JPH051051B2 - - Google Patents
Info
- Publication number
- JPH051051B2 JPH051051B2 JP61197291A JP19729186A JPH051051B2 JP H051051 B2 JPH051051 B2 JP H051051B2 JP 61197291 A JP61197291 A JP 61197291A JP 19729186 A JP19729186 A JP 19729186A JP H051051 B2 JPH051051 B2 JP H051051B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- chlorine
- aqueous solution
- ultra
- acid chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 claims description 72
- 239000002131 composite material Substances 0.000 claims description 25
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 24
- 239000000460 chlorine Substances 0.000 claims description 24
- 229910052801 chlorine Inorganic materials 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000004760 aramid Substances 0.000 claims description 9
- 229920003235 aromatic polyamide Polymers 0.000 claims description 9
- 238000010406 interfacial reaction Methods 0.000 claims description 8
- -1 polybenzimidazolone Polymers 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000035699 permeability Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 229920002492 poly(sulfone) Polymers 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 3
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- RPHKINMPYFJSCF-UHFFFAOYSA-N benzene-1,3,5-triamine Chemical compound NC1=CC(N)=CC(N)=C1 RPHKINMPYFJSCF-UHFFFAOYSA-N 0.000 description 2
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical group CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- HEAHMJLHQCESBZ-UHFFFAOYSA-N 2,5-diaminobenzenesulfonic acid Chemical compound NC1=CC=C(N)C(S(O)(=O)=O)=C1 HEAHMJLHQCESBZ-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- SRAIPROVPBDQRW-UHFFFAOYSA-N 3,5-diamino-n-(3,5-diaminophenyl)benzamide Chemical compound NC1=CC(N)=CC(NC(=O)C=2C=C(N)C=C(N)C=2)=C1 SRAIPROVPBDQRW-UHFFFAOYSA-N 0.000 description 1
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical compound NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- XPDVQPODLRGWPL-UHFFFAOYSA-N 4-(dichlorosulfamoyl)benzoic acid Chemical compound OC(=O)C1=CC=C(S(=O)(=O)N(Cl)Cl)C=C1 XPDVQPODLRGWPL-UHFFFAOYSA-N 0.000 description 1
- XPAQFJJCWGSXGJ-UHFFFAOYSA-N 4-amino-n-(4-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1NC(=O)C1=CC=C(N)C=C1 XPAQFJJCWGSXGJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 241001237745 Salamis Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 125000000777 acyl halide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- FNGBYWBFWZVPPV-UHFFFAOYSA-N benzene-1,2,4,5-tetracarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=C(C(Cl)=O)C=C1C(Cl)=O FNGBYWBFWZVPPV-UHFFFAOYSA-N 0.000 description 1
- CJPIDIRJSIUWRJ-UHFFFAOYSA-N benzene-1,2,4-tricarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(C(Cl)=O)=C1 CJPIDIRJSIUWRJ-UHFFFAOYSA-N 0.000 description 1
- YBGQXNZTVFEKEN-UHFFFAOYSA-N benzene-1,2-disulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CC=C1S(Cl)(=O)=O YBGQXNZTVFEKEN-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960001648 halazone Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- WUQGUKHJXFDUQF-UHFFFAOYSA-N naphthalene-1,2-dicarbonyl chloride Chemical compound C1=CC=CC2=C(C(Cl)=O)C(C(=O)Cl)=CC=C21 WUQGUKHJXFDUQF-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- WPNXWWLAOCWIDT-UHFFFAOYSA-N pyridine-2,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CN=C1C(Cl)=O WPNXWWLAOCWIDT-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000015175 salami Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
〔産業上の利用分野〕
本発明は、海水やカン水の脱塩、有価物の回
収、廃水の再利用、超純水の製造等に用いること
のできる、逆浸透用の半透性複合膜の製造方法に
関する。
〔従来の技術〕
従来、工業的に利用されている半透膜には、酢
酸セルローズから作つた非対称膜として、例えば
米国特許第3133132号明細書及び同第3133137号明
細書等に記載されたロブ型の膜がある。
しかし、この膜は、耐加水分解性、耐微生物
性、耐薬品性などに問題があり、特に透過性を向
上しようとすると耐圧性、耐久性を兼ね備えた膜
が製造できず、一部使用されているが広範囲の用
途に実用化されるに至つていない。これらの酢酸
セルローズ非対称膜の欠点をなくした新しい素材
に対する研究は米国、日本を中心に盛んに行なわ
れているが、芳香族ポリアミド、ポリアミドヒド
ラジド(米国特許第3567632号公報)、ポリアミド
酸(特公昭55−37282号公報)、架橋ポリアミド酸
(特公昭56−3769号公報)、ポリイミダゾピロロ
ン、ポリスルホンアミド、ポリベンズイミダゾー
ル、ポリベンズイミダゾロン、ポリアリーレンオ
キシドなど、その一部の欠点を改良する素材は得
られているものの、選択分離性あるいは透過性等
の面では酢酸セルローズ膜より劣つている。
一方、ロブ型とは型を異にする半透膜として多
孔性支持膜上に実質的に膜性能を発揮する超薄膜
を被覆した複合膜が開発されている。複合膜にお
いては、超薄膜と多孔性支持膜を各々の用途に最
適な素材を選ぶことが可能となり、製膜技術の自
由度が増す。また常時湿潤状態で保存しなければ
ならないロブ型とは異なり、乾燥状態での保存が
可能であるなどの利点がある。
このような複合膜のうち超薄膜がポリアミドま
たはポリ尿素からなる複合膜は膜性能、特に水透
過性が高いため半透性複合膜開発の主流になつて
いる。該複合膜の製造方法としては米国特許第
3191815号明細書、同第3744642号明細書、同第
4039440号明細書、同第4277344号明細書および特
表昭56−500062号公報に開示されているように多
孔性支持膜上でアミノ基を有する化合物を含む水
溶液と多官能性反応試薬を含む炭化水素系溶液と
を接触させ、界面反応によつて超薄膜を形成する
方法がある。
〔発明が解決しようとする問題点〕
本発明者らはこのような半透性複合膜の性能向
上、特に水透過性を更に向上させるべく、鋭意検
討した結果、本発明に到達したのである。
〔問題点を解決するための手段〕
上記目的を達成するため本発明は下記の構成か
らなる。
「多孔性支持膜と界面反応によつて得られる架
橋芳香族ポリアミドからなる超薄膜を有する半透
性複合膜を製造する際に、該超薄膜をPH6.0〜13
の塩素含有水溶液に常圧で接触することを特徴と
する半透性複合膜の製造方法。」
本発明に使用される多孔性支持体膜とはその表
面に数十〜数千オングストロームの微細孔を有す
る支持膜であつて、ポリスルホン、ポリ塩化ビニ
ル、塩素化塩化ビニル、ポリカーボネート、ポリ
アクリロニトリル、セルローズエステル等を素材
とする公知のものが含まれる。この中、本発明に
は多孔性のポリスルホン支持膜が特に有効であ
る。多孔性ポリスルホンの製膜はポリスルホンを
ジメチルホルムアミド等の非プロトン性極性溶媒
の溶液にして例えばポリエステル繊維からなる織
物または不織布上に流延し、次いで実質的に水か
らなる媒体中で凝固(ゲル化)する、いわゆる湿
式製膜等によつて行なう。このようにして得られ
た多孔性ポリスルホンは表面には数十〜数百オン
グストローム程度の大きさで表面から裏面にいく
ほど大きくなる微細孔を有する。
本発明において、界面反応によつて得られる超
薄膜は、架橋芳香族ポリアミドと主成分とするも
のであり、該架橋芳香族ポリアミドは2つ以上の
反応性のアミノ基を有する芳香族アミンと、多官
能芳香族酸ハロゲン化物の界面反応によつて得る
ことができる。
本発明において2つ以上の反応性のアミノ基を
有する芳香族アミン(以下アミノ化合物と略す)
とは、芳香環に直結する2個以上のアミノ基を有
するアミノ化合物を示し、例えば、メタフエニレ
ンジアミン、パラフエニレンジアミン、3,5−
ジアミノ安息香酸、2,5−ジアミノベンゼンス
ルホン酸、4,4′−ジアミノベンズアニリド、
3,3′,5,5′−テトラアミノベンズアニリド、
1,3,5−トリアミノベンゼン等を例示するこ
とができる。これらのアミノ化合物は、一般には
水溶液の形で界面反応に供せられ、アミノ化合物
水溶液におけるアミノ化合物の濃度は0.1〜10重
量%、好ましくは0.5〜5.0重量%とする。またア
ミノ化合物水溶液にはアミノ化合物と多官能性反
応試薬との反応を妨害しないものであれば、界面
活性剤や有機溶媒等が含まれてもよい。
多孔性支持膜表面へのアミノ化合物水溶液の被
覆は、該水溶液が表面に均一にかつ連続的に被覆
されればよく、公知の塗布手段例えば、該水溶液
を多孔性支持膜表面にコーテイングする方式、多
孔性支持膜を該水溶液に浸漬する方法等で行なえ
ばよい。
本発明における多官能芳香族酸ハロゲン化物と
は、芳香環に直結するアシルハライド基を2つ以
上有する化合物(以下多官能性反応試薬)をい
い、例えば、トリメシン酸クロライド、ベンゾフ
エノンテトラカルボン酸クロライド、トリメリツ
ト酸クロライド、ピロメリツト酸クロライド、イ
ソフタル酸クロライド、テレフタル酸クロライ
ド、ナフタレンジカルボン酸クロライド、ジフエ
ニルジカルボン酸クロライド、ピリジンジカルボ
ン酸クロライド、ベンゼンジスルホン酸クロライ
ドなどが挙げられるが、製膜溶媒に対する溶解性
及び半透性複合膜の性能を考慮するとトリメシン
酸クロライド、イソフタル酸クロライド、テレフ
タル酸クロライドが好ましい。
これらの多官能反応試薬は、一般には、水と非
混和性の溶媒に溶解して界面反応に供せられ、溶
媒としては、アミノ化合物および多官能反応試薬
に対して不活性であり、かつ水に対して不溶性ま
たは難溶性である必要がある。更に該溶媒は多孔
性支持膜に対しても不活性なものが好ましい。該
溶媒の代表例としては液状の炭化水素およびハロ
ゲン化炭化水素、例えば、ペンタン、ヘキサン、
ヘプタン、1,1,2−トリクロロ−1,2,2
−トリフルオロエタンがある。多官能反応試薬の
濃度は好ましくは0.01〜10重量%、さらに好まし
くは0.02〜2重量%である。
多官能反応試薬のアミノ化合物水溶液相への接
触の方法はアミノ化合物水溶液の多孔性支持膜へ
の被覆方法と同様に行なえばよい。
このようなアミノ化合物の水溶液と、多官能反
応試薬の溶液は、多孔性支持膜上で両者を接触す
ると界面反応によつてその界面に架橋芳香族ポリ
アミドの超薄膜が形成する。
この超薄膜をPH6.0〜13の塩素含有水溶液に浸
漬すると、得られた半透性複合膜の性能、特に水
透過性が向上する。塩素発生試薬としては、塩素
ガス、サラシ粉、次亜塩素酸ナトリウム、二酸化
塩素、クロラミンB、クロラミンT、ハラゾー
ン、ジクロロジメチルヒダントイン、塩素化イソ
シアヌル酸およびその塩などを代表例として挙げ
ることができ、酸化力の強さによつて濃度を決定
することが好ましい。上記の塩素発生試薬の中
で、次亜塩素酸ナトリウム水溶液が、取り扱い性
の点から好ましい。塩素含有水溶液の酸化力とPH
の間には重要な関係があり、PHがアルカリ側にな
るほど、酸化力が弱くなる。これは酸化力の強い
次亜塩素酸(HClO)がPHによつて、その存在状
態が変化するためである。次亜塩酸はH+とClO-
に解離する。この解離はPHに影響され、PH9以上
では、ほとんど次亜塩素酸は次亜塩素酸イオンと
して存在し、PH6.5では約90%が解離しない次亜
塩素酸として存在する。
本発明において好ましい塩素処理はClO-イオ
ンによつて生ずると考えられ、PH6未満では実質
的にClO-が存在せず好ましくない。またPHが高
ければClO-が存在しても、アミド結合の加水分
解が生じ、超薄膜が損傷を受けるためPH13以下、
好ましくはPH11以下の塩素含有水溶液が好適に用
いられる。
また本発明においては、塩素処理が常圧で行な
われることが必須であり、加圧下での塩素処理は
好ましくない結果を与える。常圧とは、膜に対し
て透過流を与えるような、膜の両面の圧力差がな
いことを意味し、単に大気圧のもとに処理を行な
うことを意味していない。例えば、膜の両面の圧
力が等しく加圧されていれば問題はない。しかし
ながら塩素処理は膜を塩素含有水溶液に単に浸漬
するだけでよく、この点を考えれば、特にオート
クレーブ中などで加圧する必要はない。
また膜の両面に圧力差が存在し、水を透過しな
がら塩素処理すると、一般に水透過性が減少して
好ましくないが、圧力差が0〜1.2Kg/cm2で水透
過速度が無視できる程度であれば、特に問題は生
じない。
塩素処理を行なうと、水透過性が向上する。こ
の理由は、生成した架橋芳香族ポリアミドのアミ
ド水素が塩素によつて置換され、架橋芳香族ポリ
アミドの結晶性が低下するためと考えられる。
また、塩素処理を行なわない半透性複合膜は酸
性領域、例えばPH4の原水を用いた場合における
溶出排除率の低下が大きい。処理を行なつた半透
性複合膜は酸性領域における溶出排除率の低下が
抑制される。この理由は生成した架橋芳香族ポリ
アミドは完全にアミド結合のみで芳香環を結合し
ておらず、一部にアミン末端基(−NH2)が生
じ、この末端基がイオン化するためと考えられ
る。塩素処理を行なうことによつてアミン末端基
がクロルアミン(−NHCl)に変化し、さらに分
解して減少するため酸性領域における溶出排除率
の低下が抑制されるものと考えられる。
塩素処理剤として、次亜塩素酸ナトリウムを使
用する場合、遊離塩素の濃度は10〜2000ppm、膜
性能のバランスを考えると、100〜1000ppmの範
囲が好ましい。
塩素処理時間は2分〜20時間、遊離塩素濃度が
低く、処理のPHが高い場合、処理時間は長時間が
好ましく、逆に遊離塩素濃度が高く、処理PHが低
い場合、処理時間は短時間が好ましい。
〔実施例〕
以下に実施例により本発明を具体的に説明す
る。
実施例1〜3、比較例1
タテ30cm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニ
ールのマルチフイラメント糸、織密度タテ90本/
インチ、ヨコ67本/インチ、厚さ160μ)をガラ
ス板上に固定し、その上にポリスルホン(ユニオ
ン・カーボイド社製のUdel p3500)の15重量%
ジメチルホルムアミド(DMF)溶液を200μの厚
みで室温(20℃)でキヤストし、ただちに純水中
に浸漬して5分間放置することによつて繊維補強
ポリスルホン支持体(以下FR−PS支持体と略
す)を作製する。このようにして得られたFR−
PS支持体(厚さ210〜215μ)の純水透過係数は、
圧力1Kg/cm2、温度25℃で測定して0.005〜0.01
g/cm2・sec・atmであつた。
FR−PS支持体をアミノ化合物として、メタフ
エニレンジアミン1重量%と、1,3,5−トリ
アミノベンゼン1重量%の混合水溶液に2分間浸
漬した。FR−PS支持体表面から余分な該水溶液
を取り除いた後、1,1,2−トリクロロ−1,
2,2−トリフルオロエタンに多官能反応試薬と
して、トリメシン酸クロライド0.05重量%、テレ
フタル酸クロライド0.05重量%およびジメチルホ
ルムアミド300ppmを溶解した溶液を表面が完全
に濡れるようにコーテイングして1分間静置し
た。次に膜を垂直にして余分な該溶液を液切りし
て除去した後、炭酸ナトリウム0.2重量%を溶解
した水溶液に5分間浸漬した。水道水で膜中に含
まれる該溶液を取り除いた。
このようにして得られた複合膜を表1に示す遊
離塩素を含有し、PH7.0に調整した水溶液に5分
間浸漬した後、水道水で洗浄した、このようにし
て得られた複合膜をPH6.5に調整した1500ppmの
食塩水を原水とし15Kg/cm2、25℃の条件下で逆浸
透テストした結果、表1に示した膜性能が得られ
た。
実施例4〜6、比較例2
実施例1〜3、比較例1において、遊離塩素濃
度500ppmの水溶液を用いて、表2に示すPHに調
整した水溶液に5分間浸漬した。他は同様にして
複合膜を得た。
膜性能を表2に示す。
実施例 7〜9
実施例1〜3において、遊離塩素濃度
1000ppm、PH10.5に調整した水溶液に表3に示す
時間浸漬し、他は同様にして得た複合膜の性能を
示す。
実施例 10
比較例1、実施例1〜3で得られた複合膜を、
PH4.0に調整した1500ppmの食塩水を原水とし15
Kg/cm2、25℃の条件下で逆浸透テストした結果、
表4に示した膜性能が得られた。
実施例 11
比較例1、実施例2で得られた複合膜をPH6.5、
塩素濃度10ppmに調整した1500ppmの食塩水を原
水とし15Kg/cm2、25℃の条件下で300時間逆浸透
テストした結果、表5に示した膜性能が得られ
た。
実施例12、比較例3
実施例2、比較例1において、アミノ化合物と
して、メタフエニレンジアミン2重量%水溶液を
用い、多官能反応試薬として、トリメシン酸クロ
ライド0.1重量%の1,1,2−トリクロロ−1,
2,2−トリフルオロエタン溶液を用いて他は同
様にして複合膜を得た。
膜性能を表6に示す。
以上の実施例に示した様に本発明においては従
来の複合膜の製造方法に比較して透水速度が1.1
〜4.0倍に向上した。
[Industrial Application Field] The present invention provides a semipermeable composite membrane for reverse osmosis that can be used for desalination of seawater and can water, recovery of valuables, reuse of wastewater, production of ultrapure water, etc. Relating to a manufacturing method. [Prior Art] Conventionally, semipermeable membranes that have been used industrially include asymmetric membranes made from cellulose acetate, such as the Robo membrane described in U.S. Pat. No. 3,133,132 and U.S. Pat. There is a type membrane. However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc. In particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability, so it is not used in some cases. However, it has not yet been put into practical use in a wide range of applications. Research into new materials that eliminate the drawbacks of these asymmetric cellulose acetate membranes is being actively conducted mainly in the United States and Japan, but aromatic polyamides, polyamide hydrazide (US Pat. No. 3,567,632), polyamic acid (Japanese Patent Publication) 55-37282), crosslinked polyamic acid (Japanese Patent Publication No. 56-3769), polyimidazopyrrolone, polysulfonamide, polybenzimidazole, polybenzimidazolone, polyarylene oxide, etc. Materials that improve some of their drawbacks. However, it is inferior to cellulose acetate membranes in terms of selective separation and permeability. On the other hand, a composite membrane has been developed in which a porous support membrane is coated with an ultra-thin membrane that exhibits substantial membrane performance as a semipermeable membrane different from the lobe type. For composite membranes, it becomes possible to select the optimal material for each application for ultra-thin membranes and porous support membranes, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike the lobe type, which must be stored in a wet state at all times. Among such composite membranes, ultra-thin composite membranes made of polyamide or polyurea have high membrane performance, particularly water permeability, and have therefore become the mainstream in the development of semipermeable composite membranes. The method for manufacturing the composite membrane is described in U.S. Patent No.
Specification No. 3191815, Specification No. 3744642, Specification No. 3191815, Specification No. 3744642, Same No.
Carbonization containing an aqueous solution containing a compound having an amino group and a polyfunctional reaction reagent on a porous support membrane as disclosed in Specification No. 4039440, Specification No. 4277344, and Japanese Patent Publication No. 56-500062. There is a method of forming an ultra-thin film through interfacial reaction by bringing it into contact with a hydrogen-based solution. [Problems to be Solved by the Invention] The present inventors have arrived at the present invention as a result of extensive studies aimed at further improving the performance of such semipermeable composite membranes, particularly the water permeability. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. "When manufacturing a semipermeable composite membrane having an ultra-thin membrane made of a cross-linked aromatic polyamide obtained by interfacial reaction with a porous support membrane, the ultra-thin membrane is
A method for producing a semipermeable composite membrane, which comprises contacting a chlorine-containing aqueous solution at normal pressure. ” The porous support membrane used in the present invention is a support membrane having micropores of several tens to several thousand angstroms on its surface, and is made of polysulfone, polyvinyl chloride, chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, This includes known materials made from cellulose ester and the like. Among these, porous polysulfone support membranes are particularly effective in the present invention. Porous polysulfone films are produced by casting polysulfone as a solution in an aprotic polar solvent such as dimethylformamide onto a woven or nonwoven fabric made of polyester fibers, and then coagulating (gelling) in a medium consisting essentially of water. ), or by so-called wet film forming. The porous polysulfone thus obtained has micropores on the surface having a size of several tens to several hundred angstroms and increasing in size from the front surface to the back surface. In the present invention, the ultra-thin film obtained by interfacial reaction is mainly composed of a crosslinked aromatic polyamide, and the crosslinked aromatic polyamide contains an aromatic amine having two or more reactive amino groups, It can be obtained by interfacial reaction of polyfunctional aromatic acid halides. In the present invention, aromatic amines having two or more reactive amino groups (hereinafter abbreviated as amino compounds)
indicates an amino compound having two or more amino groups directly connected to an aromatic ring, such as metaphenylenediamine, paraphenylenediamine, 3,5-
Diaminobenzoic acid, 2,5-diaminobenzenesulfonic acid, 4,4'-diaminobenzanilide,
3,3',5,5'-tetraaminobenzanilide,
Examples include 1,3,5-triaminobenzene. These amino compounds are generally subjected to the interfacial reaction in the form of an aqueous solution, and the concentration of the amino compound in the aqueous amino compound solution is 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight. Further, the amino compound aqueous solution may contain a surfactant, an organic solvent, etc. as long as they do not interfere with the reaction between the amino compound and the polyfunctional reaction reagent. The aqueous solution of the amino compound may be coated on the surface of the porous support membrane as long as the aqueous solution is uniformly and continuously coated on the surface. This may be carried out by a method such as immersing a porous support membrane in the aqueous solution. The polyfunctional aromatic acid halide in the present invention refers to a compound having two or more acyl halide groups directly connected to an aromatic ring (hereinafter referred to as a polyfunctional reaction reagent), such as trimesic acid chloride, benzophenonetetracarboxylic acid Examples include chloride, trimellitic acid chloride, pyromellitic acid chloride, isophthalic acid chloride, terephthalic acid chloride, naphthalenedicarboxylic acid chloride, diphenyldicarboxylic acid chloride, pyridinedicarboxylic acid chloride, benzenedisulfonic acid chloride, etc., but their solubility in the membrane forming solvent In consideration of the performance of the semipermeable composite membrane, trimesic acid chloride, isophthalic acid chloride, and terephthalic acid chloride are preferred. These polyfunctional reaction reagents are generally dissolved in a water-immiscible solvent and subjected to an interfacial reaction, and the solvent is inert to the amino compound and the polyfunctional reaction reagent and water. It must be insoluble or poorly soluble in Furthermore, it is preferable that the solvent is inert to the porous support membrane. Typical examples of such solvents include liquid hydrocarbons and halogenated hydrocarbons, such as pentane, hexane,
Heptane, 1,1,2-trichloro-1,2,2
- There is trifluoroethane. The concentration of the polyfunctional reaction reagent is preferably 0.01 to 10% by weight, more preferably 0.02 to 2% by weight. The method for contacting the polyfunctional reaction reagent with the aqueous amino compound solution phase may be carried out in the same manner as the method for coating the porous support membrane with the aqueous amino compound solution. When such an aqueous solution of an amino compound and a solution of a polyfunctional reaction reagent are brought into contact with each other on a porous support membrane, an ultra-thin film of crosslinked aromatic polyamide is formed at the interface due to an interfacial reaction. When this ultra-thin membrane is immersed in a chlorine-containing aqueous solution with a pH of 6.0 to 13, the performance of the resulting semipermeable composite membrane improves, especially its water permeability. Typical examples of chlorine generating reagents include chlorine gas, salami powder, sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, halazone, dichlorodimethylhydantoin, chlorinated isocyanuric acid and its salts, etc. It is preferable to determine the concentration depending on the strength of oxidizing power. Among the above-mentioned chlorine generating reagents, a sodium hypochlorite aqueous solution is preferred from the viewpoint of ease of handling. Oxidizing power and pH of chlorine-containing aqueous solutions
There is an important relationship between the two; the more alkaline the pH, the weaker the oxidizing power. This is because the state of existence of hypochlorous acid (HClO), which has strong oxidizing power, changes depending on the pH. Hypochlorite is H + and ClO -
dissociates into This dissociation is affected by pH; at pH 9 or above, most hypochlorous acid exists as hypochlorite ions, and at pH 6.5, about 90% exists as undissociated hypochlorous acid. In the present invention, the preferred chlorination treatment is thought to be caused by ClO - ions, and at pH below 6 there is substantially no ClO - , which is not preferred. In addition, if the pH is high, even if ClO - is present, hydrolysis of the amide bond will occur and the ultra-thin film will be damaged.
Preferably, a chlorine-containing aqueous solution with a pH of 11 or less is suitably used. Further, in the present invention, it is essential that the chlorine treatment be carried out at normal pressure, and chlorine treatment under increased pressure will give unfavorable results. Atmospheric pressure means that there is no pressure difference between the two sides of the membrane that would provide a permeate flow to the membrane, and does not simply mean that the process is carried out under atmospheric pressure. For example, there is no problem if the pressure on both sides of the membrane is equal. However, the chlorine treatment can be carried out by simply immersing the membrane in a chlorine-containing aqueous solution, and considering this point, there is no need to apply pressure in an autoclave or the like. In addition, there is a pressure difference on both sides of the membrane, and if water is permeated while being treated with chlorine, the water permeability will generally decrease, which is undesirable, but if the pressure difference is 0 to 1.2 Kg/ cm2 , the water permeation rate is negligible. If so, no particular problem will occur. Chlorination improves water permeability. The reason for this is thought to be that the amide hydrogen of the produced crosslinked aromatic polyamide is replaced by chlorine, resulting in a decrease in the crystallinity of the crosslinked aromatic polyamide. Furthermore, a semipermeable composite membrane that is not subjected to chlorine treatment has a large drop in elution exclusion rate when raw water in an acidic region, for example, pH 4, is used. The treated semipermeable composite membrane suppresses a decrease in elution exclusion rate in an acidic region. The reason for this is thought to be that the produced crosslinked aromatic polyamide is completely bonded only with amide bonds and has no aromatic rings, and some amine terminal groups ( -NH2 ) are generated, and these terminal groups are ionized. It is thought that by chlorine treatment, the amine end group changes to chloramine (-NHCl), which is further decomposed and reduced, thereby suppressing the decrease in elution exclusion rate in the acidic region. When using sodium hypochlorite as the chlorination agent, the concentration of free chlorine is preferably 10 to 2000 ppm, and in consideration of the balance of membrane performance, the range is preferably 100 to 1000 ppm. The chlorine treatment time is 2 minutes to 20 hours. If the free chlorine concentration is low and the treatment PH is high, the treatment time is preferably long. Conversely, if the free chlorine concentration is high and the treatment PH is low, the treatment time is short. is preferred. [Example] The present invention will be specifically described below with reference to Examples. Examples 1 to 3, Comparative Example 1 Taffeta made of polyester fibers with a length of 30 cm and a width of 20 cm (multifilament yarn of 150 denier in both warp and weft, weaving density of 90 pieces in length/
inch, width 67 pieces/inch, thickness 160μ) was fixed on a glass plate, and 15% by weight of polysulfone (Udel p3500 manufactured by Union Carboid) was placed on it.
A fiber-reinforced polysulfone support (hereinafter abbreviated as FR-PS support) was prepared by casting dimethylformamide (DMF) solution to a thickness of 200μ at room temperature (20°C), immediately immersing it in pure water, and leaving it for 5 minutes. ). FR− obtained in this way
The pure water permeability coefficient of the PS support (thickness 210-215μ) is
0.005 to 0.01 when measured at a pressure of 1Kg/cm 2 and a temperature of 25℃
g/ cm2・sec・atm. The FR-PS support was immersed as an amino compound in a mixed aqueous solution of 1% by weight of metaphenylenediamine and 1% by weight of 1,3,5-triaminobenzene for 2 minutes. After removing the excess aqueous solution from the surface of the FR-PS support, 1,1,2-trichloro-1,
Coat the surface with a solution containing 0.05% by weight of trimesic acid chloride, 0.05% by weight of terephthalic acid chloride, and 300 ppm of dimethylformamide as polyfunctional reaction reagents in 2,2-trifluoroethane so that the surface is completely wet, and leave it for 1 minute. did. Next, the membrane was turned vertically to remove excess solution by draining, and then immersed in an aqueous solution containing 0.2% by weight of sodium carbonate for 5 minutes. The solution contained in the membrane was removed with tap water. The composite membrane thus obtained was immersed in an aqueous solution containing free chlorine shown in Table 1 and adjusted to pH 7.0 for 5 minutes, and then washed with tap water. As a result of a reverse osmosis test using 1500 ppm saline solution adjusted to pH 6.5 as raw water at 15 kg/cm 2 and 25°C, the membrane performance shown in Table 1 was obtained. Examples 4 to 6, Comparative Example 2 In Examples 1 to 3 and Comparative Example 1, the samples were immersed for 5 minutes in an aqueous solution having a free chlorine concentration of 500 ppm and adjusted to the pH shown in Table 2. Other composite membranes were obtained in the same manner. Membrane performance is shown in Table 2. Examples 7-9 In Examples 1-3, free chlorine concentration
The performance of composite membranes obtained by immersing in an aqueous solution adjusted to 1000 ppm and pH 10.5 for the time shown in Table 3, and otherwise obtained in the same manner is shown. Example 10 Composite membranes obtained in Comparative Example 1 and Examples 1 to 3 were
Use 1500ppm saline solution adjusted to PH4.0 as raw water15
As a result of reverse osmosis test under the conditions of Kg/cm 2 and 25℃,
The membrane performance shown in Table 4 was obtained. Example 11 The composite membranes obtained in Comparative Example 1 and Example 2 were heated to PH6.5,
As a result of a reverse osmosis test using 1500 ppm saline solution adjusted to a chlorine concentration of 10 ppm as raw water at 15 kg/cm 2 and 25° C. for 300 hours, the membrane performance shown in Table 5 was obtained. Example 12, Comparative Example 3 In Example 2 and Comparative Example 1, a 2% by weight aqueous solution of metaphenylenediamine was used as the amino compound, and 0.1% by weight of 1,1,2- trimesic acid chloride was used as the polyfunctional reaction reagent. trichloro-1,
A composite membrane was obtained in the same manner except for using a 2,2-trifluoroethane solution. Membrane performance is shown in Table 6. As shown in the above examples, in the present invention, the water permeation rate is 1.1 compared to the conventional composite membrane manufacturing method.
Improved by ~4.0 times.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
本発明の製造方法によれば、複合膜を製造する
際に、該超薄膜をPH6.0〜13の塩素含有水溶液に
常圧で接触することにより該複合膜の性能、特に
水透過性が向上する。
According to the manufacturing method of the present invention, when manufacturing a composite membrane, the performance of the composite membrane, especially water permeability, is improved by contacting the ultra-thin membrane with a chlorine-containing aqueous solution with a pH of 6.0 to 13 at normal pressure. do.
Claims (1)
架橋芳香族ポリアミドからなる超薄膜とを有する
半透性複合膜を製造する際に、該超薄膜をPH6.0
〜13の塩素含有水溶液に常圧で接触させることを
特徴とする半透性複合膜の製造方法。1. When producing a semipermeable composite membrane having a porous support membrane and an ultra-thin membrane made of crosslinked aromatic polyamide obtained by interfacial reaction, the ultra-thin membrane is heated to pH 6.0.
A method for producing a semipermeable composite membrane, which comprises bringing it into contact with a chlorine-containing aqueous solution of ~13 at normal pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61197291A JPS6354905A (en) | 1986-08-25 | 1986-08-25 | Production of semiosmosis composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61197291A JPS6354905A (en) | 1986-08-25 | 1986-08-25 | Production of semiosmosis composite membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6354905A JPS6354905A (en) | 1988-03-09 |
JPH051051B2 true JPH051051B2 (en) | 1993-01-07 |
Family
ID=16372020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61197291A Granted JPS6354905A (en) | 1986-08-25 | 1986-08-25 | Production of semiosmosis composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6354905A (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5989426A (en) * | 1995-07-05 | 1999-11-23 | Nitto Denko Corp. | Osmosis membrane |
US6171497B1 (en) | 1996-01-24 | 2001-01-09 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane |
JP3681214B2 (en) * | 1996-03-21 | 2005-08-10 | 日東電工株式会社 | High permeability composite reverse osmosis membrane |
US5876602A (en) * | 1997-11-04 | 1999-03-02 | The Dow Chemical Company | Treatment of composite polyamide membranes to improve performance |
KR100460011B1 (en) * | 1998-02-17 | 2005-04-06 | 주식회사 새 한 | Post Treatment Process of Polyamide Reverse Osmosis Membrane |
JP2000334280A (en) * | 1999-05-27 | 2000-12-05 | Nitto Denko Corp | Production of multiple reverse osmosis membrane |
JP2000350928A (en) * | 1999-06-10 | 2000-12-19 | Toyobo Co Ltd | Composite diaphragm, composite diaphragm module and its manufacture |
JP2003010656A (en) * | 2001-07-02 | 2003-01-14 | Japan Organo Co Ltd | Separation membrane, method for modifying the same, and apparatus and method for membrane separation |
JP5037175B2 (en) * | 2007-03-05 | 2012-09-26 | 株式会社関電工 | Cooling water supply method and apparatus for large capacity transformer |
JP5131028B2 (en) * | 2007-05-30 | 2013-01-30 | 東レ株式会社 | Manufacturing method of composite semipermeable membrane |
JP5131027B2 (en) * | 2007-05-31 | 2013-01-30 | 東レ株式会社 | Manufacturing method of composite semipermeable membrane |
CN102665883A (en) | 2009-12-22 | 2012-09-12 | 东丽株式会社 | Semipermeable membrane and manufacturing method therefor |
EP2745919A4 (en) | 2011-09-29 | 2015-06-24 | Toray Industries | Composite semipermeable membrane |
KR102172598B1 (en) | 2013-02-28 | 2020-11-02 | 도레이 카부시키가이샤 | Composite semipermeable membrane |
EP3053643A4 (en) | 2013-09-30 | 2017-06-21 | Toray Industries, Inc. | Composite semipermeable membrane and method for manufacturing same |
KR101975155B1 (en) | 2015-10-27 | 2019-05-03 | 도레이 카부시키가이샤 | Composite semipermeable membrane and method for its production |
WO2019143182A1 (en) * | 2018-01-18 | 2019-07-25 | 주식회사 엘지화학 | Method for preparation of water-treatment separation membrane and water-treatment separation membrane prepared thereby |
JP6939742B2 (en) * | 2018-03-29 | 2021-09-22 | 栗田工業株式会社 | Selective permeable membrane, its manufacturing method and water treatment method |
WO2019187870A1 (en) * | 2018-03-29 | 2019-10-03 | 栗田工業株式会社 | Permselective membrane and method for producing same, and water treatment method |
JP6969727B2 (en) * | 2018-07-09 | 2021-11-24 | エルジー・ケム・リミテッド | Water treatment separation membrane, water treatment module containing it and its manufacturing method |
-
1986
- 1986-08-25 JP JP61197291A patent/JPS6354905A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6354905A (en) | 1988-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH051051B2 (en) | ||
US5051178A (en) | Process of producing composite semipermeable membrane | |
EP0505502B1 (en) | Dry high flux semipermeable membranes | |
JP4289757B2 (en) | Method for producing composite reverse osmosis membrane | |
JPH0380049B2 (en) | ||
JPS63218208A (en) | Composite semipermeable membrane and its production | |
US4960518A (en) | Treatment of composite polyamide membranes with compatible oxidants | |
JP2727594B2 (en) | Method for producing composite semipermeable membrane | |
JP3111539B2 (en) | Method for producing composite semipermeable membrane | |
JP3132084B2 (en) | Method for producing composite membrane for reverse osmosis method | |
JPH07114944B2 (en) | Method for manufacturing semipermeable composite membrane | |
EP0465649B1 (en) | Composite semipermeable membrane and production thereof | |
JP3438278B2 (en) | Semipermeable composite membrane and method for producing the same | |
JP3106595B2 (en) | Method for producing composite membrane for reverse osmosis method | |
JPH10235173A (en) | Composite semipermeable membrane and its production | |
JP3132090B2 (en) | Method for producing composite membrane for reverse osmosis method | |
JPH04161234A (en) | Manufacture of composite membrane | |
JPH04104825A (en) | Manufacture of composite membrane | |
JPS62279809A (en) | Production of semipermeable composite membrane | |
JPS61101203A (en) | Highly permeable composite membrane | |
JPH11179175A (en) | Production of composite separation membrane | |
JPH09187631A (en) | Production of composite reverse-osmosis membrane and device therefor | |
JP2936633B2 (en) | Composite semipermeable membrane | |
JPH05317667A (en) | Production of composite membrane for reverse osmosis method | |
JPS637807A (en) | Production of low-pressure highly-permeable semipermeable composite membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |