JPS6354905A - Production of semiosmosis composite membrane - Google Patents

Production of semiosmosis composite membrane

Info

Publication number
JPS6354905A
JPS6354905A JP61197291A JP19729186A JPS6354905A JP S6354905 A JPS6354905 A JP S6354905A JP 61197291 A JP61197291 A JP 61197291A JP 19729186 A JP19729186 A JP 19729186A JP S6354905 A JPS6354905 A JP S6354905A
Authority
JP
Japan
Prior art keywords
membrane
chlorine
composite membrane
contg
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61197291A
Other languages
Japanese (ja)
Other versions
JPH051051B2 (en
Inventor
Tetsuo Inoue
哲男 井上
Tadahiro Uemura
忠廣 植村
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61197291A priority Critical patent/JPS6354905A/en
Publication of JPS6354905A publication Critical patent/JPS6354905A/en
Publication of JPH051051B2 publication Critical patent/JPH051051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a reverse-osmosis membrane with improved performance, especially water permeability, of the title composite membrane by bringing an ultrathin membrane consisting of cross-linked aromatic polyamide obtained by an interface reaction into contact with an aq. chlorine-contg. soln. at 6-13pH under ordinary pressure. CONSTITUTION:The ultrathin membrane is obtained by the interface reaction between an aromatic amine having >=2 reactive amino groups and a multifunctional aromatic acid halide. when the ultrathin membrane is dipped in the aq. chlorine-contg. soln. at 6.0-1.3pH, the performance, especially water permeability, of the obtained semipermeable composite membrane is improved. Gaseous chlorine, bleaching powder, sodium hypochlorite, chlorine dioxide, chloramine B, etc., are used as the chlorine generating reagent. The chlorine treatment must be carried out under ordinary pressure, and only the dipping of the membrane in the aq. chlorine-contg. soln. is required. The concn. of free chlorine is preferably controlled to 10-2,000ppm, and the treating time is adjusted to 2min-20hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海水やカン水の脱塩、有価物の回収、廃水の
再利用、超純水の製造等に用いることのできる、逆浸透
用の半透性複合膜の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to reverse osmosis, which can be used for the desalination of seawater and can water, the recovery of valuables, the reuse of wastewater, the production of ultrapure water, etc. The present invention relates to a method for producing a semipermeable composite membrane for use in a semi-permeable composite membrane.

(従来の技術) 従来、工業的に利用されている半透膜には、酢酸セルロ
ーズから作った非対称膜として、例えば米国特許第3,
133.132号明細書及び同第3.133,137号
明細書等に記載されたロブ型の膜がある。
(Prior Art) Conventionally, semipermeable membranes that have been used industrially include asymmetric membranes made from cellulose acetate, such as those disclosed in U.S. Patent No. 3,
There are lob-type membranes described in Patent No. 133.132 and Patent No. 3.133,137.

しかし、この膜は、耐加水分解性、耐微生物性、耐薬品
性などに問題があり、特に透過性を向上しようとすると
耐圧性、耐久性を兼ね備えた膜が製造できず、一部使用
されているが広範囲の用途に実用化されるに至っていな
い。これらの酢酸セルローズ非対称膜の欠点をなくした
新しい素材に対する研究は米国、日本を中心に盛んに行
なわれているが、芳香族ポリアミド、ポリアミドヒドラ
ジド(米国特許第3,567.632号公報)、ポリア
ミド酸(特公昭55−37282号公報)、架橋ポリア
ミド1v2(特公昭56−3769号公報〉、ポリイミ
ダゾピロロン、ポリスルホンアミド、ポリベンズイミダ
ゾール、ポリベンズイミダシロン、ポリアリーレンオキ
シドなど、その一部の欠点を改良する素材は得られてい
るものの、選択分離性あるいは透過性等の面では酢酸セ
ルローズ膜より劣っている。
However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc. In particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability, so it is not used in some cases. However, it has not yet been put to practical use in a wide range of applications. Research into new materials that eliminate these drawbacks of cellulose acetate asymmetric membranes is being actively conducted mainly in the United States and Japan, but aromatic polyamides, polyamide hydrazide (U.S. Pat. No. 3,567,632), polyamide Acid (Japanese Patent Publication No. 55-37282), crosslinked polyamide 1v2 (Japanese Patent Publication No. 56-3769), polyimidazopyrrolone, polysulfonamide, polybenzimidazole, polybenzimidacylon, polyarylene oxide, etc. Although a material that improves the drawbacks has been obtained, it is inferior to cellulose acetate membranes in terms of selective separation and permeability.

一方、ロブ型とは型を異にする半透膜として多孔性支持
膜上に実質的に膜性能を発揮する超薄膜を被覆した複合
膜が開発されている。複合膜においては、超薄膜と多孔
性支持膜を各々の用途に最適な素材を選ぶことが可能と
なり、製膜技術の自由度が増す。また常時湿潤状態で保
存しなければならないロブ型とは異なり、乾燥状態での
保存が可能であるなどの利点がある。
On the other hand, a composite membrane has been developed in which a porous support membrane is coated with an ultra-thin membrane that exhibits substantial membrane performance as a semipermeable membrane different from the lobe type. For composite membranes, it becomes possible to select the optimal material for each application for ultra-thin membranes and porous support membranes, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike the lobe type, which must be stored in a wet state at all times.

このような複合膜のうち超薄膜がポリアミドまたはポリ
尿素からなる複合膜は膜性能、特に水透過性が高いため
半透性複合膜開発の主流になっている。該複合膜の製造
方法としては米国特許第3゜191.815号明細書、
同第3,744,642号明細書、同第4,039,4
40号明細書、同第4,277.344号明細書および
特表昭56−500062号公報に開示されているよう
に多孔性支持膜上で7ミノ基を有する化合物を含む水溶
液と多官能性反応試薬を含む炭化水素系溶液とを接触さ
せ、界面反応によって超薄膜を形成する方法がある。
Among such composite membranes, ultra-thin composite membranes made of polyamide or polyurea have high membrane performance, particularly water permeability, and have become the mainstream in the development of semipermeable composite membranes. The method for manufacturing the composite membrane is described in U.S. Pat. No. 3,191.815;
Specification No. 3,744,642, No. 4,039,4
40, No. 4,277.344, and Japanese Patent Application Publication No. 56-500062, an aqueous solution containing a compound having a 7-mino group and a polyfunctional compound on a porous support membrane. There is a method of contacting a hydrocarbon solution containing a reaction reagent to form an ultra-thin film through an interfacial reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らはこのような半透性複合膜の性能向上、特に
水透過性を更に向上させるべく、鋭意検討した結果、本
発明に到達したのでおる。
The present inventors have conducted intensive studies to improve the performance of such semipermeable composite membranes, particularly to further improve water permeability, and as a result, they have arrived at the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は下記の構成からなる。 In order to achieve the above object, the present invention consists of the following configuration.

「多孔性支持膜と界面反応によって得られる架橋芳香族
ポリアミドからなる超薄膜を有する半透性複合膜を製造
する際に、該超薄膜を116.0〜13の塩素含有水溶
液に常圧で接触することを特徴とする半透性複合膜の製
造方法。」本発明に使用される多孔性支持体膜とはその
表面に数十〜数千オングストロームの微細孔を有する支
持膜であって、ポリスルホン、ポリ塩化ビニル、塩素化
塩化ビニル、ポリカーボネート、ポリアクリロニトリル
、セルローズエステル等を素材とする公知のものが含ま
れる。この中、本発明には多孔性のポリスルホン支持膜
が特に有効である。
"When producing a semipermeable composite membrane having an ultra-thin membrane made of a cross-linked aromatic polyamide obtained by an interfacial reaction with a porous support membrane, the ultra-thin membrane is brought into contact with a chlorine-containing aqueous solution of 116.0 to 13 at normal pressure. A method for producing a semipermeable composite membrane characterized by , polyvinyl chloride, chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, cellulose ester, and other known materials. Among these, porous polysulfone support membranes are particularly effective in the present invention.

多孔性ポリスルホンの製膜はポリスルホンをジメチルホ
ルムアミド等の非プロトン性極性溶媒の溶液にして例え
ばポリエステル繊維からなる織物または不織布上に流延
し、次いで実質的に水からなる媒体中で凝固(ゲル化)
する、いわゆる湿式製膜等によって行なう。このように
して得られた多孔性ポリスルホンは表面には数十〜数百
オングストローム程度の大きざで表面から裏面にいくほ
ど大きくなる微細孔を有する。
Porous polysulfone films are produced by casting polysulfone as a solution in an aprotic polar solvent such as dimethylformamide onto a woven or nonwoven fabric made of polyester fibers, and then coagulating (gelling) in a medium consisting essentially of water. )
This is done by so-called wet film forming. The porous polysulfone thus obtained has micropores on the surface having a size of several tens to several hundred angstroms and increasing in size from the front surface to the back surface.

本発明において、界面反応によって得られる超薄膜は、
架橋芳香族ポリアミドを主成分とするものであり、該架
橋芳香族ポリアミドは2つ以上の反応性のアミノ基を有
する芳香族アミンと、多官能芳香族酸ハロゲン化物の界
面反応によって得ることができる。
In the present invention, the ultra-thin film obtained by interfacial reaction is
The main component is a crosslinked aromatic polyamide, which can be obtained by an interfacial reaction between an aromatic amine having two or more reactive amino groups and a polyfunctional aromatic acid halide. .

本発明において2つ以上の反応性の7ミノ基を有する芳
香族アミン(以下アミノ化合物と略す)とは、芳香環に
直結する2個以上のアミノ基を有するアミノ化合物を示
し、例えば、メタフェニレンジアミン、パラフェニレン
ジアミン、3,5−ジアミノ安息香酸、2,5−ジアミ
ノベンゼンスルホン酸、4.4°−ジアミノベンズアニ
リド、3,3°、5.5’−テトラアミノベンズアニリ
ド、1,3.5−トリアミノベンゼン等を例示すること
ができる。これらのアミン化合物は、一般には水溶液の
形で界面反応に供せられ、アミン化合物水溶液における
アミノ化合物の濃度は0.1〜10重量%、好ましくは
0.5〜5.0型口%とする。またアミノ化合物水溶液
にはアミン化合物と多官能性反応試薬との反応を妨害し
ないものであれば、界面活性剤や有機溶媒等が含まれて
もよい。
In the present invention, the aromatic amine having two or more reactive 7-mino groups (hereinafter abbreviated as amino compound) refers to an amino compound having two or more amino groups directly connected to an aromatic ring, such as metaphenylene Diamine, paraphenylenediamine, 3,5-diaminobenzoic acid, 2,5-diaminobenzenesulfonic acid, 4.4°-diaminobenzanilide, 3,3°,5.5'-tetraaminobenzanilide, 1,3 .5-triaminobenzene and the like can be exemplified. These amine compounds are generally subjected to the interfacial reaction in the form of an aqueous solution, and the concentration of the amino compound in the aqueous amine compound solution is 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight. . Further, the amino compound aqueous solution may contain a surfactant, an organic solvent, etc. as long as they do not interfere with the reaction between the amine compound and the polyfunctional reaction reagent.

多孔性支持膜表面へのアミン化合物水溶液の被覆は、該
水溶液が表面に均一にかつ連続的に被覆されればよく、
公知の塗布手段例えば、該水溶液を多孔性支持膜表面に
コーティングする方式、多孔性支持膜を該水溶液に浸漬
する方法等で行なえばよい。
The surface of the porous support membrane may be coated with the amine compound aqueous solution as long as the surface is uniformly and continuously coated with the aqueous solution.
The coating may be carried out by any known coating means, such as coating the surface of the porous support membrane with the aqueous solution or immersing the porous support membrane in the aqueous solution.

本発明における多官能芳香族酸ハロゲン化物とは、芳香
環に直結するアシルハライド基を2つ以上有する化合物
(以下多官能性反応試薬)をいい、例えば、トリメシン
酸クロライド、ベンゾフェノンテトラカルボン酸クロラ
イド、トリメリット酸クロライド、ピロメリット酸クロ
ライド、イソフタル酸クロライド、テレフタル酸クロラ
イド、ナフタレンジカルボン酸クロライド、ジフェニル
ジカルボン酸クロライド、ピリジンジカルボン酸クロラ
イド、ベンゼンジスルホン酸クロライドなどが挙げられ
るが、製膜溶媒に対する溶解性及び半透性複合膜の性能
を考慮するとトリメシン酸クロライド、イソフタル酸ク
ロライド、テレフタル酸クロライドが好ましい。
The polyfunctional aromatic acid halide in the present invention refers to a compound having two or more acyl halide groups directly connected to an aromatic ring (hereinafter referred to as a polyfunctional reaction reagent), such as trimesic acid chloride, benzophenonetetracarboxylic acid chloride, Examples include trimellitic acid chloride, pyromellitic acid chloride, isophthalic acid chloride, terephthalic acid chloride, naphthalenedicarboxylic acid chloride, diphenyldicarboxylic acid chloride, pyridinedicarboxylic acid chloride, benzenedisulfonic acid chloride, etc., but their solubility in the membrane forming solvent and In consideration of the performance of the semipermeable composite membrane, trimesic acid chloride, isophthalic acid chloride, and terephthalic acid chloride are preferred.

これらの多官能反応試薬は、一般には、水と非混和性の
溶媒に溶解して界面反応に供せられ、溶媒としては、ア
ミノ化合物および多官能反応試薬に対して不活性であり
、かつ水に対して不溶性または難溶性である必要がある
。更に該溶媒は多孔性支持膜に対しても不活性なものが
好ましい。該溶媒の代表例としては液状の炭化水素およ
びハロゲン化炭化水素、例えば、ペンタン、ヘキサン、
ヘプタン、1,1.2−トリクロロ−1,2,2−トリ
フルオロエタンがある。多官能反応試薬の濃度は好まし
くはo、oi〜10重量%、ざらに好ましくは0゜02
〜2重量%である。
These polyfunctional reaction reagents are generally dissolved in a water-immiscible solvent and subjected to an interfacial reaction, and the solvent is inert to the amino compound and the polyfunctional reaction reagent and water It must be insoluble or poorly soluble in Furthermore, it is preferable that the solvent is inert to the porous support membrane. Typical examples of such solvents include liquid hydrocarbons and halogenated hydrocarbons, such as pentane, hexane,
Heptane, 1,1.2-trichloro-1,2,2-trifluoroethane. The concentration of the polyfunctional reaction reagent is preferably o, oi to 10% by weight, more preferably 0.02
~2% by weight.

多官能反応試薬のアミノ化合物水溶液相への接触の方法
はアミノ化合物水溶液の多孔性支持膜への被覆方法と同
様に行なえばよい。
The method for contacting the polyfunctional reaction reagent with the aqueous amino compound solution phase may be carried out in the same manner as the method for coating the porous support membrane with the aqueous amino compound solution.

このようなアミノ化合物の水溶液と、多官能反応試薬の
溶液は、多孔性支持膜上で両者を接触すると界面反応に
よってその界面に架橋芳香族ポリアミドの超薄膜が形成
する。
When such an aqueous solution of an amino compound and a solution of a polyfunctional reaction reagent are brought into contact with each other on a porous support membrane, an ultra-thin film of crosslinked aromatic polyamide is formed at the interface due to an interfacial reaction.

この超薄膜をpI−(6,0〜13の塩素含有水溶液に
浸漬すると、得られた半透性複合膜の性能、特に水透過
性が向上する。塩素発生試薬としては、塩素ガス、サラ
シ粉、次亜塩素酸ナトリウム、二酸化塩素、クロラミン
B、クロラミンT、ハラゾーン、ジクロロジメチルヒダ
ントイン、塩素化イソシアヌル酸およびその塩などを代
表例として挙げることができ、酸化力の強さによって濃
度を決定することが好ましい。上記の塩素発生試薬の中
で、次亜塩素酸ナトリウム水溶液が、取り扱い性の点か
ら好ましい。塩素含有水溶液の酸化力とpHの間には重
要な関係があり、IIがアルカリ側になるほど、酸化力
が弱くなる。これは酸化力の強い次亜塩素酸(HCD、
O)がpHによって、その存在状態が変化するためであ
る。次亜塩酸はH+とcD、o−に解離する。この解離
はpHに影響され、pH9以上では、はとんど次亜塩素
酸は次亜塩素酸イオンとして存在し、pH6,5では約
90%か解離しない次亜塩素酸として存在する。
When this ultra-thin membrane is immersed in a chlorine-containing aqueous solution with pI-(6,0 to 13), the performance of the resulting semipermeable composite membrane, especially water permeability, is improved. Representative examples include sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, halazone, dichlorodimethylhydantoin, chlorinated isocyanuric acid and its salts, and the concentration is determined depending on the strength of oxidizing power. is preferred.Among the above chlorine generating reagents, sodium hypochlorite aqueous solution is preferred from the viewpoint of ease of handling.There is an important relationship between the oxidizing power and pH of the chlorine-containing aqueous solution, and II is on the alkaline side. I see, the oxidizing power becomes weaker.This is due to the strong oxidizing power of hypochlorous acid (HCD).
This is because the state of existence of O) changes depending on the pH. Hypochlorite dissociates into H+, cD, and o-. This dissociation is affected by pH; at pH 9 or higher, hypochlorous acid mostly exists as hypochlorite ion, and at pH 6.5, about 90% or less exists as hypochlorous acid, which does not dissociate.

本発明において好ましい塩素処理はCD、O−イオンに
よって生ずると考えられ、DH6未満では実質的にCQ
O−が存在せず好ましくない。またpHが高ければCQ
O−が存在しても、アミド結合の加水分解が生じ、超薄
膜が損傷を受けるためpH13以下、好ましくはpH1
1以下の塩素含有水溶液が好適に用いられる。
In the present invention, the preferable chlorination treatment is thought to be caused by CD, O- ions, and below DH6, substantially CQ
O- does not exist, which is not preferable. Also, if the pH is high, CQ
Even if O- is present, the amide bond will be hydrolyzed and the ultra-thin film will be damaged.
An aqueous solution containing 1 or less chlorine is preferably used.

また本発明においては、塩素処理が常圧で行なわれるこ
とが必須でおり、加圧下での塩素処理は好ましくない結
果を与える。常圧とは、膜に対して透過流を与えるよう
な、膜の両面の圧力差がないことを意味し、単に大気圧
のもとに処理を行なうことを意味していない。例えば、
膜の両面の圧力が等しく加圧されていれば問題はない。
Further, in the present invention, it is essential that the chlorine treatment be carried out at normal pressure, and chlorine treatment under increased pressure will give unfavorable results. Atmospheric pressure means that there is no pressure difference between the two sides of the membrane that would provide a permeate flow to the membrane, and does not simply mean that the process is carried out under atmospheric pressure. for example,
There is no problem as long as both sides of the membrane are equally pressurized.

しかしながら塩素処理は膜を塩素含有水溶液に単に浸漬
するだけでよく、この点を考えれば、特にオートクレー
ブ中などで加圧する必要はない。
However, the chlorine treatment can be carried out by simply immersing the membrane in a chlorine-containing aqueous solution, and considering this point, there is no need to apply pressure in an autoclave or the like.

また膜の両面に圧力差が存在し、水を透過しながら塩素
処理すると、一般に水透過性が減少して好ましくないが
、圧力差がO〜1.2kq/−で水速過速度が無視でき
る程度であれば、特に問題は生じない。
In addition, there is a pressure difference on both sides of the membrane, and if water is permeated while being treated with chlorine, the water permeability will generally decrease, which is undesirable. However, if the pressure difference is O ~ 1.2 kq/-, water velocity overspeed can be ignored. If it is only a small amount, no particular problem will occur.

塩素処理を行なうと、水透過性が向上する。この理由は
、生成した架橋芳香族ポリアミドのアミド水素が塩素に
よって置換され、架橋芳香族ポリアミドの結晶性が低下
するためと考えられる。
Chlorination improves water permeability. The reason for this is thought to be that the amide hydrogen of the produced crosslinked aromatic polyamide is replaced by chlorine, which reduces the crystallinity of the crosslinked aromatic polyamide.

また、塩素処理を行なわない半透性複合膜は酸性領域、
例えばpH4の原水を用いた場合における溶出排除率の
低下が大きい。処理を行なった半透性複合膜は酸性領域
における溶出排除率の低下が抑制される。この理由は生
成した架橋芳香族ポリアミドは完全にアミド結合のみで
芳香環を結合しておらず、一部にアミン末端u(−NH
2)が生じ、この末端基がイオン化するためと考えられ
る。塩素処理を行なうことによってアミン末端基がクロ
ルアミン(−NHCD、)に変化し、ざらに分解して減
少するため酸性領域にあける溶出排除率の低下が抑制さ
れるものと考えられる。
In addition, semipermeable composite membranes without chlorine treatment can be used in acidic regions.
For example, when raw water with a pH of 4 is used, the elution exclusion rate is greatly reduced. The treated semipermeable composite membrane suppresses a decrease in elution exclusion rate in an acidic region. The reason for this is that the crosslinked aromatic polyamide produced is completely amide bonds with no aromatic rings, and some of the amine-terminated polyamides have u(-NH
This is thought to be because 2) occurs and this terminal group is ionized. It is thought that by chlorine treatment, the amine end group changes to chloramine (-NHCD), which is roughly decomposed and reduced, thereby suppressing the decrease in elution exclusion rate in the acidic region.

塩素処理剤として、次亜塩素酸ナトリウムを使用する場
合、遊離塩素の濃度は10〜2000pl)m、膜性能
のバランスを考えると、100〜11000ppの範囲
が好ましい。
When using sodium hypochlorite as the chlorination agent, the concentration of free chlorine is preferably in the range of 10 to 2000 pl) m, and in consideration of the balance of membrane performance, in the range of 100 to 11000 pp.

塩素処理時間は2分〜20時間、遊離塩素濃度が低く、
処理pHが高い場合、処理時間は長時間が好ましく、逆
に遊離塩素濃度が高く、処理pHが低い場合、処理時間
は短時間が好ましい。
Chlorination time is 2 minutes to 20 hours, free chlorine concentration is low,
When the treatment pH is high, the treatment time is preferably long; on the other hand, when the free chlorine concentration is high and the treatment pH is low, the treatment time is preferably short.

〔実施例〕〔Example〕

以下に実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1〜3、比較例1 タテ30cm、ヨコ20cmの大きざのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニール
のマルチフィラメント糸、織密度タテ90本/インチ、
ヨコ67本/インチ、厚さ160μ)をガラス板上に固
定し、その上にポリスルホン(ユニオン・カーボイド社
製のLldel P3500>の15重階%ジメチルホ
ルムアミド<DMF>溶液を200μの厚みで室温(2
0’C)でキャストし、ただちに純水中に浸漬して5分
間放置することによって繊維補強ポリスルホン支持体(
以下FR−PS支持体と略す)を作製する。このように
して得られたFR−PS支持体(厚さ210〜215μ
)の純水透過係数は、圧力11/−1温度25℃で測定
して0.005〜0.01C1/−・sec ・atm
であった。
Examples 1 to 3, Comparative Example 1 Taffeta made of polyester fibers with a length of 30 cm and a width of 20 cm (multifilament yarn of 150 denier in both warp and weft, weaving density of 90 pieces/inch in length,
A 15% dimethylformamide (DMF) solution of polysulfone (Lldel P3500 manufactured by Union Carboid Co., Ltd.) was fixed on a glass plate to a thickness of 200 μm at room temperature ( 2
A fiber-reinforced polysulfone support (
A FR-PS support (hereinafter abbreviated as FR-PS support) is produced. The FR-PS support obtained in this way (thickness 210-215μ
) has a pure water permeability coefficient of 0.005 to 0.01 C1/- sec ・atm measured at a pressure of 11/-1 and a temperature of 25°C.
Met.

FR−PS支持体をアミノ化合物として、メタフェニレ
ンジアミン1重量%と、1,3.5−トリアミノベンゼ
ン1重量%の混合水溶液に2分間浸漬した。FR−PS
支持体表面から余分な該水溶液を取り除いた後、1,1
.2−トリクロロ−1,2,2−トリフルオロエタンに
多官能反応試薬として、トリメシン酸クロライド0.0
5重量%、テレフタル酸クロライド0.05重量%およ
びジメチルホルムアミド300 ppmを溶解した溶液
を表面が完全に濡れるようにコーティングして1分間静
置した。次に膜を垂直にして余分な該溶液を液切りして
除去した復、炭酸ナトリウム0.2重量%を溶解した水
溶液に5分間浸漬した。水道水で膜中に含まれる該溶液
を取り除いた。
The FR-PS support was immersed as an amino compound in a mixed aqueous solution of 1% by weight of metaphenylenediamine and 1% by weight of 1,3.5-triaminobenzene for 2 minutes. FR-PS
After removing the excess aqueous solution from the support surface, 1,1
.. Trimesic acid chloride 0.0 as a polyfunctional reaction reagent to 2-trichloro-1,2,2-trifluoroethane
A solution containing 5% by weight of terephthalic acid chloride, 0.05% by weight of terephthalic acid chloride, and 300 ppm of dimethylformamide was coated so that the surface was completely wetted and allowed to stand for 1 minute. Next, the membrane was turned vertically to remove excess solution by draining, and then immersed in an aqueous solution containing 0.2% by weight of sodium carbonate for 5 minutes. The solution contained in the membrane was removed with tap water.

このようにして得られた複合膜を表1に示す遊離塩素を
含有し、pH7,0に調整した水溶液に5分間浸漬した
後、水道水で洗浄した、このようにして得られた複合膜
をpH6,5に調整した1500 ppmの食塩水を原
水とし15に9/cnt、25°Cの条件下で逆浸透テ
ストした結果、表1に示した膜性能が得られた。
The composite membrane thus obtained was immersed in an aqueous solution containing free chlorine shown in Table 1 and adjusted to pH 7.0 for 5 minutes, and then washed with tap water. As a result of performing a reverse osmosis test using 1500 ppm saline solution adjusted to pH 6.5 as raw water under conditions of 15 to 9/cnt and 25°C, the membrane performance shown in Table 1 was obtained.

実施例4〜6、比較例2 実施例1〜3において、遊離塩素濃度5001)I)m
の水溶液を用いて、表2に示すpHに調整した水溶液に
5分間浸漬した。他は同様にして複合膜を得た。
Examples 4 to 6, Comparative Example 2 In Examples 1 to 3, free chlorine concentration 5001)I)m
The sample was immersed in an aqueous solution whose pH was adjusted to the pH shown in Table 2 for 5 minutes. Other composite membranes were obtained in the same manner.

膜性能を表2に示す。Membrane performance is shown in Table 2.

実施例7〜9 実施例1〜3において、遊離塩素濃度10001)l)
m 、1110.5に調整した水溶液に表3に示す時間
浸漬し、他は同様にして得た複合膜の性能を示す。
Examples 7-9 In Examples 1-3, free chlorine concentration 10001)l)
The performance of composite membranes obtained by immersion in an aqueous solution adjusted to m, 1110.5 for the time shown in Table 3, and otherwise obtained in the same manner is shown.

実施例10 比較例2、実施例1〜3で得られた複合膜を、pH4,
0に調整した150o ppmの食塩水を原水とし15
ki/cJ、25°Cの条件下で逆浸透テストした結果
、表4に示した膜性能が(qられた。
Example 10 Composite membranes obtained in Comparative Example 2 and Examples 1 to 3 were treated at pH 4,
Using 150 ppm saline solution adjusted to 0 as raw water, 15
As a result of a reverse osmosis test under the conditions of ki/cJ and 25°C, the membrane performance shown in Table 4 was (q).

実施例11 比較例1、実施例2で得られた複合膜をpH6゜5、塩
素濃度1101)l)に調整した1500pl)mの食
塩水を原水とし15)cv/cJ、25℃の条件下で3
00時間逆浸透テストした結果、表5に示した膜性能が
得られた。
Example 11 The composite membrane obtained in Comparative Example 1 and Example 2 was treated with 1500 pl) m of saline solution adjusted to pH 6°5 and chlorine concentration 1101) l) as raw water under conditions of 15) cv/cJ and 25°C. So 3
As a result of the 00 hour reverse osmosis test, the membrane performance shown in Table 5 was obtained.

実施例12、比較例3 実施例1〜3、比較例1において、アミノ化合物として
、メタフェニレンジアミン2重量%水溶液を用い、多官
能反応試薬として、トリメシン酸クロライド0.1ff
lffi%の1,1.2−トリクロロ−1゜2.2−ト
リフルオロエタン溶液を用いて他は同様にして複合膜を
得た。
Example 12, Comparative Example 3 In Examples 1 to 3 and Comparative Example 1, a 2% by weight aqueous solution of metaphenylenediamine was used as the amino compound, and 0.1 ff of trimesic acid chloride was used as the polyfunctional reaction reagent.
A composite membrane was obtained in the same manner except that a lffi% 1,1,2-trichloro-1°2,2-trifluoroethane solution was used.

膜性能を表6に示す。Membrane performance is shown in Table 6.

以上の実施例に示した様に本発明においては従来の複合
膜の製造方法に比較して透水速度が1゜1〜4.0倍に
向上した。
As shown in the above examples, in the present invention, the water permeation rate was improved by 1.1 to 4.0 times as compared to the conventional method for manufacturing composite membranes.

表1 表2 表3 表4 実施例10 表5 〔発明の効果〕 本発明の製造方法によれば、複合膜を製造する際に、該
超薄膜をpH6,0〜13の塩素含有水溶液に常圧で接
触することにより該複合膜の性能、特に水透過性が向上
する。
Table 1 Table 2 Table 3 Table 4 Example 10 Table 5 [Effects of the invention] According to the manufacturing method of the present invention, when manufacturing a composite membrane, the ultra-thin membrane is constantly immersed in a chlorine-containing aqueous solution with a pH of 6.0 to 13. Pressure contact improves the performance of the composite membrane, especially water permeability.

Claims (1)

【特許請求の範囲】[Claims] 多孔性支持膜と、界面反応によつて得られる架橋芳香族
ポリアミドからなる超薄膜とを有する半透性複合膜を製
造する際に、該超薄膜をPH6.0〜13の塩素含有水
溶液に常圧で接触させることを特徴とする半透性複合膜
の製造方法。
When producing a semipermeable composite membrane having a porous support membrane and an ultra-thin membrane made of cross-linked aromatic polyamide obtained by interfacial reaction, the ultra-thin membrane is constantly immersed in a chlorine-containing aqueous solution with a pH of 6.0 to 13. A method for producing a semipermeable composite membrane characterized by contacting with pressure.
JP61197291A 1986-08-25 1986-08-25 Production of semiosmosis composite membrane Granted JPS6354905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197291A JPS6354905A (en) 1986-08-25 1986-08-25 Production of semiosmosis composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197291A JPS6354905A (en) 1986-08-25 1986-08-25 Production of semiosmosis composite membrane

Publications (2)

Publication Number Publication Date
JPS6354905A true JPS6354905A (en) 1988-03-09
JPH051051B2 JPH051051B2 (en) 1993-01-07

Family

ID=16372020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197291A Granted JPS6354905A (en) 1986-08-25 1986-08-25 Production of semiosmosis composite membrane

Country Status (1)

Country Link
JP (1) JPS6354905A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787525A1 (en) 1996-01-24 1997-08-06 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
WO1999022836A2 (en) * 1997-11-04 1999-05-14 The Dow Chemical Company Treatment of composite polyamide membranes with hypochlorite to improve performance
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
JP2000334280A (en) * 1999-05-27 2000-12-05 Nitto Denko Corp Production of multiple reverse osmosis membrane
JP2000350928A (en) * 1999-06-10 2000-12-19 Toyobo Co Ltd Composite diaphragm, composite diaphragm module and its manufacture
JP2003010656A (en) * 2001-07-02 2003-01-14 Japan Organo Co Ltd Separation membrane, method for modifying the same, and apparatus and method for membrane separation
KR100460011B1 (en) * 1998-02-17 2005-04-06 주식회사 새 한 Post Treatment Process of Polyamide Reverse Osmosis Membrane
JP2008218679A (en) * 2007-03-05 2008-09-18 Kandenko Co Ltd Cooling water supply method and apparatus for high-capacity transformer
JP2009006314A (en) * 2007-05-31 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
JP2009006315A (en) * 2007-05-30 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
WO2011078131A1 (en) 2009-12-22 2011-06-30 東レ株式会社 Semipermeable membrane and manufacturing method therefor
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
WO2015046582A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Composite semipermeable membrane and method for manufacturing same
KR20150124952A (en) 2013-02-28 2015-11-06 도레이 카부시키가이샤 Composite semipermeable membrane
KR20180074694A (en) 2015-10-27 2018-07-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production
WO2019187870A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Permselective membrane and method for producing same, and water treatment method
JP2019171360A (en) * 2018-03-29 2019-10-10 栗田工業株式会社 Selective permeable membrane, production method of the same and water treatment method
JP2020535957A (en) * 2018-07-09 2020-12-10 エルジー・ケム・リミテッド Water treatment separation membrane, water treatment module containing it and its manufacturing method
US11944940B2 (en) * 2018-01-18 2024-04-02 Lg Chem, Ltd. Method for preparation of water-treatment separation membrane and water-treatment separation membrane prepared thereby

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
EP0787525A1 (en) 1996-01-24 1997-08-06 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
WO1999022836A2 (en) * 1997-11-04 1999-05-14 The Dow Chemical Company Treatment of composite polyamide membranes with hypochlorite to improve performance
WO1999022836A3 (en) * 1997-11-04 1999-10-28 Dow Chemical Co Treatment of composite polyamide membranes with hypochlorite to improve performance
KR100460011B1 (en) * 1998-02-17 2005-04-06 주식회사 새 한 Post Treatment Process of Polyamide Reverse Osmosis Membrane
JP2000334280A (en) * 1999-05-27 2000-12-05 Nitto Denko Corp Production of multiple reverse osmosis membrane
JP2000350928A (en) * 1999-06-10 2000-12-19 Toyobo Co Ltd Composite diaphragm, composite diaphragm module and its manufacture
JP2003010656A (en) * 2001-07-02 2003-01-14 Japan Organo Co Ltd Separation membrane, method for modifying the same, and apparatus and method for membrane separation
JP2008218679A (en) * 2007-03-05 2008-09-18 Kandenko Co Ltd Cooling water supply method and apparatus for high-capacity transformer
JP2009006315A (en) * 2007-05-30 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
JP2009006314A (en) * 2007-05-31 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
WO2011078131A1 (en) 2009-12-22 2011-06-30 東レ株式会社 Semipermeable membrane and manufacturing method therefor
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
KR20140082644A (en) 2011-09-29 2014-07-02 도레이 카부시키가이샤 Composite semipermeable membrane
KR20150124952A (en) 2013-02-28 2015-11-06 도레이 카부시키가이샤 Composite semipermeable membrane
KR20160063337A (en) 2013-09-30 2016-06-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for manufacturing same
WO2015046582A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Composite semipermeable membrane and method for manufacturing same
KR20180074694A (en) 2015-10-27 2018-07-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production
US11045771B2 (en) 2015-10-27 2021-06-29 Toray Industries, Inc. Composite semipermeable membrane and method for producing same
US11944940B2 (en) * 2018-01-18 2024-04-02 Lg Chem, Ltd. Method for preparation of water-treatment separation membrane and water-treatment separation membrane prepared thereby
WO2019187870A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Permselective membrane and method for producing same, and water treatment method
JP2019171360A (en) * 2018-03-29 2019-10-10 栗田工業株式会社 Selective permeable membrane, production method of the same and water treatment method
JP2020535957A (en) * 2018-07-09 2020-12-10 エルジー・ケム・リミテッド Water treatment separation membrane, water treatment module containing it and its manufacturing method
US11517861B2 (en) 2018-07-09 2022-12-06 Lg Chem, Ltd. Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
JPH051051B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
JPS6354905A (en) Production of semiosmosis composite membrane
US5051178A (en) Process of producing composite semipermeable membrane
Kulkarni et al. Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes
US5178766A (en) Composite semipermeable membrane, process of producing the same and method of producing highly pure water using the same
JPS6312310A (en) Production of semipermeable composite membrane
JP2005186059A (en) Processing method for semi-permeable membrane, modified semi-permeable membrane and production method for the same
JP2727594B2 (en) Method for producing composite semipermeable membrane
JP3111539B2 (en) Method for producing composite semipermeable membrane
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JPH07114944B2 (en) Method for manufacturing semipermeable composite membrane
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
JPH04161234A (en) Manufacture of composite membrane
JPH10235173A (en) Composite semipermeable membrane and its production
JP3106595B2 (en) Method for producing composite membrane for reverse osmosis method
JP3132090B2 (en) Method for producing composite membrane for reverse osmosis method
JPS61101203A (en) Highly permeable composite membrane
JPH04104825A (en) Manufacture of composite membrane
JPS62279809A (en) Production of semipermeable composite membrane
JPH05317667A (en) Production of composite membrane for reverse osmosis method
JPH09187631A (en) Production of composite reverse-osmosis membrane and device therefor
JP2936633B2 (en) Composite semipermeable membrane
JPS637807A (en) Production of low-pressure highly-permeable semipermeable composite membrane
JPH11179175A (en) Production of composite separation membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees