JPH0380049B2 - - Google Patents

Info

Publication number
JPH0380049B2
JPH0380049B2 JP61156165A JP15616586A JPH0380049B2 JP H0380049 B2 JPH0380049 B2 JP H0380049B2 JP 61156165 A JP61156165 A JP 61156165A JP 15616586 A JP15616586 A JP 15616586A JP H0380049 B2 JPH0380049 B2 JP H0380049B2
Authority
JP
Japan
Prior art keywords
membrane
solution
reaction
acid chloride
amino compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61156165A
Other languages
Japanese (ja)
Other versions
JPS6312310A (en
Inventor
Tadahiro Uemura
Tetsuo Inoe
Masaru Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61156165A priority Critical patent/JPS6312310A/en
Publication of JPS6312310A publication Critical patent/JPS6312310A/en
Publication of JPH0380049B2 publication Critical patent/JPH0380049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、海水やカン水の脱塩、有価物の回
収、廃水の再利用、超純水の製造等に用いること
のできる、逆浸透用の半透性複合膜の製造方法に
関する。 [従来の技術] 従来、工業的に利用されている半透膜には、酢
酸セルローズから作つた非対称膜として、例えば
米国特許3133132号明細書及び同第3133137号明細
書等に記載されたロブ型の膜がある。 しかし、この膜は、耐加水分解性、耐微生物
性、耐薬品性などに問題があり、特に透過性を向
上しようとすると耐圧性、耐久性を兼ね備えた膜
が製造できず、一部使用されているが広範囲の用
途に実用化されるに至つていない。これらの酢酸
セルローズ非対称膜の欠点をなくした新しい素材
に対する研究は米国、日本を中心に盛んに行なわ
れているが、芳香族ポリアミド、ポリアミドヒド
ラジド(米国特許第3567632号公報)、ポリアミド
酸(特公昭55−37282号公報)、架橋ポリアミド酸
(特公昭56−3769号公報)、ポリイミダゾピロロ
ン、ポリスルホンアミド、ポリベンズイミダゾー
ル、ポリベンズイミダゾロン、ポリアリーレンオ
キシドなど、その一部の欠点を改良する素材は得
られているもの、選択分離性あるいは透過性等の
面では酢酸セルローズ膜より劣つている。 一方、ロブ型とは型を異にする半透膜として多
孔性支持体膜上に実質的に膜性能を発揮する超薄
膜を被覆した複合膜が開発されている。複合膜に
おいては、超薄膜と多孔性支持体膜を各々の用途
に最適な素材を選ぶことが可能となり、製膜技術
の自由度が増す。また常時湿潤状態で保持しなけ
ればならないロブ型とは異なり、乾燥状態での保
存が可能であるなどの利点がある。 このような複合膜のうち超薄膜がポリアミドま
たはポリ尿素からなる複合膜は膜性能、特に水透
過性が高いため半透性複合膜開発の主流になつて
いる。該複合膜の製造方法としては米国特許第
3191815号明細書、同第3744642号明細書、同第
4039440号明細書、同第4277344号明細書および特
表昭56−500062号公報に開示されているように多
孔性支持体上でアミノ基を有する化合物を含む水
溶液と多官能性反応試薬を含む炭化水素系溶液と
を接触させ、界面反応によつて超薄膜を形成する
方法がある。 [発明が解決しようとする問題点] 本発明者らはこのような半透性複合膜の性能向
上について検討を行ない、上記の製造工程で界面
反応を行ない、超薄膜を形成する際に、アシル化
触媒を用いることにより該複合膜の性能、特に水
透過性が向上することを見出し、本発明に到達し
たのである。 [問題点を解決するための手段] 上記目的を達成するため本発明は下記の構成か
らなる。 「多孔性支持膜と界面反応によつて得られる架
橋芳香族ポリアミドからなる超薄膜を有する半透
性複合膜を製造する際に、ジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチルピロリド
ン、ピリジン、ジメチルアミノピリジンから選ば
れた少なくとも1種のアシル化触媒を用いて界面
反応を行なうことを特徴とする半透性複合膜の製
造方法。」 本発明に使用される多孔性支持体膜とはその表
面に数十〜数千オングストロームの微細孔を有す
る支持膜であつて、ポリスルホン、ポリ塩化ビニ
ル、塩素化塩化ビニル、ポリカーボネート、ポリ
アクリロニトリル、セルローズエステル等を素材
とする公知のものが含まれる。この中、本発明に
は多孔性のポリスルホン支持膜が特に有効であ
る。多孔性ポリスルホンの製膜はポリスルホンを
ジメチルホルムアミド等の非プロトン性極性溶媒
の溶液にして例えばポリエステル繊維からなる織
物または不織布上に流延し、次いで実質的に水か
らなる媒体中で凝固(ゲル化)する、いわゆる湿
式製膜等によつて行なう。このようにして得られ
た多孔性ポリスルホンは表面には数十〜数千オン
グストローム程度の大きさで表面から裏面にいく
ほど大きくなる微細孔を有する。 本発明において、界面反応によつて得られる超
薄膜は、架橋芳香族ポリアミドを主成分とするも
のであり、該架橋芳香族ポリアミドは2つ以上の
反応性のアミノ基を有する芳香族アミンと、多官
能芳香族酸ハロゲン化物の界面反応によつて得る
ことができる。 本発明において2つ以上の反応性のアミン基を
有する芳香族アミン(以下アミノ化合物と略す)
とは、芳香環に直結する2個以上のアミノ基を有
するアミノ化合物を示し、例えば、メタフエニレ
ンジアミン、パラフエニレンジアミン、3,5−
ジアミノ安息香酸、2,5−ジアミノベンゼンス
ルホン酸、4,4′−ジアミノベンズアニリド、
3,3′,5,5′−テトラアミノベンズアニリド、
1,3,5−トリアミノベンゼン等を例示するこ
とができる。これらのアミノ化合物は、一般には
水溶液の形で界面反応に供せられ、アミノ化合物
水溶液におけるアミノ化合物の濃度は0.1〜10重
量%、好ましくは0.5〜5.0重量とする。またアミ
ノ化合物水溶液にはアミノ化合物と多官能性反応
試薬との反応を妨害しないものであれば、界面活
性剤や有機溶媒等が含まれてもよい。 多孔性支持膜表面へのアミノ化合物水溶液の被
覆は、該水溶液が表面に均一にかつ連続的に被覆
されればよく、公知の塗布手段例えば、該水溶液
を多孔性支持膜表面にコーテイングする方式、多
孔性支持膜を該水溶液に浸漬する方法等で行なえ
ばよい。 本発明における多官能芳香族酸ハロゲン化物と
は、芳香環に直結するアシルハライド基を2つ以
上有する化合物(以下多官能性反応試薬)をい
い、例えば、トリメシン酸クロライド、ベンゾフ
エノンテトラカルボン酸クロライド、トリメリツ
ト酸クロライド、ピロメリツト酸クロライド、イ
ソフタル酸クロライド、テレフタル酸クロライ
ド、ナフタレンジカルボン酸クロライド、ジフエ
ニルジカルボン酸クロライド、ピリジンジカルボ
ン酸クロライド、ベンゼンジスルホン酸クロライ
ドなどが挙げられるが、製膜溶媒に対する溶解性
及び半透性複合膜の性能を考慮するとトリメシン
酸クロライド、イソフタル酸クロライド、テレフ
タル酸クロライドが好ましい。 これらの多官能反応試薬は、一般には、水と非
混和性の溶媒に溶解して界面反応に供せられ、溶
媒としては、アミノ化合物および多官能反応試薬
に対して不活性であり、かつ水に対して不溶性ま
たは難溶性である必要がある。更に該溶媒は多孔
性支持膜に対しても不活性なものが好ましい。該
溶媒の代表例としては液状の炭化水素およびハロ
ゲン炭化水素、例えば、ペンタン、ヘキサン、ヘ
プタン、1,1,2−トリクロロ−1,2,2−
トリフルオロエタンがある。多官能反応試薬と濃
度は好ましくは0.01〜10重量%、さらに好ましく
は0.02〜2重量%である。 多官能反応試薬のアミノ化合物水溶液相への接
触の方法はアミノ化合物水溶液の多孔性支持膜へ
の被覆方法と同様に行なえばよい。 このようなアミノ化合物の水溶液と、多官能反
応試薬の溶液は、多孔性支持膜上で両者を接触す
ると界面反応によつてその界面に架橋芳香崎ポリ
アミドの超薄膜が形成する。一般には、アミノ化
合物の水溶液を塗布し、過剰な水溶液を除去した
後、多官能反応試薬の溶液を接触して界面反応を
行なう。この際、アシル化触媒を両溶液の一方ま
たは両方に加えておくと得られる半透性複合膜の
性能、特に水透過性が向上する。アシル化触媒と
しては、ジメチルホルムアミド、ジメチルアセト
アミド、N−メチルピロリドン、ピリジン、ジメ
チルアミノピリジンから選ばれた少なくとも1種
を用いることができ、触媒としての強さによつて
添加量を決定することが好ましい。 アシル化触媒の中でジメチルホルムアミド、ジ
メチルアセトアミド等のアミド系溶媒が、取り扱
い性の点から好ましく、その中でもジメチルホル
ムアミドが触媒能の点で好ましい。アシル化触媒
を用いて界面反応を行なうと、水透過性が向上す
るが、逆に溶質排除率はわずかに低下する傾向が
ある。この理由は、生成した架橋芳香族ポリアミ
ドは完全にアミド結合のみで芳香環を結合してお
らず、一部にアミン末端基(−NH2)やカルボ
ン酸末端(−COOH)が生じ、これらの末端基
がイオン化するためと考えられ、アシル化触媒は
酸ハライドの反応性を活性化するため、通常アミ
ンとの反応でイミド化の進行に寄与するが、本発
明では界面重縮合を用いており、アミンとの反応
だけでなく、水との反応も活性化する。よつて、
もしアミノ基が残つていればこれをアミド化する
ことによりアミン末端が減少し、水との反応でカ
ルボン酸末端が増加する。このため溶質排除率が
わずかに低下し、水透過系が向上するものと考え
られる。 アシル化触媒として、ジメチルホルムアミドを
用いる場合には、アミノ化合物の水溶液に添加す
る場合は、0.1〜10%、膜性能のバランスを考え
ると0.2〜5%の範囲が好ましく、逆に多官能反
応試薬の溶液に添加する場合は、10〜1000ppm、
膜性能のバランスを考えると、20〜500ppmの範
囲が好ましい。上記のように、ジメチルホルムア
ミドの場合は、多官能反応試薬の溶液に添加する
場合の方が量的に経済的である。 [実施例] 以下に実施例により本発明を具体的に説明す
る。 実施例1〜2、比較例1 タテ30cm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニ
ールのマルチフイラメント糸、織密度タテ90本/
インチ、ヨコ67本/インチ、厚さ160μ)をガラ
ス板上に固定し、その上にポリスルホン(ユニオ
ン・カーボイド社製のUdel P3500)の15重量%
ジメチルホルムアミド(DMF)溶液を200μの厚
みで室温(20℃)でキヤストし、ただちに純水中
に浸漬して5分間放置することによつて繊維補強
ポリスルホン支持体(以下FR−PS支持体と略
す)を作成する。このようにして得られたFR−
PS支持体(厚さ210〜215μ)の純水透過係数は、
圧力1Kg/cm2、温度25℃で測定して0.005〜0.01
g/mm2・sec・atmであつた。 FR−PS支持体をアミノ化合物としてメタフエ
ニレンジアミン2重量%水溶液に2分間浸漬し
た。FR−PS支持体表面から余分な該水溶液を取
り除いた後、1,1,2−トリクロ−1,2,2
−トリフルオロエタンに多官能反応試薬としてト
リメシン酸クロライド0.1重量%および表1に示
すジメチルホルムアミドを溶解した溶液を表面が
完全に濡れるようにコーテイングして1分間静置
した。次に膜を垂直にして余分な該溶液を液切り
して除去した。このようにして得られた複合膜を
1500ppmの食塩水を原水とし15Kg/cm2、25℃の条
件下で逆浸透テストした結果、表1に示した膜性
能が得られた。 実施例3〜4、比較例2 実施例1〜2、比較例1において、アミノ化合
物として、メタフエニレンジアミン1重量%と
1,3,5−トリアミノベンゼン1重量%の混合
水溶液を用い、多官能反応試薬として、トリメシ
ン酸クロライド0.05重量%、テレフタル酸クロラ
イド0.05重量%の1,1,2−トリクロロ−1,
2,2−トリフルオロエタン溶液を用いて他は同
様にして複合膜を得た。 膜性能を表2に示す。 実施例 5 比較例2において、アミノ化合物の水溶液にジ
メチルホルムアミド0.65重量%を加え、他は同様
にして得た複合膜の膜性能は、塩排除率99.64%、
水透過性0.62m3/m2・dであつた。 実施例 6〜9 比較例2において、多官能反応試薬に、表3に
示すアシル化触媒を加え、他は同様にして得た複
合膜の性能を示す。
[Industrial Application Field] The present invention is a semipermeable composite membrane for reverse osmosis that can be used for desalination of seawater and can water, recovery of valuables, reuse of wastewater, production of ultrapure water, etc. Relating to a manufacturing method. [Prior Art] Conventionally, semipermeable membranes that have been used industrially include asymmetric membranes made from cellulose acetate, such as the lobe type membrane described in U.S. Pat. No. 3,133,132 and U.S. Pat. There is a membrane of However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc. In particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability, so it is not used in some cases. However, it has not yet been put to practical use in a wide range of applications. Research into new materials that eliminate the drawbacks of these asymmetric cellulose acetate membranes is being actively conducted mainly in the United States and Japan, but aromatic polyamides, polyamide hydrazide (US Pat. No. 3,567,632), polyamic acid (Japanese Patent Publication) 55-37282), crosslinked polyamic acid (Japanese Patent Publication No. 56-3769), polyimidazopyrrolone, polysulfonamide, polybenzimidazole, polybenzimidazolone, polyarylene oxide, etc. Materials that improve some of their drawbacks. is inferior to cellulose acetate membranes in terms of selective separation and permeability. On the other hand, a composite membrane has been developed, which is a semipermeable membrane different from the lobe type, in which a porous support membrane is coated with an ultra-thin membrane that exhibits substantial membrane performance. For composite membranes, it becomes possible to select the optimal materials for each application for the ultra-thin membrane and porous support membrane, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike the lobe type, which must be kept constantly moist. Among such composite membranes, ultra-thin composite membranes made of polyamide or polyurea have high membrane performance, particularly water permeability, and have therefore become the mainstream in the development of semipermeable composite membranes. The method for manufacturing the composite membrane is described in U.S. Patent No.
Specification No. 3191815, Specification No. 3744642, Specification No.
Carbonization containing an aqueous solution containing a compound having an amino group and a polyfunctional reaction reagent on a porous support as disclosed in Specification No. 4039440, Specification No. 4277344, and Japanese Patent Application Publication No. 56-500062. There is a method of forming an ultra-thin film through interfacial reaction by bringing it into contact with a hydrogen-based solution. [Problems to be Solved by the Invention] The present inventors have studied how to improve the performance of such semipermeable composite membranes, and have found that acyl They discovered that the performance of the composite membrane, especially water permeability, was improved by using a chemical catalyst, and the present invention was achieved based on this discovery. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. ``When manufacturing a semipermeable composite membrane having an ultra-thin membrane made of a crosslinked aromatic polyamide obtained by interfacial reaction with a porous support membrane, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, pyridine, dimethylaminopyridine, etc. A method for producing a semipermeable composite membrane, characterized in that an interfacial reaction is carried out using at least one acylation catalyst selected from Support membranes having micropores of 10 to several thousand angstroms and known materials made of polysulfone, polyvinyl chloride, chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, cellulose ester, etc. are included. Among these, porous polysulfone support membranes are particularly effective in the present invention. Porous polysulfone films are produced by casting polysulfone as a solution in an aprotic polar solvent such as dimethylformamide onto a woven or nonwoven fabric made of polyester fibers, and then coagulating (gelling) in a medium consisting essentially of water. ), or by so-called wet film forming. The porous polysulfone thus obtained has micropores on the surface having a size of several tens to several thousand angstroms and increasing in size from the front surface to the back surface. In the present invention, the ultra-thin film obtained by interfacial reaction is mainly composed of a crosslinked aromatic polyamide, and the crosslinked aromatic polyamide contains an aromatic amine having two or more reactive amino groups, It can be obtained by interfacial reaction of polyfunctional aromatic acid halides. In the present invention, aromatic amines having two or more reactive amine groups (hereinafter abbreviated as amino compounds)
indicates an amino compound having two or more amino groups directly connected to an aromatic ring, such as metaphenylenediamine, paraphenylenediamine, 3,5-
Diaminobenzoic acid, 2,5-diaminobenzenesulfonic acid, 4,4'-diaminobenzanilide,
3,3',5,5'-tetraaminobenzanilide,
Examples include 1,3,5-triaminobenzene. These amino compounds are generally subjected to the interfacial reaction in the form of an aqueous solution, and the concentration of the amino compound in the aqueous amino compound solution is 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight. Further, the amino compound aqueous solution may contain a surfactant, an organic solvent, etc. as long as they do not interfere with the reaction between the amino compound and the polyfunctional reaction reagent. The aqueous solution of the amino compound may be coated on the surface of the porous support membrane as long as the aqueous solution is uniformly and continuously coated on the surface. This may be carried out by a method such as immersing a porous support membrane in the aqueous solution. The polyfunctional aromatic acid halide in the present invention refers to a compound having two or more acyl halide groups directly connected to an aromatic ring (hereinafter referred to as a polyfunctional reaction reagent), such as trimesic acid chloride, benzophenonetetracarboxylic acid Examples include chloride, trimellitic acid chloride, pyromellitic acid chloride, isophthalic acid chloride, terephthalic acid chloride, naphthalenedicarboxylic acid chloride, diphenyldicarboxylic acid chloride, pyridinedicarboxylic acid chloride, benzenedisulfonic acid chloride, etc., but their solubility in the membrane forming solvent In consideration of the performance of the semipermeable composite membrane, trimesic acid chloride, isophthalic acid chloride, and terephthalic acid chloride are preferred. These polyfunctional reaction reagents are generally dissolved in a water-immiscible solvent and subjected to an interfacial reaction, and the solvent is inert to the amino compound and the polyfunctional reaction reagent and water It must be insoluble or poorly soluble in Furthermore, it is preferable that the solvent is inert to the porous support membrane. Typical examples of such solvents include liquid hydrocarbons and halogenated hydrocarbons, such as pentane, hexane, heptane, 1,1,2-trichloro-1,2,2-
There's trifluoroethane. The concentration of the polyfunctional reaction reagent is preferably 0.01 to 10% by weight, more preferably 0.02 to 2% by weight. The method for contacting the polyfunctional reaction reagent with the aqueous amino compound solution phase may be carried out in the same manner as the method for coating the porous support membrane with the aqueous amino compound solution. When such an aqueous solution of an amino compound and a solution of a polyfunctional reaction reagent are brought into contact with each other on a porous support membrane, an ultra-thin film of crosslinked Yokozaki polyamide is formed at the interface due to an interfacial reaction. Generally, an aqueous solution of an amino compound is applied, excess aqueous solution is removed, and then a solution of a polyfunctional reaction reagent is brought into contact to perform an interfacial reaction. At this time, if an acylation catalyst is added to one or both of the solutions, the performance of the resulting semipermeable composite membrane, especially water permeability, will be improved. As the acylation catalyst, at least one selected from dimethylformamide, dimethylacetamide, N-methylpyrrolidone, pyridine, and dimethylaminopyridine can be used, and the amount added can be determined depending on its strength as a catalyst. preferable. Among the acylation catalysts, amide solvents such as dimethylformamide and dimethylacetamide are preferred from the viewpoint of ease of handling, and among these, dimethylformamide is preferred from the viewpoint of catalytic ability. When an interfacial reaction is carried out using an acylation catalyst, water permeability improves, but conversely, the solute exclusion rate tends to decrease slightly. The reason for this is that the produced crosslinked aromatic polyamide is completely composed of amide bonds and does not have aromatic rings bonded, and some amine terminal groups (-NH 2 ) and carboxylic acid terminals (-COOH) are formed. This is thought to be due to the ionization of the terminal group, and since the acylation catalyst activates the reactivity of the acid halide, it normally contributes to the progress of imidization by reaction with the amine, but in the present invention, interfacial polycondensation is used. , activates not only the reaction with amines but also the reaction with water. Then,
If any amino groups remain, amidation of these groups will reduce the number of amine ends, and reaction with water will increase the number of carboxylic acid ends. Therefore, it is thought that the solute exclusion rate decreases slightly and the water permeation system improves. When dimethylformamide is used as an acylation catalyst, it is preferably in the range of 0.1 to 10% when added to an aqueous solution of an amino compound, and in the range of 0.2 to 5% considering the balance of membrane performance. When added to a solution of 10 to 1000 ppm,
Considering the balance of membrane performance, a range of 20 to 500 ppm is preferable. As mentioned above, in the case of dimethylformamide, it is quantitatively more economical to add it to the solution of the polyfunctional reaction reagent. [Example] The present invention will be specifically described below with reference to Examples. Examples 1 to 2, Comparative Example 1 Taffeta made of polyester fibers with a length of 30 cm and a width of 20 cm (multifilament yarn of 150 denier for both warp and weft, weaving density of 90 pieces/width)
67 wires/inch, 160μ thick) was fixed on a glass plate, and 15% by weight of polysulfone (Udel P3500 manufactured by Union Carboid) was placed on top of the glass plate.
A fiber-reinforced polysulfone support (hereinafter abbreviated as FR-PS support) was prepared by casting dimethylformamide (DMF) solution to a thickness of 200μ at room temperature (20°C), immediately immersing it in pure water, and leaving it for 5 minutes. ). FR− obtained in this way
The pure water permeability coefficient of the PS support (thickness 210-215μ) is
0.005 to 0.01 when measured at a pressure of 1Kg/cm 2 and a temperature of 25℃
g/mm 2・sec・atm. The FR-PS support was immersed for 2 minutes in a 2% by weight aqueous solution of metaphenylenediamine as an amino compound. After removing the excess aqueous solution from the surface of the FR-PS support, 1,1,2-triclo-1,2,2
- A solution prepared by dissolving 0.1% by weight of trimesic acid chloride as a polyfunctional reaction reagent and dimethylformamide shown in Table 1 in trifluoroethane was coated so that the surface was completely wetted and allowed to stand for 1 minute. Next, the membrane was turned vertically and excess solution was removed by draining. The composite membrane obtained in this way
As a result of a reverse osmosis test using 1500 ppm saline as raw water at 15 kg/cm 2 and 25°C, the membrane performance shown in Table 1 was obtained. Examples 3 to 4, Comparative Example 2 In Examples 1 to 2 and Comparative Example 1, an aqueous mixed solution of 1% by weight of metaphenylenediamine and 1% by weight of 1,3,5-triaminobenzene was used as the amino compound, As a polyfunctional reaction reagent, 1,1,2-trichloro-1, 0.05% by weight of trimesic acid chloride and 0.05% by weight of terephthalic acid chloride;
A composite membrane was obtained in the same manner except for using a 2,2-trifluoroethane solution. Membrane performance is shown in Table 2. Example 5 In Comparative Example 2, 0.65% by weight of dimethylformamide was added to the aqueous solution of the amino compound, and the membrane performance of a composite membrane obtained in the same manner as above was as follows: salt rejection rate of 99.64%;
Water permeability was 0.62 m 3 /m 2 ·d. Examples 6 to 9 In Comparative Example 2, the acylation catalyst shown in Table 3 was added to the polyfunctional reaction reagent, and the performance of composite membranes obtained in the same manner as above is shown.

【表】【table】

【表】【table】

【表】 [発明の効果] 以上説明したように本発明においては、従来の
複合膜の製造方法に比較して透水速度1〜4割向
上した複合膜を得ることができる。 この理由は、超薄膜を形成する架橋芳香族ポリ
アミドにカルボン酸末端が導入されることによる
と思われる。
[Table] [Effects of the Invention] As explained above, in the present invention, it is possible to obtain a composite membrane whose water permeation rate is improved by 1 to 40% compared to conventional composite membrane manufacturing methods. The reason for this appears to be that carboxylic acid terminals are introduced into the crosslinked aromatic polyamide forming the ultra-thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性支持膜と界面反応によつて得られる架
橋芳香族ポリアミドからなる超薄膜を有する半透
性複合膜を製造する際に、ジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチルピロリド
ン、ピリジン、ジメチルアミノピリジンから選ば
れた少なくとも1種のアシル化触媒を用いて界面
反応を行なうことを特徴とする半透性複合膜の製
造方法。
1 When producing a semipermeable composite membrane having an ultra-thin membrane made of a crosslinked aromatic polyamide obtained by interfacial reaction with a porous support membrane, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, pyridine, dimethylaminopyridine A method for producing a semipermeable composite membrane, comprising carrying out an interfacial reaction using at least one acylation catalyst selected from the following.
JP61156165A 1986-07-04 1986-07-04 Production of semipermeable composite membrane Granted JPS6312310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156165A JPS6312310A (en) 1986-07-04 1986-07-04 Production of semipermeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156165A JPS6312310A (en) 1986-07-04 1986-07-04 Production of semipermeable composite membrane

Publications (2)

Publication Number Publication Date
JPS6312310A JPS6312310A (en) 1988-01-19
JPH0380049B2 true JPH0380049B2 (en) 1991-12-20

Family

ID=15621771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156165A Granted JPS6312310A (en) 1986-07-04 1986-07-04 Production of semipermeable composite membrane

Country Status (1)

Country Link
JP (1) JPS6312310A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614099A (en) * 1994-12-22 1997-03-25 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
JP3681214B2 (en) * 1996-03-21 2005-08-10 日東電工株式会社 High permeability composite reverse osmosis membrane
EP1020218B1 (en) 1997-07-02 2003-05-21 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
US6783711B2 (en) 2000-05-23 2004-08-31 Ge Osmonics, Inc. Process for preparing a sulfonamide polymer matrix
RU2002134476A (en) 2000-05-23 2004-04-10 Осмоникс, Инк. (Us) ACID RESISTANT MEMBRANES FOR NANOFILTRATION
US6837996B2 (en) 2000-05-23 2005-01-04 Ge Osmonics, Inc. Polysulfonamide matrices
KR100780989B1 (en) 2000-05-23 2007-11-29 오스모닉스 인코포레이티드 Modified Sulfonamide Polymers
US7081202B2 (en) 2001-03-19 2006-07-25 Nitto Denko Corporation Composite semipermeable membrane, production method thereof, and water treatment method using the same
EP1800735B1 (en) 2001-03-19 2012-05-23 Nitto Denko Corporation Method for producing composite semipermeable membrane
JP2003080042A (en) 2001-09-10 2003-03-18 Nitto Denko Corp Composite semipermeable membrane and method for manufacturing the same
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US9527042B2 (en) 2011-01-31 2016-12-27 Toray Industries, Inc. Separation membrane for water treatment and production method for same
US20150068963A1 (en) * 2012-05-23 2015-03-12 Lg Chem, Ltd. Reverse osmosis membrane having high initial permeate flux and method of manufacturing the same
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
WO2023234415A1 (en) * 2022-06-03 2023-12-07 東レ株式会社 Composite semipermeable membrane and method for producing same
WO2024048695A1 (en) * 2022-08-31 2024-03-07 東レ株式会社 Composite semipermeable membrane and method for producing composite semipermeable membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520044A (en) * 1984-07-30 1985-05-28 E. I. Du Pont De Nemours And Company Production of composite membranes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520044A (en) * 1984-07-30 1985-05-28 E. I. Du Pont De Nemours And Company Production of composite membranes

Also Published As

Publication number Publication date
JPS6312310A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
JPH0380049B2 (en)
JPH0568293B2 (en)
JPH051051B2 (en)
JPH0419892B2 (en)
JPS63218208A (en) Composite semipermeable membrane and its production
JP2727594B2 (en) Method for producing composite semipermeable membrane
JP3111539B2 (en) Method for producing composite semipermeable membrane
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
JPH06182166A (en) Composite reverse osmosis membrane and manufacture thereof
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JPS63123406A (en) Manufacture of semipermeable composite membrane
JP2505440B2 (en) Method for manufacturing semipermeable composite membrane
JPS62279809A (en) Production of semipermeable composite membrane
JPH04161234A (en) Manufacture of composite membrane
JPH0315485B2 (en)
JPS61101203A (en) Highly permeable composite membrane
JP3106595B2 (en) Method for producing composite membrane for reverse osmosis method
JPS62180709A (en) Production of semipermeable composite membrane
JPS634803A (en) Reverse-osmosis membrane having amino radical and use thereof
JPH07114941B2 (en) Method for manufacturing semipermeable composite membrane
JP2936633B2 (en) Composite semipermeable membrane
JPH11179175A (en) Production of composite separation membrane
JP3132090B2 (en) Method for producing composite membrane for reverse osmosis method
JPH04104825A (en) Manufacture of composite membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees