JP2011125856A - Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane - Google Patents

Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane Download PDF

Info

Publication number
JP2011125856A
JP2011125856A JP2010276760A JP2010276760A JP2011125856A JP 2011125856 A JP2011125856 A JP 2011125856A JP 2010276760 A JP2010276760 A JP 2010276760A JP 2010276760 A JP2010276760 A JP 2010276760A JP 2011125856 A JP2011125856 A JP 2011125856A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
membrane
composite semipermeable
less
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010276760A
Other languages
Japanese (ja)
Inventor
Takao Sasaki
崇夫 佐々木
Masahide Taniguchi
雅英 谷口
Gakuji Inoue
岳治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010276760A priority Critical patent/JP2011125856A/en
Publication of JP2011125856A publication Critical patent/JP2011125856A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semipermeable membrane having a practical water permeability amount, a salt rejection and also a high durability, and a manufacturing method of the same. <P>SOLUTION: A semipermeable membrane having a separation function layer including a primary amino group is reformed by being brought into contact with a reagent, which generates a diazonium salt or its derivative when reacting with a primary amino group, for the period of one second or longer and 60 minutes or shorter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液状混合物の成分を選択透過分離するための高性能かつ高い耐久性が付与されたな改質半透膜およびその製造方法に関する。   The present invention relates to a modified semipermeable membrane imparted with high performance and high durability for selectively permeating and separating components of a liquid mixture, and a method for producing the same.

混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、近年、省エネルギーおよび省資源のためのプロセスとして膜分離法が利用されている。膜分離法に使用されている膜には、精密ろ過膜、限外ろ過膜、逆浸透膜などがある。さらに近年は、逆浸透膜と限外ろ過膜の境界に位置する膜(ルースRO膜あるいはNF「nanofiltration」膜)も現れ使用されるようになってきており、これら膜は、例えば海水、カン水、有害物を含んだ水から飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられてきた。   Regarding the separation of a mixture, there are various techniques for removing substances (for example, salts) dissolved in a solvent (for example, water). In recent years, a membrane separation method has been used as a process for saving energy and resources. Yes. Examples of membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, and reverse osmosis membranes. Furthermore, in recent years, a membrane (loose RO membrane or NF “nanofiltration” membrane) located at the boundary between a reverse osmosis membrane and an ultrafiltration membrane has also appeared and is used. In the case of obtaining drinking water from water containing harmful substances, it has been used for the production of industrial ultrapure water, wastewater treatment, recovery of valuable resources, and the like.

現在市販されている逆浸透膜、ルースRO膜、NF膜の大部分は複合半透膜であり、多孔性支持膜上にゲル層とポリマーを架橋した活性層とを有するものと、多孔性支持膜上でモノマーを重縮合した活性層を有するものの2種類である。中でも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を多孔性支持膜上に被覆して得られる複合半透膜は、透過性や選択分離性の高い逆浸透膜として広く用いられている。しかしながら、溶質の酸化除去や殺菌のために付与される過酸化水素、次亜塩素酸、オゾンなどの酸化剤と逆浸透膜とを長時間接触させると膜性能が低下することが知られており、耐久性の向上が望まれている。   Most of the reverse osmosis membranes, loose RO membranes, and NF membranes currently on the market are composite semipermeable membranes, which have a gel layer and an active layer crosslinked with a polymer on a porous support membrane, and a porous support There are two types, one having an active layer in which monomers are polycondensed on the membrane. Among these, composite semipermeable membranes obtained by coating a porous support membrane with a separation functional layer made of a crosslinked polyamide obtained by polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide have permeability and selective separation properties. Widely used as a high reverse osmosis membrane. However, it is known that the membrane performance deteriorates when an oxidant such as hydrogen peroxide, hypochlorous acid, ozone, etc. applied for oxidative removal and sterilization is contacted with a reverse osmosis membrane for a long time. Therefore, improvement in durability is desired.

特許文献1には、第1級アミノ基またはその塩をジアゾニウム塩の前駆体とまたはジアゾニウム塩と反応性の基と反応させることによって、平均して少なくとも1つの第1級アミノ基もしくはその塩と少なくとも1つのジアゾニウム塩と反応性の基を持つポリマーから誘導される識別層を設け、高い溶質除去性と高い水透過性を持つ逆浸透膜が得られる旨が開示されている。しかしながら、この文献に具体的に記載される方法によれば、亜硝酸濃度、膜の予備湿潤、存在する第1級アミン基の濃度、および接触の起こる濃度の依存性を考慮しても処理時間が1〜72時間と長時間であり、短時間で効果を得るためには膜への試薬の拡散のために加圧が必要である。また、ジアゾ化反応試薬である亜硝酸水溶液は化学的に不安定であり、特に高濃度や加熱条件では有毒な一酸化窒素および硝酸を発生して急速に分解する(非特許文献1)。このため長時間での処理は亜硝酸濃度が安定せず、生産性に問題があった。さらに、処理によって溶質除去性と水透過性の向上が必ずしも同時に発現するとはいえず、この要件を満たす処理方法が望まれている。   Patent Document 1 discloses, on average, at least one primary amino group or a salt thereof by reacting a primary amino group or a salt thereof with a diazonium salt precursor or a reactive group with a diazonium salt. It is disclosed that a reverse osmosis membrane having a high solute removal property and a high water permeability can be obtained by providing an identification layer derived from a polymer having a group reactive with at least one diazonium salt. However, according to the method specifically described in this document, the treatment time takes into account the dependence of nitrous acid concentration, membrane prewetting, the concentration of primary amine groups present, and the concentration at which contact occurs. However, in order to obtain an effect in a short time, pressurization is required for the diffusion of the reagent to the membrane. In addition, a nitrous acid aqueous solution, which is a diazotization reaction reagent, is chemically unstable, and generates toxic nitric oxide and nitric acid and decomposes rapidly particularly at high concentrations and heating conditions (Non-patent Document 1). For this reason, the treatment for a long time has a problem in productivity because the concentration of nitrous acid is not stable. Furthermore, it cannot be said that the solute removal property and the water permeability are improved simultaneously by the treatment, and a treatment method that satisfies this requirement is desired.

このように、半透膜には、依然として、各種水処理においてより安定した運転や簡易な操作性、及び膜交換頻度の低減などによる低コスト追求の観点と、各種の酸化剤、特に次亜塩素酸による洗浄、殺菌に耐えうる耐久性が求められている。   As described above, the semipermeable membrane still has a more stable operation and simple operability in various water treatments, and a low cost pursuit by reducing the frequency of membrane exchange, and various oxidizing agents, particularly hypochlorous acid. Durability that can withstand washing and sterilization with acid is required.

特開昭63−175604号公報JP-A-63-175604

岩波理化学事典第5版(岩波書店、1998年2月20日、96頁)Iwanami Encyclopedia 5th Edition (Iwanami Shoten, February 20, 1998, 96 pages)

本発明は、高い溶質除去性と高い水透過性を有し、かつ高い耐久性を有する半透膜を提供すると同時に、高い生産性を実現しうる半透膜およびその製造方法を提供することを目的とするものである。   The present invention provides a semipermeable membrane having high solute removal properties, high water permeability, and high durability, and at the same time, providing a semipermeable membrane capable of realizing high productivity and a method for producing the same. It is the purpose.

本発明は、上記目的を達成するために、下記(1)〜(5)の構成をとる。   In order to achieve the above object, the present invention has the following configurations (1) to (5).

(1)多孔性支持膜上に多官能アミンと多官能酸ハロゲン化物との重縮合反応によるポリアミドの分離機能層を形成させてなる複合半透膜の製造方法であって、前記複合半透膜を含水率5%以上の湿潤状態、かつ、分離機能層中に存在する、分子量300以下の第一級芳香族アミン量が500mg/m以下で、分離機能層中の第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液と40℃以下で1秒以上2分以下の間で接触させる改質処理工程を有することを特徴とする複合半透膜の製造方法。 (1) A method for producing a composite semipermeable membrane in which a polyamide separation functional layer is formed on a porous support membrane by a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide, the composite semipermeable membrane In a wet state with a water content of 5% or more, and the amount of a primary aromatic amine having a molecular weight of 300 or less and 500 mg / m 2 or less present in the separation functional layer, Production of a composite semipermeable membrane comprising a modification treatment step of contacting a solution containing a compound that reacts with a group to form a diazonium salt or a derivative thereof at 40 ° C. or lower for 1 second or longer and 2 minutes or shorter Method.

(2)前記化合物を含む溶液のpH、亜硝酸および/またはその塩の全モル濃度(mol/L)、反応時間(s)により算出されるEI値が0.005〜500の範囲内である、上記(1)に記載の複合半透膜の製造方法。   (2) The EI value calculated from the pH of the solution containing the compound, the total molar concentration of nitrous acid and / or its salt (mol / L), and the reaction time (s) is in the range of 0.005 to 500. The manufacturing method of the composite semipermeable membrane as described in said (1).

(3)前記改質処理工程の前および/または後に、前記複合半透膜をpH4以下の酸性水溶液に接触させる工程を有する、上記(1)または(2)に記載の複合半透膜の製造方法。   (3) The production of the composite semipermeable membrane according to (1) or (2) above, comprising a step of bringing the composite semipermeable membrane into contact with an acidic aqueous solution having a pH of 4 or less before and / or after the modification treatment step. Method.

(4)前記第一級芳香族アミンがm−フェニレンジアミンである、上記(1)〜(3)のいずれかに記載の複合半透膜の製造方法。   (4) The method for producing a composite semipermeable membrane according to any one of (1) to (3), wherein the primary aromatic amine is m-phenylenediamine.

(5)多孔性支持膜上に多官能アミンと多官能酸ハロゲン化物との重縮合反応によるポリアミドの分離機能層を形成させてなるポリアミド複合半透膜であって、含水率5%以上の湿潤状態、かつ、分離機能層中に存在する、分子量300以下の第一級芳香族アミン量が500mg/m以下で、分離機能層中の第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液と40℃以下で1秒以上2分以下の間で接触させる改質処理により得られ、波長450nmにおける光透過率が10〜95%の範囲内であり、かつ、フェノール性水酸基を有することを特徴とするポリアミド複合半透膜。 (5) A polyamide composite semipermeable membrane in which a polyamide separation functional layer is formed on a porous support membrane by a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide, and has a moisture content of 5% or more. A diazonium salt which reacts with the primary aromatic amino group in the separation functional layer in the state and the amount of the primary aromatic amine having a molecular weight of 300 or less present in the separation functional layer is 500 mg / m 2 or less. Obtained by a modification treatment in which a solution containing a compound that forms the derivative is contacted at 40 ° C. or less for 1 second or more and 2 minutes or less, and the light transmittance at a wavelength of 450 nm is in the range of 10 to 95%; A polyamide composite semipermeable membrane characterized by having a phenolic hydroxyl group.

本発明によれば、高い水透過性と高い溶質除去性を併せ持ち、さらに高い耐久性を有した半透膜を高い生産性で得ることができる。   According to the present invention, it is possible to obtain a semipermeable membrane having both high water permeability and high solute removability and high durability with high productivity.

亜硝酸の解離平衡定数を用いて算出した、非解離状態にある亜硝酸のモル分率とpHの関係を示す。The relationship between the molar fraction of nitrous acid in a non-dissociated state and pH calculated using the dissociation equilibrium constant of nitrous acid is shown.

本発明は、第一級芳香族アミノ基を含む分離機能層を有する複合半透膜の性質を改良する製造方法である。ここで第一級芳香族アミノ基を含む分離機能層とは、少なくとも1つのアミノ基(−NH)を持つ芳香族化合物およびその塩が分離機能層中に存在することをいう。該化合物の種類は特に限定されず、分離機能層の構成成分であっても良いし、分離機能層と化学結合を伴っていなくともよい。 The present invention is a production method for improving the properties of a composite semipermeable membrane having a separation functional layer containing a primary aromatic amino group. Here, the separation functional layer containing a primary aromatic amino group means that an aromatic compound having at least one amino group (—NH 2 ) and a salt thereof are present in the separation functional layer. The type of the compound is not particularly limited, and may be a constituent component of the separation functional layer or may not be accompanied by a chemical bond with the separation functional layer.

本発明において複合半透膜は、実質的に分離性能を有する分離機能層が、実質的に分離性能を有さない多孔性支持膜上に被覆されてなり、該分離機能層は多官能アミンと多官能酸ハロゲン化物との反応によって得られる架橋ポリアミドからなるものである。ここで多官能アミンは脂肪族多官能アミンと芳香族多官能アミンの少なくとも1つの成分からなる。   In the present invention, the composite semipermeable membrane is formed by coating a separation functional layer having substantially separation performance on a porous support membrane having substantially no separation performance. It consists of a crosslinked polyamide obtained by reaction with a polyfunctional acid halide. Here, the polyfunctional amine comprises at least one component of an aliphatic polyfunctional amine and an aromatic polyfunctional amine.

脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジンなどが例示され、性能発現の安定性から、特に、ピペラジン、2,5−ジメチルピペラジンが好ましい。   The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, and is preferably a piperazine-based amine and a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine and 2,5-di-n-butylpiperazine, and piperazine and 2,5-dimethylpiperazine are particularly preferable from the viewpoint of stability of performance.

また、芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどがあり、そのN−アルキル化物としてN,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示され、性能発現の安定性から、特にメタフェニレンジアミン、1,3,5−トリアミノベンゼンが好ましい。   The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylene diamine, paraphenylene diamine, 1, 3, 5 -Triaminobenzene and the like, and N-alkylated products thereof include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, N, N-diethylparaphenylenediamine, etc. In view of the stability of performance, metaphenylenediamine and 1,3,5-triaminobenzene are particularly preferable.

多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸の酸ハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロライドが好ましい。上記多官能酸ハロゲン化物は単独で用いることもできるが、混合物として用いてもよい。   The polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and acid halides of 1,4-benzenedicarboxylic acid can be used. Among acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity. Trimesic acid chloride is preferred. Although the said polyfunctional acid halide can also be used independently, you may use it as a mixture.

多官能酸ハロゲン化物を溶解する有機溶媒は、水と非混和性であり、かつ多孔性支持膜を破壊しないことが好ましく、架橋ポリアミドの生成反応を阻害しないものであればいずれであっても良い。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられるが、オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカンなど、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。   The organic solvent that dissolves the polyfunctional acid halide is not miscible with water, and preferably does not destroy the porous support membrane, and may be any as long as it does not inhibit the formation reaction of the crosslinked polyamide. . Typical examples include halogenated hydrocarbons such as liquid hydrocarbons and trichlorotrifluoroethane, but they are substances that do not destroy the ozone layer, are easily available, are easy to handle, and are safe for handling. In consideration of the properties, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, etc., and simple substances such as cyclooctane, ethylcyclohexane, 1-octene, 1-decene, or a mixture thereof are preferably used.

次に、半透膜の好ましい製造方法について説明する。半透膜中の実質的に分離性能を有する分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する、水とは非混和性の有機溶媒溶液を用い、後述の多孔性支持膜上で反応させることにより形成される。   Next, the preferable manufacturing method of a semipermeable membrane is demonstrated. The separation functional layer having substantially separation performance in the semipermeable membrane is, for example, an aqueous solution containing the above-mentioned polyfunctional amine and an organic solvent immiscible with water containing the above-mentioned polyfunctional acid halide. It forms by making it react on the below-mentioned porous support membrane using a solution.

ここで、多官能アミンを含有する水溶液の濃度は、0.1〜20重量%が好ましく、より好ましくは0.5〜15重量%である。   Here, the concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight.

多官能アミンを含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。   In the case of an aqueous solution containing a polyfunctional amine or an organic solvent solution containing a polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid scavenger may be used as long as it does not interfere with the reaction between the two components. In addition, compounds such as surfactants and antioxidants may be contained.

本発明において、多孔性支持膜は、架橋ポリアミドなどの分離機能層を支持するために使用される。多孔性支持膜の構成は特に限定されないが、好ましい多孔性支持膜としては布帛により強化されたポリスルホン支持膜などを例示することができる。多孔性支持膜の孔径や孔数は特に限定されないが、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔を有していて、その微細孔の大きさは、その片面の表面が100nm以下であるような構造の支持膜が好ましい。   In the present invention, the porous support membrane is used to support a separation functional layer such as a crosslinked polyamide. Although the structure of a porous support membrane is not specifically limited, As a preferable porous support membrane, the polysulfone support membrane reinforced with the cloth etc. can be illustrated. The pore diameter and the number of pores of the porous support membrane are not particularly limited, but it has uniform fine pores or gradually large pores from one side to the other side, and the size of the fine pores is the size of one side. A support film having a structure in which the surface of the film is 100 nm or less is preferable.

本発明に使用する多孔性支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるが、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。   The porous support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).

多孔性支持膜に使用する素材は特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル等のホモポリマーあるいはブレンドしたもの等が使用できるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。具体的に例示すると、ポリスルホンのジメチルホルムアミド(以降、DMFと記載)溶液を密に織ったポリエステル布あるいは不織布の上に略一定の厚さに塗布し、ドデシル硫酸ソーダ0.5重量%DMF2重量%を含む水溶液中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した好適な多孔性支持膜を得ることができる。   The material used for the porous support membrane is not particularly limited. For example, polysulfone, cellulose acetate, cellulose nitrate, polyvinyl chloride, or other homopolymers or blended materials can be used, but chemically, mechanically, and thermally. It is preferable to use polysulfone having high stability. Specifically, a solution of polysulfone in dimethylformamide (hereinafter referred to as DMF) is applied on a densely woven polyester cloth or non-woven fabric to a substantially constant thickness, and sodium dodecyl sulfate 0.5 wt% DMF 2 wt% By wet coagulation in an aqueous solution containing, a suitable porous support membrane having most of the surface with fine pores having a diameter of several tens of nm or less can be obtained.

多孔性支持膜表面への多官能アミンを含有する水溶液の被覆は、該水溶液が表面に均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、該水溶液を多孔性支持膜表面にコーティングする方法、多孔性支持膜を該水溶液に浸漬する方法等で行えばよい。次いで、過剰に塗布された該水溶液を液切り工程により除去する。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。その後、多官能アミンを含有する水溶液で被覆した多孔性支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、反応により架橋ポリアミドの分離機能層を形成させる。   The surface of the porous support membrane may be coated with an aqueous solution containing a polyfunctional amine as long as the aqueous solution is uniformly and continuously coated on the surface. For example, the coating may be carried out by a method of coating a porous support membrane in the aqueous solution. Next, the excessively applied aqueous solution is removed by a liquid draining step. As a method for draining liquid, for example, there is a method in which the film surface is allowed to flow naturally while being held in a vertical direction. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution. Then, the organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to the porous support membrane coated with the aqueous solution containing the polyfunctional amine, and a separation functional layer of crosslinked polyamide is formed by reaction.

多官能酸ハロゲン化物の濃度は特に限定されないが、少なすぎると活性層である分離機能層の形成が不十分となり欠点になる可能性があり、多いとコスト面から不利になるため、有機溶媒溶液中で0.01〜1.0重量%程度が好ましい。反応後の有機溶媒の除去は、例えば、特開平5−76740号公報記載の方法等で行うことができる。   The concentration of the polyfunctional acid halide is not particularly limited, but if it is too small, the formation of the separation functional layer, which is an active layer, may become a disadvantage, and if it is too large, it will be disadvantageous in terms of cost. Among these, about 0.01 to 1.0% by weight is preferable. The removal of the organic solvent after the reaction can be performed, for example, by the method described in JP-A-5-76740.

そして、本発明では、上述の方法により製造した複合半透膜を、第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液に含水率5%以上の湿潤状態で1秒以上2分以下の間で接触させることで改質半透膜を得る。複合半透膜に上記化合物を含む溶液を接触させる方法は特に限定されず、たとえば、複合半透膜全体を上記化合物を含む溶液中に浸漬する方法でも良いし、スプレーする方法でも良く、分離機能層と接触するならば、その方法は限定されない。   In the present invention, the composite semipermeable membrane produced by the above-described method is wetted with a water content of 5% or more in a solution containing a compound that reacts with a primary aromatic amino group to produce a diazonium salt or a derivative thereof. The modified semipermeable membrane is obtained by contacting for 1 second to 2 minutes. The method of bringing the solution containing the above compound into contact with the composite semipermeable membrane is not particularly limited. For example, a method of immersing the entire composite semipermeable membrane in the solution containing the above compound, a spraying method, or a separation function may be used. The method is not limited as long as it comes into contact with the layer.

ここで、前述の特許文献1によると、亜硝酸を膜の中に十分に拡散し、亜硝酸と第1級アミンとの反応を行って主に膜の水流量を増加させることが目的であるため、具体的には1〜72時間の反応時間が必要である旨説明されている。しかしながら、本発明者らは、ジアゾニウム塩生成反応を詳細に検討した結果、1秒以上2分以下の時間領域で、実用的な膜透水量および塩排除率の向上を同時に発現できるとともに、試薬の分解や有害物拡散を最低限に抑えることを見出した。詳しくは、膜透水量は試薬による処理直後から時間とともに上昇するのに対し、塩排除率は処理直後上昇するが時間とともに極大値を伴って下降をはじめ、60分で処理前の塩排除率と同等となり、それ以上では塩排除率が低下することを見出したのである。なお、試薬との接触は、十分に接触させることができればよいが、接触ムラを防ぐために1秒以上接触させることが必要である。   Here, according to the above-mentioned Patent Document 1, the purpose is to sufficiently diffuse the nitrous acid in the membrane and to react the nitrous acid with the primary amine to mainly increase the water flow rate of the membrane. Therefore, it is specifically explained that a reaction time of 1 to 72 hours is required. However, as a result of examining the diazonium salt formation reaction in detail, the present inventors have been able to simultaneously exhibit practical improvements in membrane water permeability and salt rejection in a time range of 1 second or more and 2 minutes or less. It was found that decomposition and harmful substance diffusion are minimized. Specifically, the membrane water permeability increases with time immediately after the treatment with the reagent, whereas the salt rejection rate increases immediately after the treatment, but begins to decrease with the maximum value with time, and the salt rejection rate before the treatment in 60 minutes. It has been found that the salt rejection rate is lowered at the same level or higher. It should be noted that the contact with the reagent is sufficient as long as the contact can be made sufficiently, but in order to prevent contact unevenness, it is necessary to make contact for 1 second or more.

本発明の、第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液としては、亜硝酸およびその塩、ニトロシル化合物などの水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解しやすいので、例えば亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するのが好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、20℃で水溶液のpHが7以下、好ましくは5以下、さらに好ましくは4以下で効率よく生成する。中でも、取り扱いの簡便性から水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。 Examples of the solution containing a compound that reacts with a primary aromatic amino group to produce a diazonium salt or a derivative thereof according to the present invention include aqueous solutions of nitrous acid, a salt thereof, and a nitrosyl compound. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution. In general, nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but it is efficiently produced at 20 ° C. when the pH of the aqueous solution is 7 or less, preferably 5 or less, more preferably 4 or less. Among these, an aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.

本発明において、膜と接触させる試薬中の亜硝酸や亜硝酸塩の濃度は、好ましくは20℃において0.01〜1重量%の範囲である。0.01%よりも低い濃度では十分な効果が得られず、亜硝酸、亜硝酸塩濃度が1%よりも高いと溶液の取扱が困難となる。   In the present invention, the concentration of nitrous acid or nitrite in the reagent brought into contact with the membrane is preferably in the range of 0.01 to 1% by weight at 20 ° C. If the concentration is lower than 0.01%, a sufficient effect cannot be obtained. If the concentration of nitrous acid and nitrite is higher than 1%, handling of the solution becomes difficult.

そして、本発明において、亜硝酸塩濃度が0.5重量%以上の水溶液を試薬として用いるときは、「膜と亜硝酸塩の接触」と、「膜面に残存する亜硝酸塩と酸性溶液の接触による亜硝酸の発生」を分離することによって取扱いが簡便になり好ましい。すなわち、亜硝酸塩を含む水溶液に接触させる前および/または後に、半透膜をpH4以下の酸性溶液に接触させる。   In the present invention, when an aqueous solution having a nitrite concentration of 0.5% by weight or more is used as a reagent, “contact between the membrane and nitrite” and “sublimation caused by contact between the nitrite remaining on the membrane surface and the acidic solution”. Separating the “generation of nitric acid” is preferable because handling becomes simple. That is, before and / or after contact with the aqueous solution containing nitrite, the semipermeable membrane is contacted with an acidic solution having a pH of 4 or less.

さらに、本発明においては、より高い効果を得るために、試薬と半透膜との反応時間、試薬のpH、亜硝酸またはその塩の全モル濃度とにより算出される値、EI値が0.005〜500の範囲内となるように処理することが好ましい。なお、EI値は、次のように定義される。   Furthermore, in the present invention, in order to obtain a higher effect, the value calculated by the reaction time between the reagent and the semipermeable membrane, the pH of the reagent, the total molar concentration of nitrous acid or a salt thereof, and the EI value are 0. It is preferable to process so that it may become in the range of 005-500. The EI value is defined as follows.

EI(mol・s/l)
=(反応時間:s)・(亜硝酸塩濃度:mol/l)/(10pH−3.15+1)。
EI (mol · s / l)
= (Reaction time: s) · (Nitrite concentration: mol / l) / (10 pH-3.15 +1).

さらに、試薬の温度は、熱による半透膜の変性を抑えるために95℃以下であることが好ましく、更には試薬の揮発や分解が低減する40℃以下であることが好ましい。   Furthermore, the temperature of the reagent is preferably 95 ° C. or lower in order to suppress the denaturation of the semipermeable membrane due to heat, and more preferably 40 ° C. or lower that reduces the volatilization and decomposition of the reagent.

また、上記化合物を含む溶液を接触させる複合半透膜が湿潤状態にないときは、処理前に水と必要な時間接触し十分な湿潤状態とする。ここで湿潤状態とは、複合半透膜中に水を含有することであり、含水率(=膜中の水分量/膜の全重量)で定量化できる。上記化合物を含む水溶液を接触させる複合半透膜の含水率は、5%以上である必要があり、さらに25%以上が好ましい。   In addition, when the composite semipermeable membrane to which the solution containing the above compound is brought into contact is not in a wet state, it is brought into a sufficiently wet state by contacting with water for a necessary time before the treatment. Here, the wet state means that the composite semipermeable membrane contains water and can be quantified by the moisture content (= water content in the membrane / total weight of the membrane). The water content of the composite semipermeable membrane with which the aqueous solution containing the above compound is brought into contact needs to be 5% or more, and more preferably 25% or more.

このような処理を施すにあたり、半透膜中には、ポリアミドの生成反応時に残存する未反応の分子量300以下の第一級アミンや、別途添加した分子量300以下の第一級アミン量が、膜面積1mあたり500mg以下しか存在しないことが好ましい。これを超えると十分な透水量が得られない。なお、第一級アミン量の測定は、半透膜を10×10cm切り出してエタノール50gに8時間浸漬し、エタノールに抽出された成分のクロマトグラフィーおよび質量分析で求められる。 In performing such treatment, in the semipermeable membrane, the amount of unreacted primary amine having a molecular weight of 300 or less remaining during the formation reaction of the polyamide or separately added primary amine having a molecular weight of 300 or less is added to the membrane. It is preferable that only 500 mg or less per 1 m 2 of area is present. If it exceeds this, sufficient water permeability cannot be obtained. The amount of primary amine is determined by chromatography and mass spectrometry of components extracted into ethanol by cutting out a semipermeable membrane 10 × 10 cm, immersing it in 50 g of ethanol for 8 hours.

本発明により得られる改質半透膜の特徴として、着色された分離機能層が挙げられる。これは第一級アミノ基の反応により生じたジアゾニウム塩による結合生成によってアゾ化合物が生じるためと考えられる。アゾ化合物の吸収帯は化合物によって多様であるが、本発明においては450nmに特徴的な吸収が発現した。これは可視吸収スペクトル法の積分球測定法により定量することができ、450nmの光透過率が10%以上95%以下であり、好ましくは50%以上80%以下である。   A characteristic of the modified semipermeable membrane obtained by the present invention is a colored separation functional layer. This is presumably because an azo compound is generated by the bond formation by the diazonium salt generated by the reaction of the primary amino group. The absorption band of the azo compound varies depending on the compound, but in the present invention, a characteristic absorption is observed at 450 nm. This can be quantified by the integrating sphere measurement method of the visible absorption spectrum method, and the light transmittance at 450 nm is 10% or more and 95% or less, preferably 50% or more and 80% or less.

また、本発明により得られる改質半透膜は、反応条件により機能層に存在するアミノ基の一部が第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液により、フェノール性水酸基に変換される。これは、生成したジアゾニウム塩の一部が水と反応したものとして理解できる。なお、化合物の同定はNMR法によって測定することができる。たとえば、基材上にポリスルホンからなる多孔性支持膜を形成した支持体上に分離機能層を有する液体分離膜について、NMR法により化合物を同定するにあたっては次のように行う。まず、支持体の一部である基材(ポリエステル繊維からなるタフタや不織布)を剥がし、ポリスルホンからなる微多孔性支持膜と架橋ポリアミドの分離機能層の混合物を得る。これを塩化メチレンに溶解した後ろ過を行って分離機能層を得る。この分離機能層を乾燥後密閉容器に採取し、6N水酸化ナトリウム水溶液を加えて120℃に加熱して溶解後、不溶物をろ過する。得られたろ液をNMRチューブに入れFT−NMR分析装置で分析を行い、得られたプロトンのδ値より化合物を同定する。   In addition, the modified semipermeable membrane obtained by the present invention contains a compound that generates a diazonium salt or a derivative thereof by reacting a part of the amino group present in the functional layer with a primary aromatic amino group depending on reaction conditions. It is converted into a phenolic hydroxyl group by the solution. This can be understood as a part of the produced diazonium salt reacting with water. In addition, the identification of a compound can be measured by NMR method. For example, a liquid separation membrane having a separation functional layer on a support in which a porous support membrane made of polysulfone is formed on a substrate is identified as follows when identifying a compound by the NMR method. First, a base material (taffeta or nonwoven fabric made of polyester fiber) which is a part of the support is peeled off to obtain a mixture of a microporous support membrane made of polysulfone and a separation functional layer of crosslinked polyamide. This is dissolved in methylene chloride and then filtered to obtain a separation functional layer. The separation functional layer is dried and collected in a sealed container. A 6N aqueous sodium hydroxide solution is added, and the mixture is heated to 120 ° C. for dissolution, followed by filtering insoluble matters. The obtained filtrate is put in an NMR tube and analyzed by an FT-NMR analyzer, and the compound is identified from the δ value of the obtained proton.

そして、本発明によれば、一旦製造された半透膜を改質して、塩化ナトリウム濃度を0.15重量%に調整し、操作圧力0.75MPa、温度25℃、pH6.5の水溶液で評価したとき塩化ナトリウム除去率が98%以上、透過水量が1.0m/m・日以上の性能を有する半透膜を容易に得ることができる。 Then, according to the present invention, the semipermeable membrane once manufactured is modified to adjust the sodium chloride concentration to 0.15% by weight, with an aqueous solution having an operating pressure of 0.75 MPa, a temperature of 25 ° C., and a pH of 6.5. When evaluated, it is possible to easily obtain a semipermeable membrane having a sodium chloride removal rate of 98% or more and a permeated water amount of 1.0 m 3 / m 2 · day or more.

本発明の製造方法で得られた半透膜を用いて、例えば、操作圧力0.1〜3.0MPaで原水中に含まれる無機物や有機物などの有害物質およびその前駆物質の除去を行うことができる
ここで、操作圧力を低くすると使用するポンプの容量が少なくなり電力費が低下する反面、透過水量が少なくなる傾向がある。逆に、操作圧力を高くすると前記の理由で電力費が増加し、透過水量が多くなる傾向がある一方、透過水量が高すぎると膜面のファウリングによる目詰まりを起こす可能性があり、低いとコスト高となる。したがって、コストを抑えて安定運転を行うためには、操作圧力を0.1〜3.0MPaの範囲とすることが好ましく、より好ましくは0.1〜2.0MPa、さらに好ましくは0.1〜1.0MPaの範囲内である。また、同様の理由から、透過水量の範囲を、0.5〜5.0m/m・dの範囲とすることが好ましく、より好ましくは0.6〜3.0m/m・d、さらに好ましくは0.8〜2.0m/m・dの範囲内である。
Using the semipermeable membrane obtained by the production method of the present invention, for example, removal of harmful substances such as inorganic substances and organic substances and precursors thereof contained in raw water at an operating pressure of 0.1 to 3.0 MPa can be performed. Possible Here, if the operating pressure is lowered, the capacity of the pump to be used is reduced and the power cost is lowered, but the amount of permeate tends to be reduced. Conversely, if the operating pressure is increased, the power cost increases for the reasons described above, and the amount of permeated water tends to increase. On the other hand, if the amount of permeated water is too high, clogging due to fouling of the membrane surface may occur. And the cost is high. Therefore, in order to carry out stable operation at a reduced cost, the operating pressure is preferably in the range of 0.1 to 3.0 MPa, more preferably 0.1 to 2.0 MPa, and still more preferably 0.1 to 3.0 MPa. Within the range of 1.0 MPa. For the same reason, the permeated water amount is preferably in the range of 0.5 to 5.0 m 3 / m 2 · d, more preferably 0.6 to 3.0 m 3 / m 2 · d. More preferably, it is in the range of 0.8 to 2.0 m 3 / m 2 · d.

また、効率的に供給水を処理して造水コストを下げるため、原水供給量に対する透過水量の割合、すなわち回収率は80%以上が好ましく、より好ましくは85%以上、さらには90%以上が良い。ただし99.5%を超えると膜面のファウリングによる目詰まりが起こす可能性があるので、99.5%を超えないことが好ましい。   Further, in order to efficiently treat the supplied water and reduce the water production cost, the ratio of the permeated water amount to the raw water supply amount, that is, the recovery rate is preferably 80% or more, more preferably 85% or more, and more preferably 90% or more. good. However, if it exceeds 99.5%, clogging due to fouling of the film surface may occur, so it is preferable not to exceed 99.5%.

そして、本発明の改質半透膜は、上記のような透水性と塩化ナトリウム阻止性に加えて、優れた耐久性を併せ持つことができる。具体的には、pH7に調製した遊離塩素濃度700mg/Lの次亜塩素酸ナトリウム水溶液を含有する原水で、0.75MPaの操作圧力にて8時間連続運転を行ったとき、上記評価方法により得られる塩化ナトリウム透過率の変化率が、0.5以上5以下となる。   And the modified semipermeable membrane of this invention can have the outstanding durability in addition to the above water permeability and sodium chloride inhibition. Specifically, when the raw water containing a sodium hypochlorite aqueous solution having a free chlorine concentration of 700 mg / L prepared at pH 7 was continuously operated at an operating pressure of 0.75 MPa for 8 hours, it was obtained by the above evaluation method. The change rate of the sodium chloride transmission rate is 0.5 or more and 5 or less.

なお、本発明において、半透膜の形態は限定されるものではなく、中空糸膜でも平膜でもよい。また、本発明により得られる改質半透膜は液体分離に用いる場合エレメント、モジュールを形成するが、その形態もモジュール型、スパイラル型など特に限定されるものではない。   In the present invention, the form of the semipermeable membrane is not limited and may be a hollow fiber membrane or a flat membrane. The modified semipermeable membrane obtained by the present invention forms elements and modules when used for liquid separation, but the form thereof is not particularly limited, such as a module type or a spiral type.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例において除去率および透過率は次式により求めた。
・除去率(%)={1−(透過液中の溶質濃度)/(供給液中の溶質濃度)}×100
・透過率(%)={(透過液中の溶質濃度)/(供給液中の溶質濃度)}×100。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
In the examples, the removal rate and the transmittance were obtained by the following equations.
Removal rate (%) = {1- (solute concentration in permeate) / (solute concentration in feed solution)} × 100
Permeability (%) = {(solute concentration in permeate) / (solute concentration in feed)} × 100.

また、透水量は単位時間(日)に単位面積(m)当たりの膜を透過する透過水量(m/m・d)で求めた。さらに、含水率は、予めよく水切りをした半透膜を温度120℃の熱風乾燥機で3時間乾燥し、重量変化量を乾燥前重量で除して求めた。 The amount of water permeated was determined by the amount of permeated water per unit area (m 2 ) per unit area (m 2 ) (m 3 / m 2 · d). Furthermore, the moisture content was determined by drying a semipermeable membrane that had been well drained in advance with a hot air drier at a temperature of 120 ° C. for 3 hours and dividing the weight change by the weight before drying.

<参考例AおよびB>
多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5および1.5デシテックスのポリエステル繊維の混繊で、通気度0.7cm/cm・秒、平均孔径7μm以下の、縦30cm、横20cmの大きさの湿式不織布をガラス板上に固定し、その上に、ジメチルホルムアミド(DMF)溶媒のポリスルホン濃度15重量%の溶液(2.5ポアズ:20℃)を、総厚み200μmになるようにキャストし、直ちに水に浸積してポリスルホンの多孔性支持膜を得た(これをPS支持膜と記す)。
<Reference Examples A and B>
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a porous support membrane, was produced by the following method. That is, a wet non-woven fabric of polyester fiber having a single yarn fineness of 0.5 and 1.5 dtex, an air permeability of 0.7 cm 3 / cm 2 · sec, an average pore diameter of 7 μm or less, a length of 30 cm and a width of 20 cm Was fixed on a glass plate, and a solution of dimethylformamide (DMF) solvent in a polysulfone concentration of 15% by weight (2.5 poise: 20 ° C.) was cast to a total thickness of 200 μm, and immediately poured into water. A porous support membrane of polysulfone was obtained by immersion (this is referred to as a PS support membrane).

次に、この多孔性支持膜をm−フェニレンジアミンの2.0重量%およびε―カプロラクタムの2.0重量%を含む水溶液に2分間浸漬した後、デカンにトリメシン酸クロライドを0.1重量%になるように溶解した溶液を160cm/mの割合になるように塗布し、さらに過剰の溶液を除去して複合逆浸透膜を得た。このようにして得られた複合半透膜をpH6.5に調整した0.15重量%の塩化ナトリウム水溶液を原水とし、0.75MPa、25℃の条件下で逆浸透テストした結果、透水量は0.76m/m・d、塩化ナトリウムの除去率は99.0%であった(参考例A)。 Next, this porous support membrane was immersed in an aqueous solution containing 2.0% by weight of m-phenylenediamine and 2.0% by weight of ε-caprolactam for 2 minutes, and then 0.1% by weight of trimesic acid chloride in decane. The solution so dissolved was applied at a rate of 160 cm 3 / m 2 , and the excess solution was removed to obtain a composite reverse osmosis membrane. As a result of a reverse osmosis test under conditions of 0.75 MPa and 25 ° C., a 0.15 wt% sodium chloride aqueous solution prepared by adjusting the pH value of the composite semipermeable membrane thus obtained to pH 6.5 was used. The removal rate of 0.76 m 3 / m 2 · d and sodium chloride was 99.0% (Reference Example A).

また、得られた膜を60℃で4分間乾燥した。この乾燥逆浸透膜の含水率は、2.8重量%であった。上記と同様の逆浸透テストの結果、透水量は0.40m/m・d、塩化ナトリウムの除去率は98.7%であった(参考例B)。 The obtained film was dried at 60 ° C. for 4 minutes. The moisture content of this dry reverse osmosis membrane was 2.8% by weight. As a result of the reverse osmosis test as described above, the water permeability was 0.40 m 3 / m 2 · d, and the sodium chloride removal rate was 98.7% (Reference Example B).

<実施例1および2〜7、比較例1、2>
参考例Aで得られた膜を、0.07重量%の亜硝酸ナトリウムおよび0.1重量%の濃硫酸を含む水溶液により室温で処理した。ここで反応生成する亜硝酸の濃度は存在する亜硝酸塩が亜硝酸に転化するものとして決定できる。処理時間は2分で膜を亜硝酸水溶液から取り除いた後、直ちに水で洗い、室温にて保存したところ、膜は白色から黄色〜褐色に変化した。参考例と同条件で性能試験したところ、この膜の透水量は0.97m/m・d、塩化ナトリウムの除去率は99.5%であった(実施例1)。さらに、処理時間、亜硝酸ナトリウムの濃度、膜の含水量、膜中のm−フェニレンジアミン濃度を種々変化した結果(実施例2〜7、比較例1、2)の膜性能を表1に示す。
<Examples 1 and 2-7, Comparative Examples 1 and 2>
The membrane obtained in Reference Example A was treated at room temperature with an aqueous solution containing 0.07 wt% sodium nitrite and 0.1 wt% concentrated sulfuric acid. Here, the concentration of nitrous acid produced by the reaction can be determined as the nitrite present being converted to nitrous acid. The treatment time was 2 minutes. After removing the membrane from the aqueous nitrous acid solution, the membrane was immediately washed with water and stored at room temperature. The membrane changed from white to yellow to brown. When a performance test was performed under the same conditions as in the reference example, the water permeability of this membrane was 0.97 m 3 / m 2 · d, and the sodium chloride removal rate was 99.5% (Example 1). Further, Table 1 shows the membrane performance of the results (Examples 2 to 7, Comparative Examples 1 and 2) in which the treatment time, the concentration of sodium nitrite, the moisture content of the membrane, and the m-phenylenediamine concentration in the membrane were variously changed. .

Figure 2011125856
Figure 2011125856

実施例1〜2および比較例1、2の結果から、処理時間が2分を超えると、処理前の膜透水量および脱塩率を共には向上させることができず、処理が適用できないことがわかる。   From the results of Examples 1 and 2 and Comparative Examples 1 and 2, when the treatment time exceeds 2 minutes, both the membrane water permeability and the desalination rate before treatment cannot be improved, and the treatment cannot be applied. Recognize.

また、亜硝酸(HNO)は水中で水素イオンと亜硝酸イオンに解離する。この解離平衡定数(Ka)を用いて非解離状態にある亜硝酸濃度のpH依存性を算出することができ、グラフに表すと図1のようになるが、この図1と実施例1、5、6の結果から、pHが4より大きくなると亜硝酸が解離し、亜硝酸の濃度が亜硝酸と亜硝酸イオン全濃度の10%以下となり、性能向上の効果が低減することが明らかである。 Nitrous acid (HNO 2 ) dissociates into hydrogen ions and nitrite ions in water. Using this dissociation equilibrium constant (Ka), the pH dependence of the concentration of nitrous acid in a non-dissociated state can be calculated, which is shown in FIG. 1, as shown in FIG. From the results of 6 and 6, it is clear that when the pH is higher than 4, nitrous acid is dissociated, and the concentration of nitrous acid becomes 10% or less of the total concentration of nitrous acid and nitrite ions, thereby reducing the performance improvement effect.

さらに実施例1,3,4,7の結果から、亜硝酸ナトリウムの濃度が0.01重量%より小さくなると膜性能を向上させることができるものの、その効果が低くなる。   Further, from the results of Examples 1, 3, 4 and 7, when the concentration of sodium nitrite is smaller than 0.01% by weight, the film performance can be improved, but the effect is lowered.

<比較例3>
参考例Aで得られた膜を、0.07重量%の亜硝酸ナトリウムおよび0.1重量%の濃硫酸を含む水溶液により室温で処理した。ここで反応生成する亜硝酸の濃度は存在する亜硝酸塩が亜硝酸に転化するものとして決定できる。処理時間は2分で膜を亜硝酸水溶液から取り除いた後、直ちに水で洗い、室温にて保存したところ、膜は黄色から褐色に変化した。参考例と同条件で性能試験したところ、この膜の透水量は0.65m/m・d、塩化ナトリウムの除去率は98.7%であった。
<Comparative Example 3>
The membrane obtained in Reference Example A was treated at room temperature with an aqueous solution containing 0.07 wt% sodium nitrite and 0.1 wt% concentrated sulfuric acid. Here, the concentration of nitrous acid produced by the reaction can be determined as the nitrite present being converted to nitrous acid. The treatment time was 2 minutes, and after removing the membrane from the nitrous acid aqueous solution, it was immediately washed with water and stored at room temperature. As a result, the membrane changed from yellow to brown. When a performance test was performed under the same conditions as in the Reference Example, the water permeability of this membrane was 0.65 m 3 / m 2 · d, and the removal rate of sodium chloride was 98.7%.

<比較例4>
参考例Aで得られた膜を、pH7の500ppm次亜塩素酸ナトリウム水溶液に2分間浸漬した。参考例と同条件で性能試験したところ、この膜の透水量は1.01m/m・d、塩化ナトリウムの除去率は99.7%であった。
<Comparative example 4>
The film obtained in Reference Example A was immersed in a 500 ppm aqueous sodium hypochlorite solution at pH 7 for 2 minutes. When a performance test was performed under the same conditions as in the reference example, the water permeability of this membrane was 1.01 m 3 / m 2 · d, and the removal rate of sodium chloride was 99.7%.

<実施例8>
実施例1で得られた膜と比較例4の膜をpH7の700ppm次亜塩素酸ナトリウム水溶液で8時間浸漬した。これらの膜を水で洗浄し、参考例と同条件で性能試験した結果を示す。
実施例1膜処理:
透水量1.84m/m・d、塩化ナトリウム除去率98.4%
比較例4膜処理:
透水量2.09m/m・d、塩化ナトリウム除去率97.1%
これより、実施例1の膜が耐久性に優れることが明らかである。
<Example 8>
The membrane obtained in Example 1 and the membrane of Comparative Example 4 were immersed in a 700 ppm aqueous sodium hypochlorite solution at pH 7 for 8 hours. These membranes are washed with water and the results of performance tests under the same conditions as in the reference example are shown.
Example 1 Membrane treatment:
Water permeability 1.84m 3 / m 2 · d, sodium chloride removal rate 98.4%
Comparative Example 4 Membrane treatment:
Water permeability 2.09m 3 / m 2 · d, sodium chloride removal rate 97.1%
From this, it is clear that the film of Example 1 is excellent in durability.

<参考実施例>
実施例1で得られた膜からポリエステル不織布を剥がし、ポリスルホンからなる微多孔性支持膜と架橋ポリアミドの分離機能層の混合物を得た。これを塩化メチレンに溶解した後ろ過を行って分離機能層を得た。この分離機能層を乾燥後密閉容器に採取し、6N水酸化ナトリウム水溶液を加えて120℃に加熱して溶解後、不溶物をろ過した。得られたろ液を重水(DO)で希釈し、NMRチューブに入れFT−NMR分析装置で分析を行なった。ここで得られたプロトンのδ値より化合物を同定すると、δ=8.1(トリメシン酸),6.71−6.65(m−フェニレンジアミン),6.65−6.59(3−アミノフェノール)、5.98−5.88(m−フェニレンジアミン),5.81−5.70(3−アミノフェノール)となった。参考例Aおよび比較例4で得られた膜には、3−アミノフェノールに帰属できるシグナルは得られなかった。
<Reference Example>
The polyester nonwoven fabric was peeled off from the membrane obtained in Example 1 to obtain a mixture of a microporous support membrane made of polysulfone and a separation functional layer of crosslinked polyamide. This was dissolved in methylene chloride and then filtered to obtain a separation functional layer. The separation functional layer was dried and then collected in a sealed container. A 6N aqueous sodium hydroxide solution was added, and the mixture was heated to 120 ° C. for dissolution. The obtained filtrate was diluted with heavy water (D 2 O), put into an NMR tube, and analyzed with an FT-NMR analyzer. When the compound was identified from the δ value of protons obtained here, δ = 8.1 (trimesic acid), 6.71-6.65 (m-phenylenediamine), 6.65-6.59 (3-amino Phenol), 5.98-5.88 (m-phenylenediamine), 5.81-5.70 (3-aminophenol). In the membranes obtained in Reference Example A and Comparative Example 4, no signal that could be attributed to 3-aminophenol was obtained.

これより、ポリアミド中のアミノ基が試薬によりフェノール基に変換されたことが明らかである。   From this, it is clear that the amino group in the polyamide was converted to a phenol group by the reagent.

Claims (5)

多孔性支持膜上に多官能アミンと多官能酸ハロゲン化物との重縮合反応によるポリアミドの分離機能層を形成させてなる複合半透膜の製造方法であって、前記複合半透膜を含水率5%以上の湿潤状態、かつ、分離機能層中に存在する、分子量300以下の第一級芳香族アミン量が500mg/m以下で、分離機能層中の第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液と40℃以下で1秒以上2分以下の間で接触させる改質処理工程を有することを特徴とする複合半透膜の製造方法。 A method for producing a composite semipermeable membrane by forming a separation functional layer of polyamide by polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide on a porous support membrane, wherein the composite semipermeable membrane has a moisture content. Reacts with primary aromatic amino groups in the separation functional layer in a wet state of 5% or more and the amount of primary aromatic amine having a molecular weight of 300 or less present in the separation functional layer is 500 mg / m 2 or less. And a modification treatment step of contacting a solution containing a compound that forms a diazonium salt or a derivative thereof at 40 ° C. or less for 1 second or more and 2 minutes or less, and a method for producing a composite semipermeable membrane. 前記化合物を含む溶液のpH、亜硝酸および/またはその塩の全モル濃度(mol/L)、反応時間(s)により算出されるEI値が0.005〜500の範囲内である、請求項1に記載の複合半透膜の製造方法。 The EI value calculated by the pH of the solution containing the compound, the total molar concentration (mol / L) of nitrous acid and / or a salt thereof, and the reaction time (s) is in the range of 0.005 to 500. 2. A method for producing a composite semipermeable membrane according to 1. 前記改質処理工程の前および/または後に、前記複合半透膜をpH4以下の酸性水溶液に接触させる工程を有する、請求項1または2に記載の複合半透膜の製造方法。 The method for producing a composite semipermeable membrane according to claim 1, further comprising a step of bringing the composite semipermeable membrane into contact with an acidic aqueous solution having a pH of 4 or less before and / or after the modification treatment step. 前記第一級芳香族アミンがm−フェニレンジアミンである、請求項1〜3のいずれかに記載の複合半透膜の製造方法。 The method for producing a composite semipermeable membrane according to any one of claims 1 to 3, wherein the primary aromatic amine is m-phenylenediamine. 多孔性支持膜上に多官能アミンと多官能酸ハロゲン化物との重縮合反応によるポリアミドの分離機能層を形成させてなるポリアミド複合半透膜であって、含水率5%以上の湿潤状態、かつ、分離機能層中に存在する、分子量300以下の第一級芳香族アミン量が500mg/m以下で、分離機能層中の第一級芳香族アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物を含む溶液と40℃以下で1秒以上2分以下の間で接触させる改質処理により得られ、波長450nmにおける光透過率が10〜95%の範囲内であり、かつ、フェノール性水酸基を有することを特徴とするポリアミド複合半透膜。 A polyamide composite semipermeable membrane in which a polyamide separation functional layer is formed on a porous support membrane by a polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide, and the moisture content is 5% or more, and The diazonium salt or derivative thereof reacts with the primary aromatic amino group in the separation functional layer when the amount of the primary aromatic amine having a molecular weight of 300 or less present in the separation functional layer is 500 mg / m 2 or less. It is obtained by a modification treatment in which a solution containing the compound to be produced is contacted at 40 ° C. or less for 1 second or more and 2 minutes or less, and the light transmittance at a wavelength of 450 nm is in the range of 10 to 95%, and phenolic A polyamide composite semipermeable membrane characterized by having a hydroxyl group.
JP2010276760A 2003-11-26 2010-12-13 Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane Pending JP2011125856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276760A JP2011125856A (en) 2003-11-26 2010-12-13 Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003395099 2003-11-26
JP2003395099 2003-11-26
JP2010276760A JP2011125856A (en) 2003-11-26 2010-12-13 Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004313493A Division JP2005177741A (en) 2003-11-26 2004-10-28 Treatment method of semipermeable membrane, modified semipermeable membrane and its production method

Publications (1)

Publication Number Publication Date
JP2011125856A true JP2011125856A (en) 2011-06-30

Family

ID=44289034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276760A Pending JP2011125856A (en) 2003-11-26 2010-12-13 Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2011125856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
WO2015046582A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Composite semipermeable membrane and method for manufacturing same
WO2015105631A1 (en) * 2014-01-07 2015-07-16 Dow Global Technologies Llc Desalination of aqueous mixture containing nano-sized particles using fouling resistant reverse osmosis membrane
KR20150124952A (en) 2013-02-28 2015-11-06 도레이 카부시키가이샤 Composite semipermeable membrane
KR20180074694A (en) 2015-10-27 2018-07-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175604A (en) * 1987-01-15 1988-07-20 フイルムテク コーポレーシヨン Reverse osmosis membrane
JPH01130707A (en) * 1987-11-18 1989-05-23 Dow Chem Co:The Polyamide reverse osmosis membrane
JPH03118823A (en) * 1989-04-14 1991-05-21 Aligena Ag Composite membrane and method of its use
JPH03186326A (en) * 1989-12-13 1991-08-14 Filmtec Corp Composite polyamide membrane treated for separation of concentrated solute
JPH04104825A (en) * 1990-08-22 1992-04-07 Toray Ind Inc Manufacture of composite membrane
JP2000093771A (en) * 1998-09-24 2000-04-04 Toray Ind Inc Fluid separation membrane and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175604A (en) * 1987-01-15 1988-07-20 フイルムテク コーポレーシヨン Reverse osmosis membrane
JPH01130707A (en) * 1987-11-18 1989-05-23 Dow Chem Co:The Polyamide reverse osmosis membrane
JPH03118823A (en) * 1989-04-14 1991-05-21 Aligena Ag Composite membrane and method of its use
JPH03186326A (en) * 1989-12-13 1991-08-14 Filmtec Corp Composite polyamide membrane treated for separation of concentrated solute
JPH04104825A (en) * 1990-08-22 1992-04-07 Toray Ind Inc Manufacture of composite membrane
JP2000093771A (en) * 1998-09-24 2000-04-04 Toray Ind Inc Fluid separation membrane and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
KR20140082644A (en) 2011-09-29 2014-07-02 도레이 카부시키가이샤 Composite semipermeable membrane
KR20150124952A (en) 2013-02-28 2015-11-06 도레이 카부시키가이샤 Composite semipermeable membrane
WO2015046582A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Composite semipermeable membrane and method for manufacturing same
KR20160063337A (en) 2013-09-30 2016-06-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for manufacturing same
WO2015105631A1 (en) * 2014-01-07 2015-07-16 Dow Global Technologies Llc Desalination of aqueous mixture containing nano-sized particles using fouling resistant reverse osmosis membrane
CN105848759A (en) * 2014-01-07 2016-08-10 陶氏环球技术有限责任公司 Desalination of aqueous mixture containing nano-sized particles by using fouling resistant reverse osmosis membrane
CN105848759B (en) * 2014-01-07 2019-04-02 陶氏环球技术有限责任公司 Make the aqueous mixture desalination of the particle containing nanosized using anti-incrustation reverse osmosis membrane
KR20180074694A (en) 2015-10-27 2018-07-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production
US11045771B2 (en) 2015-10-27 2021-06-29 Toray Industries, Inc. Composite semipermeable membrane and method for producing same

Similar Documents

Publication Publication Date Title
JP5807547B2 (en) Semipermeable membrane and method for producing the same
JP5895838B2 (en) Separation membrane element and method for producing composite semipermeable membrane
JP5640972B2 (en) Composite semipermeable membrane and method for producing the same
JP5741431B2 (en) Composite semipermeable membrane and method for producing the same
JP4618081B2 (en) Processing method and manufacturing method of composite semipermeable membrane
KR20140005885A (en) Composite semipermeable membrane
JPWO2010050421A1 (en) Composite semipermeable membrane and method for producing the same
JP4525296B2 (en) Manufacturing method of composite semipermeable membrane
JP2010137192A (en) Composite nano-filter membrane
JP5267273B2 (en) Manufacturing method of composite semipermeable membrane
JP2011125856A (en) Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
JP2005177741A (en) Treatment method of semipermeable membrane, modified semipermeable membrane and its production method
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP5077779B2 (en) Method for producing composite semipermeable membrane and composite semipermeable membrane module
JP3780734B2 (en) Composite semipermeable membrane
JP2013223861A (en) Composite diaphragm
JP2000093771A (en) Fluid separation membrane and its manufacture
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JP5126155B2 (en) Manufacturing method of composite semipermeable membrane
JP2009034669A (en) Method for manufacturing composite semipermeable membrane
JP2003200027A (en) Method for manufacturing composite semipermeable membrane
JP2005152818A (en) Liquid separation membrane and its manufacturing method
JP2010125439A (en) Method of manufacturing composite semi-permeable membrane
JP5263104B2 (en) Manufacturing method of composite semipermeable membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119