such that the polymer is 0.
.. The amount is 1 to 10% by weight, preferably 1 to 4% by weight, and it is effective to add a surfactant to improve the wettability of the composition to the surface of the porous support membrane and ensure uniform adhesion.
Among these, anionic surfactants are preferred and can be selected from sodium dodecyl sulfate, sodium alkylbenzene sulfonate, and the like.

その界面活性剤としては一般に0.01〜2重ω%程度
用いると良い。これらの組成物には多孔性支持膜を劣化
させない水溶性有機溶剤を加えても良い。また、アルカ
リ性金属化合物、例えば水酸化ナトリウムに加えるとさ
らに効果を増すことがあり、更に、少量の多官能アミン
化合物として、例えば、ピペラジン、4−アミノメチル
ピペラジン、m−フェニレンジアミン等を加えると、選
択分離性、耐久性などに好ましいE’llを与える。ま
た、該多官能試薬としては通常0.01〜2.0重量%
をn−ヘキサン又はトリクロロトリフルオロエタン等に
溶解して用いる。
As the surfactant, it is generally good to use about 0.01 to 2 wt%. A water-soluble organic solvent that does not deteriorate the porous support membrane may be added to these compositions. In addition, the effect may be further increased by adding an alkaline metal compound such as sodium hydroxide, and further adding a small amount of a polyfunctional amine compound such as piperazine, 4-aminomethylpiperazine, m-phenylenediamine, etc. Gives preferable E'll in terms of selective separation, durability, etc. In addition, the polyfunctional reagent is usually 0.01 to 2.0% by weight.
is used by dissolving it in n-hexane or trichlorotrifluoroethane.

多孔性支持膜への組成物の被覆には公知の塗布手段がい
ずれも適用可能であり、例えば、支持膜の上に組成物を
コーティングする方法、支持膜を組成物に浸漬する方法
などが挙げられる。これらのうち、組成物をコーティン
グする方法は多孔性支持膜の片面に均一に被覆すること
ができ、また作業性の面からも好ましい。多孔性支持膜
を組成物に浸漬する方法で行なう場合には、被覆工程で
予め、多孔性支持膜の他の片面に組成物が付着しないよ
うな手段をとることが好ましい。このような被覆工程で
余分な組成物を除去するための液切り工程を設けるのが
一般的である。液切りの方法としては例えば膜面を垂直
方向に保持して自然流下させる方法等がある。
Any known application method can be applied to coating the porous support membrane with the composition, such as a method of coating the composition on the support membrane, a method of dipping the support membrane in the composition, etc. It will be done. Among these methods, the method of coating the composition is preferable from the viewpoint of uniform coating on one side of the porous support membrane, and also from the viewpoint of workability. When the porous support membrane is immersed in the composition, it is preferable to take measures in advance to prevent the composition from adhering to the other side of the porous support membrane in the coating step. In such a coating process, a draining process is generally provided to remove excess composition. As a method for draining the liquid, for example, there is a method of holding the membrane surface vertically and allowing it to flow down by gravity.

被覆した多孔性支持膜の乾燥には、風乾又は加熱乾燥器
等を用いて通常、空温〜150℃の範囲、時間はその方
法、つまり熱の導入法又は乾燥器の形式によって、乾燥
速度が異なるので、それらに合せて1〜60分間の範囲
で選択する。さらに多官能試薬の水と非混和性溶液を塗
布し液切り後、風乾または加熱処理して半透膜を得る。
The coated porous support membrane is dried using an air dryer or a heated dryer at a temperature ranging from air temperature to 150°C. Since the time varies, the time can be selected within the range of 1 to 60 minutes. Further, a water-immiscible solution of a polyfunctional reagent is applied, the liquid is drained off, and a semipermeable membrane is obtained by air drying or heat treatment.

この乾燥工程は通常、室温〜150℃の範囲で行ない、
時間は温度に応じて決定する。このようにして得られた
複合逆浸透膜はこのままでも使用できるが、複合逆浸透
膜の活性層の表面は保護ポリマフィルムで被覆すること
ができ、保護フィルムを被覆することは実用上望ましい
。活性層表面上への保護フィルムの被覆は乾燥した複合
逆浸透膜の表面を保護フィルムのポリマ溶液で塗布した
後、乾燥することによって行なわれる。このようなポリ
マの例としては、例えばポリビニルアルコール、ポリア
クリル酸、ポリビニルピロリドンのような水溶性ポリマ
が挙げられ、特にポリビニルアルコールが、被膜の強さ
から好ましい。
This drying step is usually carried out at a temperature ranging from room temperature to 150°C,
The time is determined depending on the temperature. The composite reverse osmosis membrane thus obtained can be used as is, but the surface of the active layer of the composite reverse osmosis membrane can be coated with a protective polymer film, and it is practically desirable to cover it with a protective film. The protective film is coated on the surface of the active layer by coating the surface of the dried composite reverse osmosis membrane with a polymer solution of the protective film, and then drying it. Examples of such polymers include water-soluble polymers such as polyvinyl alcohol, polyacrylic acid, and polyvinylpyrrolidone, with polyvinyl alcohol being particularly preferred in view of the strength of the coating.

これらのポリマは一般に0.5〜10重量%の水溶液と
して使用され、またその被覆方法は浸漬法だけに限定さ
れるものではなく、噴霧法やハケによる塗布も可能であ
る。このようにして被覆された複合逆浸透膜は熱風乾燥
器中で乾燥して最終製品となる。その乾燥条件は一般に
60〜120℃の範囲の温度で2〜10分間乾燥するの
が良好である。
These polymers are generally used as a 0.5 to 10% by weight aqueous solution, and the coating method is not limited to dipping, but can also be applied by spraying or brushing. The thus coated composite reverse osmosis membrane is dried in a hot air dryer to form the final product. As for the drying conditions, it is generally good to dry at a temperature in the range of 60 to 120°C for 2 to 10 minutes.

〔実施例〕〔Example〕

以下の実施例において、選択分離性能として、食塩の排
除率は電気伝導度の測定による通常の手段によって決定
された。
In the following examples, the rejection rate of common salt as selective separation performance was determined by conventional means by measuring electrical conductivity.

また、透過性能として、水通過速度は単位面積、単位時
間当りの水の透過量で決定した。
In addition, as permeation performance, the water passage rate was determined by the amount of water permeation per unit area and unit time.

参考例 タテ3Qcm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニール
のマルチフィラメント糸、織密度タテ90本/インチ、
ヨコ67本/インチ、厚さ16Oμ)をガラス板上に固
定し、その上にポリスルホン(ユニオン・カーバイド社
製のυdel P−3500>の16重量%ジメチルホ
ルムアミド(DMF>溶液を200μの厚みで室W(2
0℃)でキャストし、ただちに純水中に浸漬して5分間
放買することによって繊維補強ポリスルホン支持膜(以
下FR−PS支持膜と略す)を作製する。このようにし
て得られたFR−PS支持膜(厚さ210〜215μ)
の純水透過係数は、圧力1 h/cJ、温度25℃で測
定して、0.005〜0.01 Q/cJ −sec・
atmであった。
Reference example Taffeta made of polyester fibers with a length of 3Qcm and a width of 20cm (multifilament yarn of 150 denier for both warp and weft, weave density of 90 pieces/inch in length,
A 16 wt. W(2
A fiber-reinforced polysulfone support membrane (hereinafter abbreviated as FR-PS support membrane) is prepared by casting the membrane at 0° C., immediately immersing it in pure water, and leaving it for 5 minutes. The FR-PS support film thus obtained (thickness 210-215μ)
The pure water permeability coefficient of is measured at a pressure of 1 h/cJ and a temperature of 25°C, and is 0.005 to 0.01 Q/cJ -sec.
It was an ATM.

実施例1 参考例によって得られるFR−PS支持膜にポリ(1−
(1−ピペラジニルカルボニル)エチレン〕1.0重量
%、ドデシル硫酸ナトリウム0.1重量%含んだ水溶液
(組成物)を150m1/m’となるように塗布し、9
0°Cの熱風によって1分間乾燥した。しかる後に、ト
リフルオロトリクロロエタンにトリメシン酸クロライド
0.025重量%溶解した溶液を60m1/7yls塗
布し、その後120°Cの熱風で3分間乾燥熱処理した
。このようにして得られた複合膜を、圧力15kg/c
/、原水0゜15%Na(4水溶液25℃の条件下で、
逆浸透テストした結果、15時間後脱塩率30%、水分
透過12.6m’/m2・日の性能を示した。また、こ
の原水に塩素を加え、残留塩素1pOIII、PH6゜
5の条件にし、15時間後性能を評価したところ、脱塩
率35%、水分透過量2.3m’/m2・日となった。
Example 1 Poly(1-
An aqueous solution (composition) containing 1.0% by weight of (1-piperazinylcarbonyl)ethylene] and 0.1% by weight of sodium dodecyl sulfate was applied to a volume of 150 ml/m'.
It was dried with hot air at 0°C for 1 minute. Thereafter, 60ml/7yls of a solution of 0.025% by weight of trimesic acid chloride dissolved in trifluorotrichloroethane was applied, followed by dry heat treatment with hot air at 120°C for 3 minutes. The composite membrane thus obtained was subjected to a pressure of 15 kg/c.
/, raw water 0° 15% Na (4 aqueous solution under conditions of 25°C,
As a result of reverse osmosis testing, the salt removal rate after 15 hours was 30%, and the water permeation rate was 12.6 m'/m2·day. In addition, chlorine was added to this raw water to make the conditions such that the residual chlorine was 1 pOIII and the pH was 6°5.The performance was evaluated after 15 hours, and the salt removal rate was 35% and the water permeation amount was 2.3 m'/m2·day.

さらに、残留塩素を除去して、同じ条件下で26時間運
転を継続したところ、脱塩率32%、水分透過量2.4
m’/ln2・日となり、耐塩素性が良好なことがわか
った。
Furthermore, when residual chlorine was removed and operation was continued for 26 hours under the same conditions, the salt removal rate was 32%, and the amount of water permeation was 2.4.
m'/ln2·day, indicating good chlorine resistance.

また、この膜の活性層をESCへ、FT−IR、”’C
−N)IRスペクトルで分析したところ、カルボン酸末
端を含み、式[I]のユニットとして、トリメシン酸ク
ロライドが架橋した構造が確認できた。
In addition, the active layer of this film was transferred to the ESC, FT-IR, "'C
-N) When analyzed by IR spectrum, a structure containing a carboxylic acid terminal and crosslinked with trimesic acid chloride as a unit of formula [I] was confirmed.

実施例2,3 実施例1において、トリメシン酸クロライドの濃度を、
第1表のように変更し、その他の条件を同一にして複合
膜を得た。実施例1と同じ条件で逆浸透テストした結果
を第1表に示す。
Examples 2 and 3 In Example 1, the concentration of trimesoyl chloride was
A composite membrane was obtained by changing the conditions as shown in Table 1 and keeping the other conditions the same. Table 1 shows the results of a reverse osmosis test under the same conditions as in Example 1.

第1表 評価条件:圧力15kg/at、25℃、DH6,5〔
発明の効果〕 本発明の複合膜は、液状混合物を選択透過分離するため
のものであり、特に用途としては、カン水および半導体
の製造に用いられる超純水の製造に用いることができ、
同時に従来達成の困難であった高透水性、耐塩素性を有
する膜を提供できるようになった。
Table 1 Evaluation conditions: Pressure 15 kg/at, 25°C, DH6.5 [
Effects of the Invention The composite membrane of the present invention is for permselective separation of liquid mixtures, and in particular can be used to produce ultrapure water used in the production of kansui and semiconductors.
At the same time, it has become possible to provide a membrane with high water permeability and chlorine resistance, which was previously difficult to achieve.

Claims (1)

【特許請求の範囲】[Claims] (1)活性層とこれを支持する支持膜とからなる半透性
複合膜において、活性層は下記〔 I 〕を主な構成ユニ
ットとすることを特徴とする半透性複合膜。 ▲数式、化学式、表等があります▼( I )
(1) A semipermeable composite membrane comprising an active layer and a support membrane supporting the active layer, wherein the active layer has the following [I] as a main constituent unit. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I)
JP61055473A 1986-03-13 1986-03-13 Semi-permeable composite membrane Pending JPS62213806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61055473A JPS62213806A (en) 1986-03-13 1986-03-13 Semi-permeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61055473A JPS62213806A (en) 1986-03-13 1986-03-13 Semi-permeable composite membrane

Publications (1)

Publication Number Publication Date
JPS62213806A true JPS62213806A (en) 1987-09-19

Family

ID=12999574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61055473A Pending JPS62213806A (en) 1986-03-13 1986-03-13 Semi-permeable composite membrane

Country Status (1)

Country Link
JP (1) JPS62213806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510450A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
JP2015213882A (en) * 2014-05-12 2015-12-03 第一工業製薬株式会社 Coating agent for water treatment filter medium
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510450A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
US9259691B2 (en) 2012-11-21 2016-02-16 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
US9370751B2 (en) 2012-11-21 2016-06-21 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
JP2015213882A (en) * 2014-05-12 2015-12-03 第一工業製薬株式会社 Coating agent for water treatment filter medium

Similar Documents

Publication Publication Date Title
JP3379963B2 (en) Reverse osmosis composite membrane and reverse osmosis treatment method of water using the same
KR101432219B1 (en) Reverse osmosis membrane
KR101985351B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
EP2857088B1 (en) Method for manufacturing a reverse osmosis membrane
JPH01180208A (en) Production of compound semipermeable membrane
JPH0374128B2 (en)
EP1825905A1 (en) Semipermeable composite membrane and process for producing the same
JPS6410241B2 (en)
JPS63218208A (en) Composite semipermeable membrane and its production
JP2001286741A (en) Reverse osmosis composite membrane and manufacturing method therefor
CN109046025B (en) Nanofiltration membrane for selectively separating trace organic matters and calcium and magnesium ions and preparation method thereof
JP2006102594A (en) Method for manufacturing composite semipermeable membrane
JP2011125856A (en) Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane
JP4284767B2 (en) Composite semipermeable membrane, water production method using the same, and fluid separation element
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JPS62213806A (en) Semi-permeable composite membrane
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JPH06182166A (en) Composite reverse osmosis membrane and manufacture thereof
JPS63123406A (en) Manufacture of semipermeable composite membrane
JPS62262712A (en) Production of semipermeable membrane
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JPH0232009B2 (en)
JPH11179175A (en) Production of composite separation membrane
KR20030022915A (en) Producing method of composite polyamide reverse osmosis membrane