JPS62180709A - Production of semipermeable composite membrane - Google Patents

Production of semipermeable composite membrane

Info

Publication number
JPS62180709A
JPS62180709A JP61022015A JP2201586A JPS62180709A JP S62180709 A JPS62180709 A JP S62180709A JP 61022015 A JP61022015 A JP 61022015A JP 2201586 A JP2201586 A JP 2201586A JP S62180709 A JPS62180709 A JP S62180709A
Authority
JP
Japan
Prior art keywords
membrane
solvent
contact
soln
multifunctional reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61022015A
Other languages
Japanese (ja)
Inventor
Tetsuo Watanabe
哲男 渡辺
Sadao Kojima
小嶋 定雄
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61022015A priority Critical patent/JPS62180709A/en
Publication of JPS62180709A publication Critical patent/JPS62180709A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Abstract

PURPOSE:To obtain the titled composite membrane with 20-30% increase in the water permeating velocity by allowing a compd. having a reactive amino group to react with a multifunctional reagent on a porous carrier, and bringing the surface into contact with a soln. of the multifunctional reagent. CONSTITUTION:A polymeric porous carrier membrane having several tens - several thousands Angstrom fine pores on the surface is prepared, and an aq. soln. contg. 0.1-10wt% compd. having >=2 reactive amino groups is coated on the surface of the carrier membrane. A hydrocarbonic soln. contg. 0.01-10wt% multifunctional reagent having an acid chloride forming polyamide or polyurea by the reaction with the amino group and an isocyanate is brought into contact with the coat to form a cross-linked membrane. A solvent which is the solvent of the multifunctional reagent and inactive on the membrane and the carrier is brought into contact with the surface of the membrane at temps. ranging from 20 deg.C to a temp. 10 deg.C lower than the b.p. The contact with is regulated to 10sec-10min.

Description

【発明の詳細な説明】 、[発明の技術分野] 本発明は多孔性重合体膜を支持体、ポリアミドまたはポ
リ尿素などを活性層とする限外;濾過法および逆浸透法
に好適な半透性複合膜の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a semipermeable film suitable for ultrafiltration and reverse osmosis using a porous polymer membrane as a support and polyamide or polyurea as an active layer. The present invention relates to a method for producing a composite membrane.

[従来の技術] □従来、工業的に利用されている半透膜には、酢酸セル
ローズから作った非対称膜として、例えば米国特許第3
,133,132号明細書及び第3゜133.137号
明細書等に記載されたロブ型の膜がおる。
[Prior art] □ Conventionally, semipermeable membranes used industrially include asymmetric membranes made from cellulose acetate, for example, as disclosed in U.S. Pat.
, 133,132 and 3°133.137.

しかし、この膜は、耐加水分解性、耐微生物性、耐薬品
性などに問題があり、特に透過性を向上しようとすると
耐圧性、耐久性を兼ねそなえた膜が製造できず、一部使
用されているが広範囲の用途に実用化されるに至ってい
ない。これらの酢酸セルローズ非対称膜の欠点をなくし
た新しい素材に対する研究は米国、日本を中心に酩んに
行なわれているが、芳香族ポリアミド、ポリアミドヒド
ラジド(米国特許第3,567.632号明細書〉、ポ
リアミド酸(特公昭50 121168@公報)、架橋
ポリアミド酸く特公昭52−152879号公報)、ポ
リイミダゾピロロン、ポリスルホンアミド、ポリベンズ
イミダゾール、ポリベンズイミダシロン、ポリアリーレ
ンオキシドなど、その一部の欠点を改良する素材は得ら
れているものの、選択分離性おるいは透過性等の面では
酢酸セルローズ膜より劣っている。
However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc. In particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability, so it is not used in some cases. However, it has not yet been put to practical use in a wide range of applications. Research into new materials that eliminate these drawbacks of cellulose acetate asymmetric membranes is being carried out mainly in the United States and Japan; , polyamic acid (Japanese Patent Publication No. 121168/1988), crosslinked polyamide acid (Japanese Patent Publication No. 152879/1987), polyimidazopyrrolone, polysulfonamide, polybenzimidazole, polybenzimidacylon, polyarylene oxide, etc. Although materials have been obtained that improve the drawbacks of cellulose acetate membranes, they are inferior to cellulose acetate membranes in terms of selective separation and permeability.

一方、ロブ型とは型を異にする半透膜として多孔性支持
体上に実質的に膜性能を発揮する活性層を被覆した複合
膜が開発されている。複合膜においては、活性層と多孔
性支持体を各々の用途に最適な素材を選ぶことが可能と
なり、製膜技術の自由度が増す。また常時湿潤状態で保
存しなければならないロブ型とは異なり乾燥状態での保
存が可能で必るなどの利点がある。
On the other hand, a composite membrane has been developed, which is a semipermeable membrane of a type different from the lobe type, in which a porous support is coated with an active layer that substantially exhibits membrane performance. In composite membranes, it becomes possible to select the optimal materials for the active layer and porous support for each application, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike the lobe type, which must be stored in a wet state at all times.

このような複合膜のうち活性層がポリアミドまたはポリ
尿素からなる複合膜は膜性能、特に水透過性が高いため
半透性複合膜開発の主流になっている。該複合膜の!!
!造方法としては米国特許第3゜191.815号明細
書、同第3,744,642号明細書、同第4.039
,440号明細書、同第4,277.344号明細書お
よび特表昭56−500062号公報に開示されている
ように多孔性支持体にアミン基を有する化合物を含む水
溶液を被覆する工程および多官能性反応試薬を含む炭化
水素系溶液を上記の水溶液相と接触させる工程からなる
方法がある。
Among such composite membranes, composite membranes in which the active layer is made of polyamide or polyurea have high membrane performance, particularly water permeability, and have therefore become the mainstream in the development of semipermeable composite membranes. Of the composite membrane! !
! The manufacturing method is described in U.S. Pat. No. 3,191.815, U.S. Pat.
, 440, 4,277.344, and Japanese Patent Publication No. 56-500062, coating a porous support with an aqueous solution containing a compound having an amine group; There is a method comprising the step of contacting a hydrocarbon-based solution containing a polyfunctional reaction reagent with the above-mentioned aqueous phase.

[発明が解決しようとする問題点] 本発明壱らはこのような半透性複合膜の性能向上につい
て検討を行い、上記の製造工程で得られる膜の表面を多
官能性反応試薬の溶媒と接触さVることにより該複合膜
の性能、特に水透過性が向上することを児出し、本発明
に到達したものである。
[Problems to be Solved by the Invention] The inventors of the present invention have investigated ways to improve the performance of such semipermeable composite membranes, and have investigated ways to improve the performance of such semipermeable composite membranes by using a solvent for a polyfunctional reaction reagent on the surface of the membrane obtained in the above manufacturing process. The present invention was achieved by discovering that the performance of the composite membrane, particularly the water permeability, is improved by contacting the composite membrane with water.

[問題点を解決するための手段] 上記目的を達成するため本発明は下記の構成からなる。[Means for solving problems] In order to achieve the above object, the present invention consists of the following configuration.

「多孔性支持体上に2つ以上の反応性のアミノ基を有す
る化合物を含む水溶液を被覆した後、多官能性反応試薬
を含む炭化水素系溶液を上記水溶液相と接触さ、しかる
後、更にその表面を多官能性反応試薬の溶媒と接触させ
ることからなる半透性複合膜の製造方法。」 本発明に使用される多孔性支持体とはその表面に数十〜
数千オングストロームの微細孔を有する支持体であって
、ポリスルホン、ポリ塩化ビニル。
"After coating an aqueous solution containing a compound having two or more reactive amino groups on a porous support, a hydrocarbon-based solution containing a polyfunctional reactive reagent is contacted with the aqueous phase, and then further A method for producing a semipermeable composite membrane comprising contacting its surface with a solvent of a polyfunctional reaction reagent.
A support having micropores of several thousand angstroms, comprising polysulfone and polyvinyl chloride.

塩素化塩化ビニル、ポリカーボネート、ポリアクリロニ
トリル、セルローズエステル等を素材とする公知のもの
が含まれる。この中、本発明には多孔性のポリスルホン
支持体が特に有効である。多重し[生ポリスルホンの製
膜はポリスルホンをジメチルホルムアミド等の非プロト
ン性極性溶媒の溶液にして例えばポリエステル繊維から
なる織物または不織布上に流延し、次いで実質的に水か
らなる媒体中で凝固(グル化)する、いわゆる湿式製膜
等によって行なう。このようにじて得られた多孔性ポリ
スルホンは表面には数十に数百オングストローム程度の
大きざで表面から裏面にいくほど大ぎくなる微細孔を有
する。   □ 本発明において2つ以上の反応性のアミノ基を有する化
合物(以下アミノ化合物と略す。)とは、多官能酸塩化
物またはイソシアネ−1・化合物と反応してアミド結合
または尿素結合を有する重合体を形成することのできる
ものが含まれ、例えば、メタフェニレンジアミン、パラ
フ土二レンジアミン、3,5−ジアミノ安息香酸、・2
,5−ジアミノベンゼンスルホン酸、メタキシリデンジ
アミン、バラキシリデンジアミン、4,4ゝ−ジアミノ
ベンズアニリド、ピペラジン、アミノメチルピペリジン
、エチレンジアミン1,3.5−トリアミノベンゼンな
どが挙げられる。
Known materials made of chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, cellulose ester, etc. are included. Among these, porous polysulfone supports are particularly effective in the present invention. [For raw polysulfone film production, polysulfone is made into a solution in an aprotic polar solvent such as dimethylformamide, cast on a woven or nonwoven fabric made of polyester fibers, and then coagulated in a medium consisting essentially of water ( This is done by so-called wet film forming, etc. The porous polysulfone thus obtained has on its surface micropores with a size of several tens to hundreds of angstroms, which becomes larger from the front surface to the back surface. □ In the present invention, a compound having two or more reactive amino groups (hereinafter referred to as an amino compound) refers to a compound having an amide bond or a urea bond that reacts with a polyfunctional acid chloride or an isocyanate-1 compound. Includes those capable of forming a combination, such as metaphenylene diamine, paraphthalene diamine, 3,5-diaminobenzoic acid, .2
, 5-diaminobenzenesulfonic acid, metaxylidene diamine, varaxylidene diamine, 4,4'-diaminobenzanilide, piperazine, aminomethylpiperidine, ethylenediamine 1,3,5-triaminobenzene, and the like.

アミノ化合物水溶液におけるアミン化合物の濃度は0.
1〜10重量%、好ましくは0.5&5゜0重岳とする
。またアミン化合物水溶液にはアミン化合物と多官能性
反応試薬との反応を妨害しないものであれば、界面活性
剤や有機溶媒等が含まれてもよい。
The concentration of the amine compound in the amino compound aqueous solution is 0.
1 to 10% by weight, preferably 0.5&5°0. Further, the amine compound aqueous solution may contain a surfactant, an organic solvent, etc. as long as they do not interfere with the reaction between the amine compound and the polyfunctional reaction reagent.

多孔性支持体表面へのアミノ化合物水溶液の被覆は、該
水溶液が表面に均一にかつ連続的に被覆されればよく、
公知の塗布手段例えば、該水溶液を多孔性支持体表面に
コーティングする方式、多孔性支持体を該水溶液に浸漬
する方法等で行なえばよい。
The aqueous solution of the amino compound may be coated on the surface of the porous support as long as the aqueous solution is coated uniformly and continuously on the surface.
The coating may be carried out by any known coating method, such as coating the surface of the porous support with the aqueous solution or immersing the porous support in the aqueous solution.

本発明において多官能性反応試薬とは、該アミン化合物
と反応してポリアミドまたはポリ尿素を形成できるもの
であればいずれでもよく、例えば、トリメシン醒りロラ
イドJベンゾフエノンテ1−ラカルボン酸クロライド、
1−リメリッi−酸クロライド、ピロメリッl−1クロ
ライド、イソフタル酸クロライド、テレフタル酸クロラ
イド、ナフタレンジカルボン酸クロライド、ジフェニル
ジカルボン酸クロライド、ピリジンジカルボン酸クロラ
イド、ベンゼンジスルホン酸クロライド、無水ピロメリ
ット酸、1〜リレンジイソシアナート、ビス(p−イソ
シアナートフェニル)メタンなどが挙げられるが、製膜
溶媒に対する溶解性及び半透性複合膜の性能を考慮する
と1−リメシン酸クロライド、イソフタル酸クロライド
、テレフタル酸クロライドが好ましい。
In the present invention, the polyfunctional reaction reagent may be any agent as long as it can react with the amine compound to form a polyamide or polyurea, such as trimesin chloride J benzophenonte 1-lacarboxylic acid chloride,
1-limellitic acid chloride, pyromellitic acid chloride, isophthalic acid chloride, terephthalic acid chloride, naphthalenedicarboxylic acid chloride, diphenyldicarboxylic acid chloride, pyridinedicarboxylic acid chloride, benzenedisulfonic acid chloride, pyromellitic anhydride, 1-limellitic acid chloride Examples include diisocyanate, bis(p-isocyanatophenyl)methane, etc., but considering solubility in membrane forming solvents and performance of semipermeable composite membranes, 1-rimesic acid chloride, isophthalic acid chloride, and terephthalic acid chloride are recommended. preferable.

多官能性反応試薬に対する溶媒は、アミノ化合物および
多官能性反応試薬に対して不活性であり、かつ水に対し
て不溶性または難溶性である必要がある。更に該溶媒は
多孔性支持体に対しても不活性なものが好ましい。該溶
媒の代表例としては液状の炭化水素およびハロゲン化炭
化水素、例えば、ペンタン、ヘキサノ、ヘプタン、1,
1.2−トリクロロ−1,2,2−トリフルオロエタン
がある。多官能性反応試薬の濃度は好ましくは09O1
〜10重■%、ざらに好ましくは0.02〜2重呈%で
ある。
The solvent for the polyfunctional reaction reagent needs to be inert to the amino compound and the polyfunctional reaction reagent, and insoluble or sparingly soluble in water. Furthermore, the solvent is preferably inert to the porous support. Typical examples of such solvents include liquid hydrocarbons and halogenated hydrocarbons, such as pentane, hexano, heptane, 1,
There is 1,2-trichloro-1,2,2-trifluoroethane. The concentration of the polyfunctional reaction reagent is preferably 09O1
It is preferably 0.02 to 2% by weight, preferably 0.02 to 2% by weight.

多官能性反応試薬のアミノ化合物水溶液相への接触の方
法はアミノ化合物水溶液の多孔性支持体への被覆方法と
同様に行えばよい。
The method for contacting the polyfunctional reaction reagent with the aqueous amino compound solution phase may be carried out in the same manner as the method for coating the porous support with the aqueous amino compound solution.

本発明において、アミン化合物と多官能性試薬との反応
によって形成される膜の表面に接触させる多官能性試薬
の溶媒としては該膜および多孔性支持体に対して不活性
であればよく、具体的には炭化水素類、ハロゲン化炭化
水素類およびアルコール類が含まれる。該溶媒の代表例
としては、ペンタン、ヘキナン、ヘプタン、1.1.2
−1−リクロロー1.2.2−トリフルオロエタン、メ
チルアルコール、エチルアルコール、ノルマルプロピル
アルコール、イソプロピルアルコールがあり、これらを
混合して使用してもよい。また、アセトンやメチルケト
ン等のケトン類、ジオキサン、テトラヒドロラン、ジエ
チルエーテル等のエーテル類などこれら単独では該膜お
よび多孔性支持体に悪影響を及ぼすものも上記の溶媒と
混合すれば使用できる。
In the present invention, the solvent for the polyfunctional reagent that is brought into contact with the surface of the membrane formed by the reaction between the amine compound and the polyfunctional reagent may be any solvent as long as it is inert to the membrane and the porous support. Examples include hydrocarbons, halogenated hydrocarbons and alcohols. Representative examples of the solvent include pentane, hequinane, heptane, 1.1.2
-1-lichloro1.2.2-trifluoroethane, methyl alcohol, ethyl alcohol, normal propyl alcohol, and isopropyl alcohol, and a mixture of these may be used. Furthermore, ketones such as acetone and methyl ketone, and ethers such as dioxane, tetrahydrolane and diethyl ether, which adversely affect the membrane and porous support when used alone, can also be used when mixed with the above-mentioned solvents.

該溶媒の膜への接触方法としては該溶媒を膜の表面にコ
ーティングする方法、膜を該溶媒に浸漬する方法、該溶
媒を膜の表面にスプレーする方法等該溶媒が膜表面の全
面に接触する方法であればどのような方法でもよい。該
溶媒の温度は、特に限定されないが、一般的には、20
℃から該溶媒の沸点より10℃低い温度の範囲とする。
Methods of contacting the solvent with the membrane include coating the surface of the membrane with the solvent, immersing the membrane in the solvent, spraying the solvent onto the surface of the membrane, etc. The solvent comes into contact with the entire surface of the membrane. Any method is acceptable as long as it can be done. The temperature of the solvent is not particularly limited, but is generally 20
The temperature range is from 10°C to 10°C lower than the boiling point of the solvent.

該溶媒の膜への接触時間は該溶媒の温度により異なるが
、10秒から10分間とする。
The contact time of the solvent with the membrane varies depending on the temperature of the solvent, but is from 10 seconds to 10 minutes.

[実施例] 以下に実施例により本発明を具体的に説明する。[Example] The present invention will be specifically explained below using Examples.

実施例1 タテ30cm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニール
のマルチフィラメント糸、織密度タテ90本/インチ、
ヨコ67本/インチ、厚さ160μ)をガラス板上に固
定し、その上にポリスルホン(ユニオン・カーボイ1〜
社製のUdel  3500)の15重回%ジメチルボ
ルムアミド(DMF)溶液を200μの厚みで室温(2
0’C)でキャストし、ただちに純水中に浸漬して5分
間放置することによって繊維補強ポリスルホン支持体(
以下FR−PS支痔休と略す体を作製する。このように
して得られたFR−PS支持体(厚さ210〜215μ
)の純水透過係数は、圧力1kqンcJ、 温度25°
Cで測定して09OO5〜0.olにl/cnf” S
eC−atmであった。
Example 1 Taffeta made of polyester fibers with a length of 30 cm and a width of 20 cm (multifilament yarn of 150 denier in both warp and weft, weaving density of 90 pieces/inch in length,
67 pieces/inch horizontally, 160μ thick) was fixed on a glass plate, and polysulfone (Union Carboy 1~
A 15% dimethylborumamide (DMF) solution of Udel 3500 (manufactured by Co., Ltd.) was added to a thickness of 200μ at room temperature (2
A fiber-reinforced polysulfone support (
Hereinafter, a body abbreviated as FR-PS will be created. The FR-PS support obtained in this way (thickness 210-215μ
) is the pure water permeability coefficient at a pressure of 1kq-cJ and a temperature of 25°.
Measured at C 09OO5~0. ol to l/cnf” S
It was eC-atm.

FR−PS支持体をメタフェニレンジアミンの2重量%
水溶液に2分間浸漬した。FR−PS支持体表面から余
分な該水溶液を取り除いた後、1゜1.2−1〜リクロ
ロー1.2.2−トリフルオロエタンにトリメシン改ク
ロライド0.1fflffi%溶解した溶液を表面が完
全に濡れるようにコーティングして1分間静置した。次
に膜を垂直にして余分な該溶液を液切りして除去した後
、膜の表面に1.1.2−1−リクロロー1.2.2−
1〜リフルオロエタンを表面が完全に濡れるようにコー
ティングして30秒間静置した膜を垂直にして液切りし
た後、室温下で乾燥した。このようにしてjqられた複
合膜を浸透圧が25に9/CIl+の3.5%合成海水
を使用して56 kg / ci 、25°Cの条件下
で逆浸)Zテストした結果、排除率99.2%、透水速
度0.90m’/m2日の性能が得られた。
FR-PS support with 2% by weight of metaphenylenediamine
It was immersed in an aqueous solution for 2 minutes. After removing the excess aqueous solution from the surface of the FR-PS support, a solution of 0.1fffffi% trimesine modified chloride dissolved in 1°1.2-1~lichloro1.2.2-trifluoroethane was added until the surface was completely covered. It was coated so that it was wet and left to stand for 1 minute. Next, after turning the membrane vertically and removing the excess solution by draining, apply 1.1.2-1-Rechloro 1.2.2-
The membrane was coated with 1-refluoroethane so that the surface was completely wetted and allowed to stand for 30 seconds.The membrane was turned vertically to drain the liquid, and then dried at room temperature. The composite membrane prepared in this way was subjected to a reverse immersion test using 3.5% synthetic seawater with an osmotic pressure of 25 to 9/CIl+ under conditions of 56 kg/ci and 25°C. Performance of 99.2% and water permeation rate of 0.90 m'/m2 days was obtained.

比較例1 実施例1において、1.1.2−トリクロロ。Comparative example 1 In Example 1, 1.1.2-trichloro.

1.2.2−トリフルオロエタンのコーティングを行な
わない以外は同様に実施した結果、排除率99.0%、
透水速度0.75m”/m2の性能が得られた。
1.2.2-Trifluoroethane coating was performed in the same manner, but the rejection rate was 99.0%.
A water permeation rate of 0.75 m''/m2 was obtained.

実施例2〜4、比較例2〜4 実施例1および比較例1においてアミノ化合物お尖び多
官0こ性反応試薬としてメタフェニレンジアミンおよび
トリメシン酸クロライドのがわりに表−1に示す化合物
を使用する以外は同様に行なった結果、表−1の逆浸透
性能を)qた。
Examples 2 to 4, Comparative Examples 2 to 4 In Example 1 and Comparative Example 1, the compounds shown in Table 1 were used in place of metaphenylene diamine and trimesic acid chloride as amino compound and polyfunctional reaction reagents. The same procedure was performed except that the reverse osmosis performance shown in Table 1 was obtained.

以上の実施例に示した様に本発明においては従来の複合
膜の製造方法に比較して透水速度が2〜3を1ゆ上した
As shown in the above examples, in the present invention, the water permeation rate was increased by 2 to 3 points compared to the conventional method for manufacturing a composite membrane.

[発明の効果] 以上説明したように本発明においては、従来の複合膜の
製造方法に比較して透水速度が2〜3割向上した複合膜
を得ることができる。
[Effects of the Invention] As explained above, in the present invention, it is possible to obtain a composite membrane whose water permeation rate is improved by 20 to 30% compared to conventional composite membrane manufacturing methods.

こり理由は定かではないが、中間段階において、多官能
性反応試薬を含む炭化水素系溶液を水溶液相と接触ざヒ
ることにより、透水性を阻害する未反応物(モノマ、オ
リゴマなど)が除去され、透水性能に寄与する高分子量
ポリマが比較的多く残存するかうと推定される。
The reason for this is not clear, but by bringing a hydrocarbon solution containing a polyfunctional reaction reagent into contact with the aqueous phase at an intermediate stage, unreacted substances (monomers, oligomers, etc.) that inhibit water permeability are removed. It is estimated that a relatively large amount of high molecular weight polymers, which contribute to water permeability, remain.

Claims (1)

【特許請求の範囲】[Claims] 多孔性支持体上に2つ以上の反応性のアミノ基を有する
化合物を含む水溶液を被覆した後、多官能性反応試薬を
含む炭化水素系溶液を上記の水溶液相と接触させ、しか
る後、更にその表面を多官能性反応試薬の溶媒と接触さ
せることを特徴とする半透性複合膜の製造方法。
After coating the porous support with an aqueous solution containing a compound having two or more reactive amino groups, a hydrocarbon-based solution containing a polyfunctional reactive reagent is contacted with the aqueous phase, and then further A method for producing a semipermeable composite membrane, which comprises bringing the surface into contact with a solvent of a polyfunctional reaction reagent.
JP61022015A 1986-02-05 1986-02-05 Production of semipermeable composite membrane Pending JPS62180709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022015A JPS62180709A (en) 1986-02-05 1986-02-05 Production of semipermeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022015A JPS62180709A (en) 1986-02-05 1986-02-05 Production of semipermeable composite membrane

Publications (1)

Publication Number Publication Date
JPS62180709A true JPS62180709A (en) 1987-08-08

Family

ID=12071168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022015A Pending JPS62180709A (en) 1986-02-05 1986-02-05 Production of semipermeable composite membrane

Country Status (1)

Country Link
JP (1) JPS62180709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324538A (en) * 1991-03-12 1994-06-28 Toray Industries, Inc. Process for producing composite semipermeable membrane employing a polyfunctional amine solution and high flash point - solvent
CN110227352A (en) * 2019-05-29 2019-09-13 河南省图天新能源科技有限公司 A kind of biogas slurry method for concentration based on UF membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324538A (en) * 1991-03-12 1994-06-28 Toray Industries, Inc. Process for producing composite semipermeable membrane employing a polyfunctional amine solution and high flash point - solvent
CN110227352A (en) * 2019-05-29 2019-09-13 河南省图天新能源科技有限公司 A kind of biogas slurry method for concentration based on UF membrane

Similar Documents

Publication Publication Date Title
US4783346A (en) Process for preparing composite membranes
EP0242877B1 (en) Extractant-surfactant posttreatments of permselective composite membranes
JPS6312310A (en) Production of semipermeable composite membrane
JPH0419892B2 (en)
JPS6354905A (en) Production of semiosmosis composite membrane
JP3646362B2 (en) Semipermeable membrane and method for producing the same
JPS62180709A (en) Production of semipermeable composite membrane
JP2505440B2 (en) Method for manufacturing semipermeable composite membrane
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
JPS62171713A (en) Production of semipermeable composite membrane
JPS62279809A (en) Production of semipermeable composite membrane
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JPS63123406A (en) Manufacture of semipermeable composite membrane
JPS61101203A (en) Highly permeable composite membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JP2508732B2 (en) Selectively permeable hollow fiber composite membrane and method for producing the same
KR0123279B1 (en) Method for semipermeable composite membrane
JPS62262712A (en) Production of semipermeable membrane
JPS62213806A (en) Semi-permeable composite membrane
JPH0232009B2 (en)
JPH0365229A (en) Composite membrane for use in pervaporation
JPH07114941B2 (en) Method for manufacturing semipermeable composite membrane
JPS634803A (en) Reverse-osmosis membrane having amino radical and use thereof
JPS62247807A (en) Production of semipermeable composite membrane
JPH06346A (en) Composite semipermeable membrane and spiral-type separation membrane device