KR100460011B1 - Post Treatment Process of Polyamide Reverse Osmosis Membrane - Google Patents

Post Treatment Process of Polyamide Reverse Osmosis Membrane Download PDF

Info

Publication number
KR100460011B1
KR100460011B1 KR1019980004801A KR19980004801A KR100460011B1 KR 100460011 B1 KR100460011 B1 KR 100460011B1 KR 1019980004801 A KR1019980004801 A KR 1019980004801A KR 19980004801 A KR19980004801 A KR 19980004801A KR 100460011 B1 KR100460011 B1 KR 100460011B1
Authority
KR
South Korea
Prior art keywords
reverse osmosis
membrane
post
treatment process
polyamide
Prior art date
Application number
KR1019980004801A
Other languages
Korean (ko)
Other versions
KR19990070132A (en
Inventor
박종상
임대우
김순식
Original Assignee
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새 한 filed Critical 주식회사 새 한
Priority to KR1019980004801A priority Critical patent/KR100460011B1/en
Publication of KR19990070132A publication Critical patent/KR19990070132A/en
Application granted granted Critical
Publication of KR100460011B1 publication Critical patent/KR100460011B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process

Abstract

본 발명은 정밀여과나 정수용으로 사용되는 폴리아미드계 역삼투 분리막의 후처리 공정에 관한 것으로서, 기존의 제품에 비해 특히 정수량을 향상시키는 것을 목적으로 안출된 것이다.The present invention relates to a post-treatment process of a polyamide reverse osmosis membrane used for precision filtration or water purification, and is intended to improve the amount of purified water, in particular, compared to existing products.

본 발명은 미세다공 폴리술폰이 코팅된 부직포 기질 표면에 다관능성 아민 수용액 혼합물을 침지시키고 다시 이것을 꺼내어 표면의 물층을 제거한 후 다관능성 산할로겐화합물 용액하에서 계면중합시켜 얻은 폴리아미드계 역삼투 복합막을 제조후 후처리 공정을 실시함에 있어서, 후처리 공정으로 코팅공정에서 형성된 표면층 위에 침적된 미반응 아민모노머, 아실할라이드모노머 등을 씻어낸후 소디움하이포클로라이드가 함유된 순수로 처리하는 것을 특징으로 한 것으로, 이와 같은 후처리 공정을 거쳐 제조된 폴리아미드계 역삼투 분리막은 정수량이 기존 제품에 비해 크게 향상된 성능을 나타낸다.The present invention is to prepare a polyamide reverse osmosis composite membrane obtained by immersing a mixture of a polyfunctional amine aqueous solution on the surface of a non-porous substrate coated with a microporous polysulfone and removing the water layer on the surface, and then interfacial polymerization under a polyfunctional acid halide compound solution. In performing the post-treatment process, the unreacted amine monomer, acyl halide monomer, etc. deposited on the surface layer formed in the coating process are washed off and then treated with pure water containing sodium hypochloride. Polyamide-based reverse osmosis membrane prepared through the same post-treatment process shows a significantly improved performance compared to conventional products.

Description

폴리아미드계 역삼투 분리막의 후처리 공정Post Treatment Process of Polyamide Reverse Osmosis Membrane

본 발명은 기존의 분리막에 비해 염배제율과 정수량이 우수한 폴리아미드계 복합소재 역삼투 분리막 제조공정에서 특히 후처리 공정에 관한 것이다.The present invention relates to a post-treatment process, especially in the polyamide-based composite reverse osmosis membrane manufacturing process excellent salt rejection rate and water purification amount compared to the conventional membrane.

역삼투 분리막은 1960년대 초에 로브(Loeb)와 소리라잔(Sourirajan)이 최초의 역삼투막인 비대칭형 셀룰로우즈디아세테이트막을 개발한 이래 이에 대한 연구가 활발히 행해져 왔다. 셀룰로우즈디아세테이트막은 가격이 저렴하다는 장점이 있으나, 미생물에 대해 취약하고 강염기하에서 쉽게 가수분해되며 사용온도와 pH의 범위가 좁다는 단점이 있어 셀룰로우즈의 개질과 여러 셀룰로우즈의 합금을 통해 사용되고 있지만 이들 단점을 완전히 극복하지는 못하였다. 그후 셀룰로우즈막의 단점을 보완하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리술폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되어지고 있다.Reverse osmosis membranes have been actively studied since Loeb and Sourirajan developed the first reverse osmosis membrane, an asymmetric cellulose diacetate membrane. Cellulose diacetate membranes have the advantages of low cost, but they are vulnerable to microorganisms, easily hydrolyzed under strong bases, and have a narrow range of operating temperature and pH, which leads to the modification of cellulose and alloys of various celluloses. Although it is being used through, it has not completely overcome these disadvantages. Since then, research has been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like to compensate for the disadvantages of cellulose membranes.

이들중에서 방향족 폴리술폰을 다공성 지지막으로 하고 폴리아미드계를 지지층으로 하는 복합막이 개발되어 실용화되고 있는 실정이다. 이와 같은 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있다. 복합막의 제조방법은 박층분산법, 침지코팅법, 기상증착법, 랭그미르-블로제트(Langmuir-Biodgett)법, 계면중합법 등이 있으며, 특히 근래 개발된 나노 또는 역삼투 복합막에서는 미국특허 4,277,344에 개시되어 있는 계면중합법이 복합막의 제조에 주로 이용되고 있다. 계면중합법에 의한 복합막의 시초는 다공성 폴리술폰 지지체에 폴리에틸렌아민 수용액과 헥산중의 톨루엔 디아소시아네이트를 반응시켜 제조된 상품명 NS-100으로서, NS-100의 개발 이후 이러한 계면 중합법에 여러종류의 지방족아민, 방향족아민이 사용되어 다양한 특성의 막이 제조되었다. 그러나, NS-100의 개발자인 캐도트(Cadotte)에 의해 폴리피페라진아미드 활성층을 가진 NS-300이 나오면서 비로소 계면 중합법에 의한 진정한 의미의 복합막이 나오기 시작했다. NS-300막은 나노미터급의 용질에 대한 특이한 선택적 분리능력을 가진 것으로서, NS-300의 개발 당시에 폴리피레라진아미드는 2가 이온과 단당류에 대해 95% 이상의 높은 배제율과 염화나트륨에 대해서는 40∼95%의 비교적 넓은 범위의 배제율을 가진 막들이 개발되었는데, 이같은 특성은 주로 폴리술폰계의 미소다공성 기질을 피페라진과 알칼리성 촉매가 섞인 다관능성 아민 용액에 함침시키고 그 기질상에 다관능성 산할로겐화합물을 도포하여 계면중합을 발생시켜 얻어진다. 이런막의 주된 배제율 조절방법은 산할로겐 화합물을 테레프탈로일클로라이드, 이소프탈로일클로라이드, 트리메조일클로라이드 용액을 적절한 비율로 혼합해가며 사용하는 방법으로 이 혼합비율에 배제율이 비례하는 방식이다. 나노 복합막의 제조방법중 미국특허 4,259,138에는 피페라진과 촉매로는 N,N'-디메틸피페라진, 수산화나트륨 등을 쓰고 이소프타로일클로라이드와 트리메조일클로라이드를 혼합 사용해 계면중합을 행하며, 이때 산할로겐화합물의 용매로는 n-헥산을 사용한다. 한편, 미국특허 4,619,767 에서는 폴리술폰위에 폴리비닐알콜을 먼저 코팅시키고 다시 피페라진 혹은 피페라진 구조를 포함한 디아민과 트리메조일클로라이드/이소프탈로일클로라이드의 혼합물을 사용해 계면중합시키고, 용매로 n-헥산을 사용하고 있다.Among them, a composite membrane having an aromatic polysulfone as a porous support membrane and a polyamide-based support layer has been developed and put into practical use. Such a composite membrane consists of a support layer for maintaining mechanical strength and an active layer with selective permeability. The manufacturing method of the composite membrane includes a thin layer dispersion method, an immersion coating method, a vapor deposition method, a Langmuir-Biodgett method, an interfacial polymerization method, and especially in the recently developed nano or reverse osmosis composite membrane in US Pat. No. 4,277,344. The interfacial polymerization method disclosed is mainly used for manufacture of a composite film. The start of the composite membrane by the interfacial polymerization method is NS-100 manufactured by reacting a polyethylene polyamine solution with toluene diasocyanate in hexane to a porous polysulfone support. Aliphatic amines, aromatic amines were used to prepare membranes of various properties. However, NS-300 with polypiperazineamide active layer came out by Cadette, the developer of NS-100, and finally the composite film by the interfacial polymerization method was started. The NS-300 membrane has a specific selective separation ability for nanometer solutes. At the time of NS-300 development, polypyrazineamide had a high rejection rate of over 95% for divalent ions and monosaccharides and 40-95 for sodium chloride. Membranes with a relatively broad range of rejection rates have been developed, which are mainly impregnated with polysulfone microporous substrates in a polyfunctional amine solution mixed with piperazine and an alkaline catalyst and on the substrate a polyfunctional acid halogenated compound. It is obtained by apply | coating an interpolymerization by apply | coating this. The main method of controlling the rejection rate of these membranes is to use a mixture of acid halide compounds with terephthaloyl chloride, isophthaloyl chloride, and trimezoyl chloride in an appropriate ratio, and the exclusion ratio is proportional to the mixing ratio. US Pat. No. 4,259,138 of the method for preparing a nanocomposite membrane uses N, N'-dimethylpiperazine, sodium hydroxide as a piperazine and a catalyst, and performs interfacial polymerization by mixing isophthaloyl chloride and trimezoyl chloride. N-hexane is used as a solvent of a compound. On the other hand, US Patent 4,619,767 first coated polyvinyl alcohol on polysulfone, and then interfacially polymerized with a mixture of diamine and trimesoyl chloride / isophthaloyl chloride containing piperazine or piperazine structure, and n-hexane as a solvent. I use it.

또한 이런 나노막에 비해 유량은 떨어지나 이온상태의 무기물들을 거의 98% 이상 분리할 수 있는 능력을 갖는 역삼투 분리막이 개발되었는데, 이러한 역삼투 분리막은 반투과막으로 염들이 녹아 있는 수용액의 한쪽 방향에서 가압을 할 경우 용액과 용질의 분리가 일정 방향으로 일어난다는 원리를 이용한 것으로 고압에도 견디고, 내구성, 내화학성이 뛰어난 재질의 고기능 분리막이다. 역삼투 분리막의 중요한 특성으로는 염배제율(SALT REJECTION : 용매로부터 용질의 분리능 정도를 나타내는 수치)과 유량(FLUX : 일정기간 동안 일정압력에서 분리막을 통하여 나오는 용매의 유량)이 있다. 박막 복합 재료의 역삼투 분리막으로는 계면중합에서 얻어지는 폴리아미드가 일반적으로 사용된다. 수용성 아민에서 미세 고분자 지지층(주로 폴리술폰계)을 잠기게 한 후 얻어진 층을 다시 유기층의 아실클로라이드가 녹아 있는 용액층에 잠기게 함으로써 계면중합이 이루어지는데, 이때 사용되는 유기 용매는 주로 폴리아미드화 반응에 영향을 주지 않으며 적당량의 기질을 녹일 수 있는 용매가 바람직하다.In addition, a reverse osmosis membrane was developed, which has a lower flow rate than that of the nano-membrane but has the ability to separate almost 98% of ionic minerals. The reverse osmosis membrane is a semi-permeable membrane in one direction of an aqueous solution in which salts are dissolved. It uses the principle that separation of solution and solute occurs in a certain direction when pressurized. It is a high-performance separator made of a material that withstands high pressure and has excellent durability and chemical resistance. Important characteristics of reverse osmosis membranes include salt rejection (SALT REJECTION), and flux (FLUX: flow rate of solvent exiting the membrane at constant pressure for a certain period of time). As the reverse osmosis membrane of the thin film composite material, polyamide obtained by interfacial polymerization is generally used. Interfacial polymerization is achieved by submerging the micropolymer support layer (primarily polysulfone) in a water-soluble amine, and then submerging the obtained layer in a solution layer in which the acyl chloride of the organic layer is dissolved. Solvents which do not affect the reaction and which can dissolve an appropriate amount of substrate are preferred.

지금까지 가장 널리 사용되어진 용매는 1,1,2-트리클로로트리플로오르에탄(1,1,2-TRICHLOROTRIFLUOROETHANE)으로 일반적으로 CFC-113으로 불리어지는 용매이나, 값이 비싸고 오존층 파괴 등 환경에 악영향을 주는 것으로 알려져 있다.The most widely used solvent so far is 1,1,2-trichlorotrifluoroethane (1,1,2-TRICHLOROTRIFLUOROETHANE), which is generally called CFC-113, but is expensive and adversely affects the environment such as destruction of the ozone layer. It is known to give.

그로인해 환경 친화적인 용매의 사용에 관한 연구가 최근 활발히 진행되었는데, 미국특허 4,005,012, 미국특허 4,259,813, 미국특허 4,360,434, 미국특허 4,606,943, 미국특허 4,737,325, 미국특허 4,282,708, 미국특허 5,258,203 등은 1,1,2-트리클로로트리플로오르에탄을 사용하지 않고 지방족 탄화수소 용매로 대체하여 분리막을 제조하는 방법을 제시하였다. 그러나, 헥산같은 지방족 반응용매들의 사용은 유량을 떨어뜨리는 결과로 상업적 사용이 제안되어 왔다. 때문에 좋은 염배제율과 충분한 유량을 얻기 위한 연구들이 진행되어 왔는데, 조액시 첨가하는 물질들을 개발하는 연구(미국특허 5,234,598, 미국특허 5,258,203), 폴리아미드 반응에 첨가하는 단량체들의 구조를 바꾸는 연구(미국특허 4,761,234, 미국특허 4,643,829, 미국특허 5,019,264, 미국특허 5,160,619, 미국특허 5,271,843, 미국특허 5,336,409), 후처리를 통한 유량증가 방법에 관한 연구(미국특허 4,938,872, 미국특허 4,927,540)등이 제안되어 있다. 이때 사용되는 지방족 탄화수소 용매는 지방족 탄화수소 복합용액과 몇번의 첨가제가 혼합된 것이 사용되며, 이때 첨가제는 수용액 용매상이나 지방족 탄화수소 용매상에 첨가된다. 후처리를 통한 염배제율 및 유량 증가방법으로 미국특허 4,277,344 에는 막을 제조후 소디움하이포크로라이드(NaOCl)를 함유한 수처리액으로 처리하는 방법이 제시되어 있으나, 이 경우는 염배제율은 크게 증진되나 유량의 증가가 미흡한 문제점이 있다.As a result, studies on the use of environmentally friendly solvents have been actively conducted in recent years, including US Patent 4,005,012, US Patent 4,259,813, US Patent 4,360,434, US Patent 4,606,943, US Patent 4,737,325, US Patent 4,282,708, US Patent 5,258,203, and the like. A method of preparing a separator by using an aliphatic hydrocarbon solvent without using 2-trichlorotrifluoroethane is provided. However, the use of aliphatic reaction solvents such as hexane has been suggested for commercial use as a result of lowering the flow rate. Because of this, studies have been conducted to obtain a good salt rejection rate and sufficient flow rate, a study of developing materials to be added to the crude liquid (US Pat. No. 5,234,598, US Pat. No. 5,258,203), and a study of changing the structure of the monomers added to the polyamide reaction (US Patents 4,761,234, U.S. Patents 4,643,829, U.S. Patents 5,019,264, U.S. Patents 5,160,619, U.S. Patents 5,271,843, U.S. Patents 5,336,409, and studies on increasing the flow rate through post-treatment (U.S. Patent 4,938,872, U.S. Patent 4,927,540) are proposed. At this time, the aliphatic hydrocarbon solvent used is a mixture of an aliphatic hydrocarbon complex solution and several additives, and the additive is added to the aqueous solution solvent or the aliphatic hydrocarbon solvent phase. As a method of increasing the salt excretion rate and flow rate through post-treatment, US Patent 4,277,344 proposes a method of preparing a membrane and then treating the membrane with a water treatment solution containing sodium hypochloride (NaOCl). There is a problem that the increase in flow rate is insufficient.

다관능성 아민수용액층에 첨가제로 글리콜류를 미량 첨가하여 막의 성능을 높힌 발명의 예로는, 미국특허 4,830,885에 예시된 것 처럼 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 글리세린 등 및 그의 혼합물을 첨가하여 향상된 물성을 나타내는 결과를 얻고 있다. 또 다른 예로는, 미국특허 4,950,404에 예시된 것 처럼 다관능성 아민 수용액층에 NMP, DMF, Prydine, DMAC, Sufolane, Dioxane 및 그 혼합물 등을 첨가하여 향상된 물성을 나타내는 결과를 얻고 있다. 다관능성 아실할라이드 유기용액층에 유기 첨가제를 첨가하여 물성을 향상시킨 방법으로 미국특허 5,258,203 에는 다관능성 아실할라이드 유기용액층에 벤젠, 크실렌, 헵탄, 디메틸이더, 메틸이더, 디에틸이더 혹은 그의 혼합물을 첨가하는 방법이 예시되어 있다.Examples of the invention that improve the performance of the membrane by adding a small amount of glycols as an additive to the polyfunctional amine aqueous solution layer, as illustrated in US Patent 4,830,885, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like and mixtures thereof to improve the properties Getting results. As another example, NMP, DMF, Prydine, DMAC, Sufolane, Dioxane, and mixtures thereof are added to the polyfunctional amine aqueous solution layer as illustrated in US Pat. No. 4,950,404 to obtain improved physical properties. A method of improving the physical properties by adding an organic additive to the polyfunctional acyl halide organic solution layer is described in US Pat. No. 5,258,203 to benzene, xylene, heptane, dimethyl ether, methyl ether, diethyl ether or the like. A method of adding a mixture thereof is illustrated.

본 발명은 복합재료로 구성된 역삼투 분리막을 지방족 탄화수소 용매를 사용하여 제조시, 막의 제조후 막의 제조중 막의 표면에 잔존해 있는 부산물 및 막 제조시 사용한 모노머를 효과적으로 제거시킨 후 후처리를 하여 막의 물성을 향상시키는 방법을 제공하는데 그 목적이 있는 것이다.The present invention is to prepare a reverse osmosis membrane composed of a composite material using an aliphatic hydrocarbon solvent, and effectively remove the by-products remaining on the surface of the membrane during the preparation of the membrane and the monomer used in the preparation of the membrane and then post-treatment to perform the post-treatment Its purpose is to provide a way to improve this.

본 발명은 미세다공 폴리술폰이 코팅된 부직포 기질 표면에 다관능성 아민용액을 침지한 후 표면의 물층을 제거하고 다관능성 산할로겐화합물 용액 하에서 계면중합시켜 폴리아미드 역삼투 복합막을 제조한 후, 후처리 공정으로 코팅 공정에서 형성된 표면층위에 침적(Deposit)된 미반응 아민모노머, 아실할라이드모노머 및 아민모노머와 아실할라이드가 반응한 올리고머를 씻어낸 후 소디움하이포클로라이드가 함유되고 이온이 제거된 순수로 처리함으로써 역삼투막의 성능을 향상시키는 것을 특징으로 한 폴리아미드계 역삼투 복합막의 후처리 공정에 관한 것이다.The present invention is to immerse a polyfunctional amine solution on the surface of the non-woven substrate coated with a microporous polysulfone, and then remove the water layer of the surface and interfacial polymerization under a polyfunctional acid halide compound solution to prepare a polyamide reverse osmosis composite membrane, and then post-treatment Reverse osmosis membrane by washing with unreacted amine monomer, acyl halide monomer and oligomer reacted with amine monomer and acyl halide deposited on the surface layer formed in the coating process, and then treating with pure water containing sodium hypopochloride and ion removal It relates to a post-treatment process of a polyamide reverse osmosis composite membrane, characterized in that to improve the performance of.

보통의 방법으로 제조된 막의 표면 및 표면 바로 아래층으로 구성되어 있는 다공질 지지층에는 막의 제조공정에서 필연적으로 묻게 되는 미반응 다관능성 아민모노머, 미반응 다관능성 아실할라이드모노머, 하이드롤라이즈된 미반응 다관능성 아실할라이드모노머, 그리고 다관능성 아민모노머와 다관능성 아실할라이드모노머가 반응된 반응 부산물 등으로 오염되어 있다. 이와 같은 오염물질들은 제조된 막의 고유한 물성을 나타내는데 방해를 주고 따라서 필연적으로 막의 물성의 저하를 초래한다. 본 발명은 이와 같은 부산물들을 효과적으로 제거하는 방법에 관한 것으로 이하에서 본 발명을 구체적으로 설명한다. The porous support layer, which is composed of the surface of the membrane and the layer just below the surface prepared by the conventional method, has an unreacted polyfunctional amine monomer, unreacted polyfunctional acyl halide monomer, hydrolyzed unreacted polyfunctional which are inevitably buried in the membrane manufacturing process. It is contaminated with acyl halide monomers and reaction by-products of the reaction between the polyfunctional amine monomer and the polyfunctional acyl halide monomer. Such contaminants interfere with the inherent properties of the membranes produced and therefore inevitably lead to degradation of the membrane properties. The present invention relates to a method for effectively removing such by-products and will be described in detail below.

본 발명에서는 막 제조후 막표면의 이물질을 효과적으로 제거하기 위한 첫 번째로 이온을 제거한 순수로 0∼10psig의 미압, 회수율 15% 미만의 조건으로 막의 표면의 미반응 모노머 등의 이물질들을 세척하며, 이때 시간은 길수록 좋은 효과를 나타내지만, 약 10∼15분 정도의 적은 시간으로도 충분한 효과를 볼 수 있다. 여기서 압력과 회수율(Recovery)은 매우 중요한데 50psig 이상의 고압에서, 예를 들면, 흔히 평가하는 압력인 225psig에서는 막 표면의 미반응 모노머 및 기타의 부산물인 불순물들이 막의 미세한 세공(Pore)으로 밀려들어가서 세공을 막히게 할 가능성이 매우 크기 때문이다. 이렇게 막의 표면의 불순물들을 씻어 없앤 다음 두 번째 세정공정으로 막을 처리하는데, 즉, 50∼350psig의 압력, 회수율 5∼80%의 조건에서 이온을 제거한 순수로 1시간 이상 세정시키며, 이러한 두 번째 공정은 막의 표면층 바로 밑에 위치한 다공질 지지층 및 그 아래에 위치한 부직포에 묻어 있는 미반응 분산물 및 모노머를 제거시키는 공정이다. 이 공정은 세 번째 공정인 화학적 처리공정을 효과적으로 수행시키기 위한 공정으로 막의 표면, 막의 후면, 막의 자체의 공간에 불순물들을 가급적 모두 제거시켜 이후 화학적 처리의 효과를 높히기 위한 공정이다. 세 번째 공정은 압력 50∼300psig, 회수율 5∼60%, 상온의 조건에서 소디움하이포 클로라이드를 이온을 제거한 순수에 잔류염소 기준(as Cl2)으로 5∼100ppm으로 조성한 액체로 5∼30분간 처리를 해준다. 이와 같이 처리된 막은 처리되지 않은 막보다 염 배제율은 절대치로 0.3∼5.0% 증가되며, 정수량은 드물게는 약 5% 감소하는 경우도 있으나, 대부분의 경우에 10∼80% 향상되는 유용성을 얻을 수 있다.In the present invention, the first step to remove the foreign matter on the surface of the membrane effectively after the preparation of the membrane to remove foreign substances such as unreacted monomers on the surface of the membrane under conditions of 0 ~ 10 psig micropressure, recovery rate less than 15% with pure water removed. The longer the time is, the better the effect is, but a small time of about 10 to 15 minutes is enough to see the effect. The pressure and recovery are very important here at high pressures of 50 psig or higher, for example, at 225 psig, which is a commonly assessed pressure, unreacted monomers and other byproduct impurities on the membrane surface are forced into the pores of the membrane. This is because there is a high possibility of clogging. In this way, the impurities on the surface of the membrane are washed off, and then the membrane is treated by a second washing process, that is, washing is performed for 1 hour or more with deionized water at a pressure of 50 to 350 psig and a recovery rate of 5 to 80%. A process for removing unreacted dispersions and monomers from the porous support layer located directly below the surface layer of the membrane and the nonwoven fabric underneath it. This process is a process to effectively carry out the third process, the chemical treatment process, to remove impurities as much as possible from the surface of the film, the back of the film, and the space of the film itself, thereby enhancing the effect of the subsequent chemical treatment. The third process is a liquid consisting of 5 to 100 ppm of residual sodium phosphate (as Cl 2 ) in pure water from which sodium hypopochloride is deionized under pressure of 50 to 300 psig, recovery of 5 to 60%, and room temperature. Do it. The membrane treated as described above has an absolute increase in salt rejection rate of 0.3% to 5.0% compared to the untreated membrane, and the amount of purified water is rarely reduced by about 5%. However, in most cases, the usefulness can be improved by 10% to 80%. have.

이하에서 실시예 및 비교예를 들어 본 발명을 좀 더 구체적으로 설명한다. 여기에서 모듈(Module)은 막을 재료로하여 기타 필요한 부재료를 같이 투입하여 사용하기 편리하도록 만든 것을 말하며, 정수량이라 함은 막 혹은 모듈을 사용하여 각종 원수(혹은 공급수)를 처리할 때 막을 통과하여 처리되어 나온 물의 양을 말한다. 또한 염배제율이라 함은 처리하고자 하는 원수의 염농도를 얼마나 많이 걸러주었는가에 대한 백분율 수치이며, 회수율이라 함은 막 혹은 모듈로 입수되는 원수량중 몇 퍼센트가 정수로 나오는가를 수치로 나타낸 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In this case, the module refers to a material made of a membrane to make it convenient to use by adding other necessary subsidiary materials. The amount of purified water is passed through the membrane when processing various raw water (or feed water) using the membrane or a module. The amount of water that has been treated. In addition, salt rejection rate is a percentage value of how much the salt concentration of raw water to be treated is filtered, and recovery rate is a numerical value indicating how many percent of raw water obtained through a membrane or a module comes out as an integer.

[실시예 1]Example 1

미세다공 폴리술폰이 코팅된 부직포 기질표면에 다관능성아민수용액 혼합물을 침지시키고, 다시 이것을 꺼내어 표면의 물층을 제거한 후 다관능성 산할로겐 화합물 용액하에서 계면중합시키는 공지의 방법을 사용하여 역삼투 복합막을 제조한 후, 5psig의 압력, 회수율 5%, 온도 25℃의 조건에서 이온을 제거한 순수로 15분간 세척하여 표면의 미반응 모노머 및 기타 불순물들을 세척해준 후 다시 이것을 150psig의 압력, 회수율 15%, 온도 25℃의 조건에서 60분간 세척하였다. 곧 이어 소디움하이퍼클로라이드를 이온이 제거된 순수에 넣어 잔류염소 농도를 염소기준(as Cl2)으로 15ppm으로 맞춘 후 압력 300psig, 회수율 15%의 조건에서 25분간 처리를 하였다.The reverse osmosis composite membrane was manufactured by using a known method of immersing the multifunctional amine aqueous solution mixture on the surface of the nonwoven substrate coated with the microporous polysulfone, removing the water layer on the surface, and then interfacially polymerizing the solution under the polyfunctional acid halogenated compound. After washing for 15 minutes with deionized water at a pressure of 5 psig, a recovery rate of 5%, and a temperature of 25 ° C., the unreacted monomers and other impurities on the surface were washed, and again, the pressure was 150 psig, a recovery rate of 15%, and a temperature of 25 ° C. It was washed for 60 minutes at the condition of ℃. Sodium sodium chloride was added to pure water from which ions were removed, and the residual chlorine concentration was adjusted to 15 ppm based on chlorine (as Cl 2 ), and then treated for 25 minutes under conditions of 300 psig and 15% recovery.

이렇게 제조한 후 세정 및 후처리한 막의 성능을 NaCl 농도 2000ppm, 압력 225psig, 온도 25℃, 회수율 15±5%의 조건에서 평가하여 그 결과를 표 1에 나타내었다.The performance of the membrane thus prepared and washed and post-treated was evaluated under conditions of 2000 ppm NaCl, pressure 225 psig, temperature 25 ° C., recovery rate 15 ± 5%, and the results are shown in Table 1.

[비교예 1]Comparative Example 1

실시예 1에서 후처리 공정으로 단순히 소디움하이포클로라이드가 함유된 순수로 처리하였으며, 이렇게 후처리한 막의 성능을 실시예 1과 동일하게 평가하여 그 결과를 표 1에 나타내었다.In Example 1, the treatment was performed simply with pure water containing sodium hypochloride, and the performance of the post-treatment membrane was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[표 1]TABLE 1

정수량(gfd)Water purification amount (gfd) 염배제율(%)Salt Exclusion Rate (%) 실시예 1Example 1 2626 99.099.0 비교예 1Comparative Example 1 2020 98.998.9

상기의 결과에서 볼 수 있듯이 막을 제조한 후 곧바로 소디움하이포클로라이드로 처리한 기존의 것에 비해 본 발명에 따라 먼저 막표면 및 내부의 불순물들을 가급적 완전히 세정한 후 소디움하이포클로라이드로 처리를 한 것이 염 배제율에서는 동등한 정도의 수준을 보이지만 정수량이 크게 향상되는 등의 유용성을 얻을 수 있다.As can be seen from the above results, the membrane was first treated with sodium hypophosphate immediately after the preparation of the membrane, according to the present invention. Equivalent to the same level, but the availability of water purification is greatly improved.

Claims (1)

미세다공 폴리술폰이 코팅된 부직포 기질 표면에 다관능성아민 수용액 혼합물을 침지시키고, 다시 이것을 꺼내어 표면의 물층을 제거한 후 다관능성 산할로겐화합물 용액하에서 계면중합시켜 얻은 폴리아미드계 역삼투 복합막을 제조한 후 후처리 공정을 실시함에 있어서, 후처리 공정으로 막 및 모듈을 장착하여 0∼10psig의 압력, 회수율 0∼5%의 조건에서 이온을 제거한 순수로 5∼60분 세정시킨 후 이어서 50∼350psig의 압력, 회수율 5∼60%의 조건에서 이온을 제거한 순수로 1시간 이상 세정시킨 다음 최종적으로 50∼300psig의 압력, 회수율 5∼75%, 소디움하이포클로라이드가 잔류 염소량 기준으로 5∼100ppm을 함유한 수용액으로 1∼30분 처리시키는 것을 특징으로 하는 폴리아미드계 역삼투 분리막의 후처리 공정.After preparing a polyamide reverse osmosis composite membrane obtained by immersing a mixture of a polyfunctional amine solution on the surface of a non-porous substrate coated with a microporous polysulfone, removing the water layer on the surface, and interfacially polymerizing the solution under a polyfunctional acid halide compound. In carrying out the post-treatment process, the membrane and the module were mounted in the post-treatment process, and washed 5 to 60 minutes with deionized water under conditions of 0 to 10 psig and 0 to 5% recovery, followed by a pressure of 50 to 350 psig. After washing for more than 1 hour with deionized water at a recovery rate of 5 to 60%, finally pressurized at 50 to 300 psig, recovery rate of 5 to 75%, and sodium hypophosphate as an aqueous solution containing 5 to 100 ppm based on the amount of residual chlorine. A post-treatment step of the polyamide reverse osmosis membrane, characterized in that the treatment for 1 to 30 minutes.
KR1019980004801A 1998-02-17 1998-02-17 Post Treatment Process of Polyamide Reverse Osmosis Membrane KR100460011B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980004801A KR100460011B1 (en) 1998-02-17 1998-02-17 Post Treatment Process of Polyamide Reverse Osmosis Membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980004801A KR100460011B1 (en) 1998-02-17 1998-02-17 Post Treatment Process of Polyamide Reverse Osmosis Membrane

Publications (2)

Publication Number Publication Date
KR19990070132A KR19990070132A (en) 1999-09-15
KR100460011B1 true KR100460011B1 (en) 2005-04-06

Family

ID=37301882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980004801A KR100460011B1 (en) 1998-02-17 1998-02-17 Post Treatment Process of Polyamide Reverse Osmosis Membrane

Country Status (1)

Country Link
KR (1) KR100460011B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205384B2 (en) 2012-05-31 2015-12-08 Lg Chem, Ltd. High permeate flux reverse osmosis membrane including carbodiimide compound and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101934531B1 (en) * 2016-06-01 2019-03-25 서울대학교산학협력단 Acid-resistant composite separator with improved ion selectivity and method of manufacturing the same
KR102230984B1 (en) 2018-07-09 2021-03-23 주식회사 엘지화학 Water treatment membrane, water treatment module comprising same and method for manufacturing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
JPS62254804A (en) * 1986-04-28 1987-11-06 Kyocera Corp Flushing system for reverse-osmosis desalination device
JPS6354905A (en) * 1986-08-25 1988-03-09 Toray Ind Inc Production of semiosmosis composite membrane
US4927540A (en) * 1986-09-04 1990-05-22 The Dow Chemical Company Ionic complex for enhancing performance of water treatment membranes
US4938872A (en) * 1989-06-07 1990-07-03 E. I. Du Pont De Nemours And Company Treatment for reverse osmosis membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
JPS62254804A (en) * 1986-04-28 1987-11-06 Kyocera Corp Flushing system for reverse-osmosis desalination device
JPS6354905A (en) * 1986-08-25 1988-03-09 Toray Ind Inc Production of semiosmosis composite membrane
US4927540A (en) * 1986-09-04 1990-05-22 The Dow Chemical Company Ionic complex for enhancing performance of water treatment membranes
US4938872A (en) * 1989-06-07 1990-07-03 E. I. Du Pont De Nemours And Company Treatment for reverse osmosis membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205384B2 (en) 2012-05-31 2015-12-08 Lg Chem, Ltd. High permeate flux reverse osmosis membrane including carbodiimide compound and method of manufacturing the same

Also Published As

Publication number Publication date
KR19990070132A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
JP5835835B2 (en) Composite membrane with multilayer active layer
EP1958685B1 (en) Selective membrane having a high fouling resistance
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
KR101240956B1 (en) Reverse osmosis composite having high fouling resistance and manufacturing method thereof
EP1013337B1 (en) Highly permeable composite reverse osmosis membrane and method of producing the same
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
EP3354333B1 (en) Water treatment membrane and method for manufacturing same
KR100692394B1 (en) Method of producing reverse osmosis membrane with boron removal effect
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR100583136B1 (en) Silane-polyamide composite membrane and method thereof
KR101230843B1 (en) Fouling resistance polyamide reverse osmosis membrane and manufacturing method thereof
KR100460011B1 (en) Post Treatment Process of Polyamide Reverse Osmosis Membrane
KR101025750B1 (en) Method of manufacturing reveres osmosis membrane and polyamide composite membrane showing high boron rejection manufactured thereby
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR20210136676A (en) Excellent removing nitrate polyamide reverse osmosis membrane, Method of manufacturing the same and Membrane module comprising the same
KR101403345B1 (en) Reverse osmosis composite membrane for boron rejection and manufacturing method thereof
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR20050074166A (en) Producing method of nanofilteration composite membrane having high flow rate
KR102547346B1 (en) Excellent removing nitrate polyamide reverse osmosis membrane, method of manufacturing the same and membrane module comprising the same
KR19980068304A (en) Performance Improvement Method of Polyamide Reverse Osmosis Composite Membrane
KR102288033B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20000031689A (en) Process for the preparation of polyamide reverse osmosis composite film
KR100371901B1 (en) Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141124

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 14