JP5130967B2 - Manufacturing method of composite semipermeable membrane - Google Patents

Manufacturing method of composite semipermeable membrane Download PDF

Info

Publication number
JP5130967B2
JP5130967B2 JP2008067219A JP2008067219A JP5130967B2 JP 5130967 B2 JP5130967 B2 JP 5130967B2 JP 2008067219 A JP2008067219 A JP 2008067219A JP 2008067219 A JP2008067219 A JP 2008067219A JP 5130967 B2 JP5130967 B2 JP 5130967B2
Authority
JP
Japan
Prior art keywords
membrane
acid
semipermeable membrane
water
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067219A
Other languages
Japanese (ja)
Other versions
JP2008260009A (en
JP2008260009A5 (en
Inventor
智子 光畑
洋樹 富岡
崇夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008067219A priority Critical patent/JP5130967B2/en
Publication of JP2008260009A publication Critical patent/JP2008260009A/en
Publication of JP2008260009A5 publication Critical patent/JP2008260009A5/ja
Application granted granted Critical
Publication of JP5130967B2 publication Critical patent/JP5130967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液状混合物の選択分離に有用な複合半透膜およびその製造方法に関する。たとえば海水やかん水の脱塩において高透水性と高除去率を併せ持つ、微多孔性支持膜上にポリアミド分離機能層を形成した複合半透膜の製造方法に関する。   The present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture and a method for producing the same. For example, the present invention relates to a method for producing a composite semipermeable membrane in which a polyamide separation functional layer is formed on a microporous support membrane having both high water permeability and high removal rate in desalination of seawater and brine.

混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、近年、省エネルギーおよび省資源のためのプロセスとして膜分離法が利用されている。膜分離法に使用されている膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜(ルースRO膜とも呼ぶ)、逆浸透膜などがある。これらの膜は、例えば海水、カン水、有害物を含んだ水から飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられてきた。   Regarding the separation of a mixture, there are various techniques for removing substances (for example, salts) dissolved in a solvent (for example, water). In recent years, a membrane separation method has been used as a process for saving energy and resources. Yes. Examples of membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes (also referred to as loose RO membranes), and reverse osmosis membranes. These membranes have been used, for example, in the case of obtaining drinking water from seawater, canned water, and water containing harmful substances, in the production of industrial ultrapure water, in wastewater treatment, and in recovery of valuable materials.

現在市販されている逆浸透膜、ナノろ過膜の大部分は複合半透膜であり、多孔性支持膜上にゲル層とポリマーを架橋した活性層とを有するタイプと、多孔性支持膜上でモノマーを重縮合した活性層を有するタイプとの2種類である。中でも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を多孔性支持膜上に被覆して得られる複合半透膜が広く用いられている。これらの複合半透膜は、使用したときに得られる水質の向上および運転コストの削減のために、高い溶質除去性と透水性を両立させることが重要である。   Most of the reverse osmosis membranes and nanofiltration membranes currently on the market are composite semipermeable membranes, a type having a gel layer and an active layer obtained by crosslinking a polymer on a porous support membrane, and a porous support membrane. There are two types: a type having an active layer obtained by polycondensation of monomers. Among them, a composite semipermeable membrane obtained by coating a porous support membrane with a separation functional layer made of a crosslinked polyamide obtained by a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide is widely used. It is important for these composite semipermeable membranes to achieve both high solute removal properties and water permeability in order to improve the water quality obtained when used and to reduce operating costs.

膜の溶質除去性および透水性を向上させる手段としては、界面重縮合によりポリアミドの分離機能層を形成させた後に、該分離機能層を改質する方法が汎用性の面から有効である。このような改質方法として、例えば特許文献1に、第一級アミノ基を含む分離機能層を有する半透膜を、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に1秒以上60分以内接触させる方法が開示されている。しかしながら、さらに高い溶質除去性と透水性の両立が望まれている。
特開2005−177741号公報
As a means for improving the solute removability and water permeability of the membrane, a method of modifying the separation functional layer after forming a polyamide separation functional layer by interfacial polycondensation is effective from the viewpoint of versatility. As such a modification method, for example, in Patent Document 1, a semipermeable membrane having a separation functional layer containing a primary amino group is used as a reagent that reacts with a primary amino group to produce a diazonium salt or a derivative thereof. A method of contacting for 1 second or more and 60 minutes or less is disclosed. However, both higher solute removability and water permeability are desired.
JP 2005-177741 A

本発明は、高い溶質除去性と高い透水性を併せ持つ、複合半透膜の製造方法を提供することを目的とするものである。   An object of this invention is to provide the manufacturing method of a composite semipermeable membrane which has high solute removal property and high water permeability.

本発明は、上記目的を達成するために、下記(1)の構成をとる。
In order to achieve the above object, the present invention has the following configuration (1) .

(1)第一級アミノ基を含む分離機能層を有する半透膜を形成する工程と、前記分離機能層を有する半透膜を、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物(I)に接触させてジアゾニウム塩を形成させる工程と、スルファミン酸、アンモニア、その酸性塩、及びアミノ酸からなる群から選ばれる少なくとも1種の前記化合物(I)との反応性をもつ水溶性化合物(II)と接触させる工程を有することを特徴とする複合半透膜の製造方法。
(1) forming a semipermeable membrane having a separation functional layer containing a primary amino group, and reacting the semipermeable membrane having the separation functional layer with a primary amino group to produce a diazonium salt or a derivative thereof. Contacting with the resulting compound (I) to form a diazonium salt , and having reactivity with at least one compound (I) selected from the group consisting of sulfamic acid, ammonia, its acid salt, and amino acid A method for producing a composite semipermeable membrane, comprising a step of contacting with a water-soluble compound (II).

本発明法によれば、高い水透過性と高い溶質除去性を併せ持つ複合半透膜を得ることができる。また、改質処理に無機化合物を使用することにより廃液処理への負担を少なくすることができる。   According to the method of the present invention, a composite semipermeable membrane having both high water permeability and high solute removability can be obtained. Moreover, the burden on waste liquid treatment can be reduced by using an inorganic compound for the modification treatment.

本発明は、第一級アミノ基を含む分離機能層を有する半透膜の性質を改良する方法である。ここで第一級アミノ基を含む分離機能層とは、少なくとも1つの第一級アミノ基を持つ化合物および/またはその塩が分離機能層中に存在することをいう。該化合物の種類は特に限定されないが、例えば、芳香族アミン、ポリビニルアミン、末端アミノ基を持つポリアミドなどである。取り扱いの簡便さから第一級アミノ基は芳香族アミンであることが好ましい。これらは分離機能層の構成成分であっても良いし、分離機能層と化学結合を伴っていなくともよい。   The present invention is a method for improving the properties of a semipermeable membrane having a separation functional layer containing a primary amino group. Here, the separation functional layer containing a primary amino group means that a compound having at least one primary amino group and / or a salt thereof is present in the separation functional layer. The type of the compound is not particularly limited, and examples thereof include aromatic amines, polyvinyl amines, and polyamides having terminal amino groups. For ease of handling, the primary amino group is preferably an aromatic amine. These may be constituent components of the separation functional layer, or may not be accompanied by a chemical bond with the separation functional layer.

本発明において複合半透膜は、好ましくは、実質的に分離性能を有する分離機能層が、実質的に分離性能を有さない多孔性支持膜上に被覆されてなり、該分離機能層は多官能アミンと多官能酸ハロゲン化物との反応によって得られる架橋ポリアミドからなるものである。ここで多官能アミンは脂肪族多官能アミンと芳香族多官能アミンの少なくとも1つの成分からなる。   In the present invention, the composite semipermeable membrane is preferably formed by coating a separation functional layer having substantially separation performance on a porous support membrane having substantially no separation performance. It consists of a crosslinked polyamide obtained by the reaction of a functional amine and a polyfunctional acid halide. Here, the polyfunctional amine comprises at least one component of an aliphatic polyfunctional amine and an aromatic polyfunctional amine.

脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジンなどが例示され、性能発現の安定性から、特に、ピペラジン、2,5−ジメチルピペラジンが好ましい。   The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, and is preferably a piperazine-based amine and a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine and 2,5-di-n-butylpiperazine, and piperazine and 2,5-dimethylpiperazine are particularly preferable from the viewpoint of stability of performance.

また、芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどがあり、そのN−アルキル化物としてN,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示され、性能発現の安定性から、特にメタフェニレンジアミン、1,3,5−トリアミノベンゼンが好ましい。   The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylene diamine, paraphenylene diamine, 1, 3, 5 -Triaminobenzene and the like, and N-alkylated products thereof include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, N, N-diethylparaphenylenediamine, etc. In view of the stability of performance, metaphenylenediamine and 1,3,5-triaminobenzene are particularly preferable.

多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸の酸ハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロリドが好ましい。上記多官能酸ハロゲン化物は単独で用いることもできるが、混合物として用いてもよい。   The polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and acid halides of 1,4-benzenedicarboxylic acid can be used. Among acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity. Trimesic acid chloride is preferred. Although the said polyfunctional acid halide can also be used independently, you may use it as a mixture.

多官能酸ハロゲン化物を溶解する有機溶媒は、水と非混和性であり、かつ多孔性支持膜を破壊しないことが好ましく、架橋ポリアミドの生成反応を阻害しないものであればいずれであっても良い。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられるが、オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカンなど、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。   The organic solvent that dissolves the polyfunctional acid halide is not miscible with water, and preferably does not destroy the porous support membrane, and may be any as long as it does not inhibit the formation reaction of the crosslinked polyamide. . Typical examples include halogenated hydrocarbons such as liquid hydrocarbons and trichlorotrifluoroethane, but they are substances that do not destroy the ozone layer, are easily available, are easy to handle, and are safe for handling. In consideration of the properties, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, etc., and simple substances such as cyclooctane, ethylcyclohexane, 1-octene, 1-decene or mixtures thereof are preferably used.

次に、半透膜の好ましい製造方法について説明する。半透膜中の実質的に分離性能を有する分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する、水とは非混和性の有機溶媒溶液を用い、後述の多孔性支持膜上で反応させることにより形成される。   Next, the preferable manufacturing method of a semipermeable membrane is demonstrated. The separation functional layer having substantially separation performance in the semipermeable membrane is, for example, an aqueous solution containing the above-mentioned polyfunctional amine and an organic solvent immiscible with water containing the above-mentioned polyfunctional acid halide. It forms by making it react on the below-mentioned porous support membrane using a solution.

ここで、多官能アミンを含有する水溶液の濃度は、0.1〜20重量%が好ましく、より好ましくは0.5〜15重量%である。   Here, the concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight.

多官能アミンを含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。   In the case of an aqueous solution containing a polyfunctional amine or an organic solvent solution containing a polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid scavenger may be used as long as it does not interfere with the reaction between the two components. In addition, compounds such as surfactants and antioxidants may be contained.

本発明において、多孔性支持膜は、架橋ポリアミドなどの分離機能層を支持するために使用される。多孔性支持膜の構成は特に限定されないが、好ましい多孔性支持膜としては布帛により強化されたポリスルホン支持膜などを例示することができる。多孔性支持膜の孔径や孔数は特に限定されないが、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔を有していて、その微細孔の大きさは、その片面の表面が100nm以下であるような構造の支持膜が好ましい。   In the present invention, the porous support membrane is used to support a separation functional layer such as a crosslinked polyamide. Although the structure of a porous support membrane is not specifically limited, As a preferable porous support membrane, the polysulfone support membrane reinforced with the cloth etc. can be illustrated. The pore diameter and the number of pores of the porous support membrane are not particularly limited, but it has uniform fine pores or gradually large pores from one side to the other side, and the size of the fine pores is the size of one side. A support film having a structure in which the surface of the film is 100 nm or less is preferable.

本発明に使用する多孔性支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるが、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。   The porous support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).

多孔性支持膜に使用する素材は特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル等のホモポリマーあるいはブレンドしたもの等が使用できるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。具体的に例示すると、ポリスルホンのジメチルホルムアミド(以降、DMFと記載)溶液を密に織ったポリエステル布あるいは不織布の上に略一定の厚さに塗布し、ドデシル硫酸ソーダ0.5重量%DMF2重量%を含む水溶液中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した好適な多孔性支持膜を得ることができる。   The material used for the porous support membrane is not particularly limited. For example, polysulfone, cellulose acetate, cellulose nitrate, polyvinyl chloride, or other homopolymers or blended materials can be used, but chemically, mechanically, and thermally. It is preferable to use polysulfone having high stability. Specifically, a solution of polysulfone in dimethylformamide (hereinafter referred to as DMF) is applied on a densely woven polyester cloth or non-woven fabric to a substantially constant thickness, and sodium dodecyl sulfate 0.5 wt% DMF 2 wt% By wet coagulation in an aqueous solution containing, a suitable porous support membrane having most of the surface with fine pores having a diameter of several tens of nm or less can be obtained.

多孔性支持膜表面への多官能アミンを含有する水溶液の被覆は、該水溶液が表面に均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、該水溶液を多孔性支持膜表面にコーティングする方法、多孔性支持膜を該水溶液に浸漬する方法等で行えばよい。次いで、過剰に塗布された該水溶液を液切り工程により除去する。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。その後、多官能アミンを含有する水溶液で被覆した多孔性支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、反応により架橋ポリアミドの分離機能層を形成させる。   The surface of the porous support membrane may be coated with an aqueous solution containing a polyfunctional amine as long as the aqueous solution is uniformly and continuously coated on the surface. For example, the coating may be carried out by a method of coating a porous support membrane in the aqueous solution. Next, the excessively applied aqueous solution is removed by a liquid draining step. As a method for draining liquid, for example, there is a method in which the film surface is allowed to flow naturally while being held in a vertical direction. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution. Then, the organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to the porous support membrane coated with the aqueous solution containing the polyfunctional amine, and a separation functional layer of crosslinked polyamide is formed by reaction.

多官能酸ハロゲン化物の濃度は特に限定されないが、活性層である分離機能層を十分に形成せしめるためには、有機溶媒溶液中で0.01〜1.0重量%程度が好ましい。   The concentration of the polyfunctional acid halide is not particularly limited, but is preferably about 0.01 to 1.0% by weight in the organic solvent solution in order to sufficiently form the separation functional layer as the active layer.

そして、本発明では、上述の方法により製造した半透膜を、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物(I)(以下、ジアゾニウム塩化化合物と略記する)に接触させてジアゾニウム塩を形成させた後、ジアゾニウム塩化化合物との反応性をもつ水溶性化合物(II)(以下、第2処理用化合物と略記する)と接触させることで複合半透膜の改質を行う。複合半透膜にジアゾニウム塩化化合物を接触させる方法、ならびに第2処理用化合物を接触させる方法は特に限定されず、たとえば、半透膜全体をそれら化合物を含む液中に浸漬する方法でも良いし、化合物を含む液をスプレーする方法でも良く、分離機能層と化合物が接触するならば、その方法は限定されない。   In the present invention, the semipermeable membrane produced by the above-described method is contacted with a compound (I) (hereinafter abbreviated as a diazonium chloride compound) that reacts with a primary amino group to produce a diazonium salt or a derivative thereof. After forming a diazonium salt, the composite semipermeable membrane is modified by contacting with a water-soluble compound (II) having reactivity with the diazonium chloride compound (hereinafter abbreviated as the second treatment compound). Do. The method of bringing the diazonium chloride compound into contact with the composite semipermeable membrane and the method of bringing the second treatment compound into contact are not particularly limited. For example, a method of immersing the entire semipermeable membrane in a liquid containing these compounds may be used. A method of spraying a liquid containing a compound may be used, and the method is not limited as long as the separation functional layer and the compound come into contact with each other.

本発明法において用いるジアゾニウム塩化化合物を含む液としては、亜硝酸およびその塩、ニトロシル化合物などを含む水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解しやすいので、例えば亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するのが好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、20℃で水溶液のpHが4以下で効率よく生成する。中でも、取り扱いの簡便性から水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。 Examples of the liquid containing the diazonium chloride compound used in the method of the present invention include an aqueous solution containing nitrous acid and a salt thereof, a nitrosyl compound and the like. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution. In general, nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but is efficiently produced at 20 ° C. when the pH of the aqueous solution is 4 or less. Among these, an aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.

本発明において、膜と接触させるジアゾニウム塩化化合物を含む液中の亜硝酸や亜硝酸塩の濃度は、好ましくは20℃において0.01〜1重量%の範囲である。この範囲であると膜中の第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成するのに十分な効果を得ることができる。   In the present invention, the concentration of nitrous acid or nitrite in the liquid containing the diazonium chloride compound brought into contact with the membrane is preferably in the range of 0.01 to 1% by weight at 20 ° C. Within this range, a sufficient effect can be obtained to react with the primary amino group in the film to produce a diazonium salt or a derivative thereof.

このような処理を施すにあたり、半透膜中には、ポリアミドの生成反応時に残存する未反応の分子量300以下の第一級アミンや、別途添加した分子量300以下の第一級アミンの量が、膜面積1mあたり500mg以下であることが好ましい。この範囲であると膜中の第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成するのに十分な効果を得ることができる。なお、第一級アミン量の測定は、半透膜を10×10cm切り出してエタノール50gに8時間浸漬し、エタノールに抽出された成分の紫外吸収可視スペクトル、クロマトグラフィー、質量分析などで求められる。 In performing such treatment, in the semipermeable membrane, the amount of unreacted primary amine having a molecular weight of 300 or less remaining during the polyamide formation reaction, or the amount of primary amine having a molecular weight of 300 or less added separately, It is preferably 500 mg or less per 1 m 2 of membrane area. Within this range, a sufficient effect can be obtained to react with the primary amino group in the film to produce a diazonium salt or a derivative thereof. In addition, the amount of primary amine can be determined by cutting a semipermeable membrane 10 × 10 cm, immersing it in 50 g of ethanol for 8 hours, and analyzing the components extracted into ethanol by ultraviolet absorption visible spectrum, chromatography, mass spectrometry and the like.

機能層に存在するアミノ基は、ジアゾニウム塩化化合物によりジアゾニウム塩化した後、一部がフェノール性水酸基に変換される。これは、生成したジアゾニウム塩が水と反応したものとして理解できる。なお、フェノール性水酸基はNMR法によって同定することができる。たとえば、基材上にポリスルホンからなる多孔性支持膜を形成した支持体上に分離機能層を有する液体分離膜について、NMR法により化合物を同定するにあたっては次のように行う。まず、支持体の一部である基材(ポリエステル繊維からなるタフタや不織布等)を剥がし、ポリスルホンからなる微多孔性支持膜と架橋ポリアミドの分離機能層の混合物を得る。これを塩化メチレンに溶解した後ろ過を行って分離機能層を得る。この分離機能層を乾燥後密閉容器に採取し、6N水酸化ナトリウム水溶液を加えて120℃に加熱して溶解後、不溶物をろ過する。得られたろ液をNMRチューブに入れFT−NMR分析装置で分析を行い、得られたプロトンのδ値より化合物を同定する。   The amino group present in the functional layer is diazonium salified with a diazonium chloride compound and then partially converted to a phenolic hydroxyl group. This can be understood as a reaction of the produced diazonium salt with water. The phenolic hydroxyl group can be identified by NMR method. For example, a liquid separation membrane having a separation functional layer on a support in which a porous support membrane made of polysulfone is formed on a substrate is identified as follows when identifying a compound by the NMR method. First, a substrate (taffeta or nonwoven fabric made of polyester fiber) which is a part of the support is peeled off to obtain a mixture of a microporous support membrane made of polysulfone and a separation functional layer of crosslinked polyamide. This is dissolved in methylene chloride and then filtered to obtain a separation functional layer. The separation functional layer is dried and collected in a sealed container. A 6N aqueous sodium hydroxide solution is added, and the mixture is heated to 120 ° C. for dissolution, followed by filtering insoluble matters. The obtained filtrate is put in an NMR tube and analyzed by an FT-NMR analyzer, and the compound is identified from the δ value of the obtained proton.

本発明法において用いる第2処理用化合物を含む液としては、スルファミン酸、アンモニア、その酸性塩、及びアミノ酸のうちの1種以上を含む水溶液などが挙げられる。中でも、反応性の高さからスルファミン酸水溶液が特に好ましい。   Examples of the liquid containing the second treatment compound used in the method of the present invention include sulfamic acid, ammonia, an acid salt thereof, and an aqueous solution containing one or more of amino acids. Among these, a sulfamic acid aqueous solution is particularly preferable because of its high reactivity.

ここで、膜と接触させるスルファミン酸水溶液の濃度は、好ましくは20℃において0.01〜1重量%の範囲である。この範囲であると膜中の余剰ジアゾニウム塩化化合物と速やかに反応して除去することに十分な効果を得ることができる。   Here, the concentration of the aqueous sulfamic acid solution brought into contact with the membrane is preferably in the range of 0.01 to 1% by weight at 20 ° C. If it is within this range, it is possible to obtain a sufficient effect for quickly reacting with and removing the excess diazonium chloride compound in the film.

膜と第2処理用化合物を含む液とを接触させる時間としては、膜中の余剰ジアゾニウム塩化化合物と速やかに反応するため、10秒以上、24時間以内であることが好ましく、1時間以内であることがさらに好ましい。   The time for contacting the membrane with the liquid containing the second treatment compound is preferably 10 seconds or longer and within 24 hours, preferably within 1 hour, because it reacts quickly with the excess diazonium chloride compound in the membrane. More preferably.

本発明法の分離機能層を有する半透膜の性能が25℃、pH6.5、塩化ナトリウム濃度0.2重量%の水溶液を、0.5MPaの操作圧力で透過させたときに、塩除去率が60%以上、透過水量が0.4m/m・日以上であることが好ましい。 When the performance of the semipermeable membrane having the separation functional layer of the present invention is 25 ° C., pH 6.5, and an aqueous solution having a sodium chloride concentration of 0.2% by weight is permeated at an operating pressure of 0.5 MPa, the salt removal rate Is 60% or more, and the amount of permeated water is preferably 0.4 m 3 / m 2 · day or more.

そして、本発明によれば、一旦製造された半透膜を改質して、25℃、pH6.5、塩化ナトリウム濃度0.2重量%の塩水を0.5MPaの操作圧力で透過させたときに、塩除去率、透過水量ともに改質前よりも高い性能を有する半透膜を容易に得ることができる。   According to the present invention, when the semipermeable membrane once manufactured is modified and salt water having a pH of 6.5 and a sodium chloride concentration of 0.2% by weight is permeated at an operating pressure of 0.5 MPa. In addition, it is possible to easily obtain a semipermeable membrane having higher performance than that before the modification, both in terms of salt removal rate and permeated water amount.

なお、本発明において、半透膜の形態は限定されるものではなく、中空糸膜でも平膜でもよい。また、本発明法により改質して得られる複合半透膜は、液体分離に用いる場合、エレメントやモジュールを形成して使用されるが、その形態もモジュール型、スパイラル型など特に限定されるものではない。   In the present invention, the form of the semipermeable membrane is not limited and may be a hollow fiber membrane or a flat membrane. In addition, the composite semipermeable membrane obtained by modification by the method of the present invention is used by forming an element or a module when used for liquid separation, but its form is also particularly limited to a module type, a spiral type, etc. is not.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

<特性評価1>
参考例1、比較例1、比較例2、実施例1における膜の特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%、ホウ素濃度約5.0ppm)を操作圧力5.5MPaで供給して膜ろ過処理を行ない、透過水、供給水の水質を測定することにより、次の式から求めた。
<Characteristic evaluation 1>
The characteristics of the membranes in Reference Example 1, Comparative Example 1, Comparative Example 2, and Example 1 are as follows. Seawater (TDS concentration: about 3.5%, boron concentration: about 3.5%) adjusted to a composite semipermeable membrane at a temperature of 25 ° C. and a pH of 6.5. 5.0 ppm) was supplied at an operating pressure of 5.5 MPa, membrane filtration was performed, and the quality of the permeated water and the feed water was measured, and the following formula was obtained.

(TDS除去率)
TDS除去率(%)=100×{1−(透過水中のTDS濃度/供給水中のTDS濃度)}
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
(TDS removal rate)
TDS removal rate (%) = 100 × {1− (TDS concentration in permeated water / TDS concentration in feed water)}
(Membrane permeation flux)
Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).

(参考例1)
多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5デシテックスのポリエステル繊維と1.5デシテックスのポリエステル繊維との混繊糸からなる、通気度0.7cm/cm・秒、平均孔径7μm以下の湿式不織布であって、縦30cm、横20cmの大きさの物を、ガラス板上に固定し、その上に、ジメチルホルムアミド(DMF)溶媒のポリスルホン濃度15重量%の溶液(2.5ポアズ:20℃)を、総厚み210〜215μmになるようにキャストし、直ちに水に浸積してポリスルホンの多孔性支持膜を製造した。得られた多孔性支持膜をPS支持膜と記す。
(Reference Example 1)
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a porous support membrane, was produced by the following method. That is, a wet nonwoven fabric having a permeability of 0.7 cm 3 / cm 2 · second and an average pore diameter of 7 μm or less, comprising a mixed yarn of polyester fiber having a single yarn fineness of 0.5 dtex and 1.5 dtex polyester fiber. An object having a size of 30 cm in length and 20 cm in width was fixed on a glass plate, and a solution of dimethylformamide (DMF) solvent having a polysulfone concentration of 15% by weight (2.5 poise: 20 ° C.) was added to the glass plate. The film was cast to a thickness of 210 to 215 μm and immediately immersed in water to produce a polysulfone porous support membrane. The obtained porous support membrane is referred to as a PS support membrane.

このようにして得られたPS支持膜を、メタフェニレンジアミン(以下mPDAという)3.4重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(以下TMCという)0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合逆浸透膜を得た。このようにして得られた複合半透膜を評価したところ、膜透過流束、TDS除去率はそれぞれ表1に示す値であった。 The PS support film thus obtained was immersed in a 3.4% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as mPDA) for 2 minutes, the support film was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, an n-decane solution containing 0.175% by weight of trimesic acid chloride (hereinafter referred to as TMC) was completely wetted at a rate of 160 cm 3 / m 2. It was applied and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it washed with 90 degreeC hot water for 2 minutes, and obtained the composite reverse osmosis membrane. The composite semipermeable membrane thus obtained was evaluated. The membrane permeation flux and the TDS removal rate were the values shown in Table 1, respectively.

(比較例1)
参考例1で得られた膜を、濃硫酸でpH3.0に調整した0.05重量%の亜硝酸ナトリウム水溶液に35℃で30秒浸漬した後、直ちに水浴中へ浸漬した。得られた複合半透膜を評価したところ、膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(Comparative Example 1)
The membrane obtained in Reference Example 1 was immersed in a 0.05 wt% sodium nitrite aqueous solution adjusted to pH 3.0 with concentrated sulfuric acid at 35 ° C. for 30 seconds, and then immediately immersed in a water bath. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the TDS removal rate were the values shown in Table 1, respectively.

(比較例2)
参考例1で得られた膜を、0.1%スルファミン酸水溶液に20℃で3時間浸漬した。得られた複合半透膜を評価したところ、膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(Comparative Example 2)
The film obtained in Reference Example 1 was immersed in a 0.1% aqueous sulfamic acid solution at 20 ° C. for 3 hours. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the TDS removal rate were the values shown in Table 1, respectively.

(実施例1)
比較例1で得られた膜を、0.1%スルファミン酸水溶液に20℃で3時間浸漬した。得られた複合半透膜を評価したところ、膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
Example 1
The film obtained in Comparative Example 1 was immersed in a 0.1% aqueous sulfamic acid solution at 20 ° C. for 3 hours. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the TDS removal rate were the values shown in Table 1, respectively.

Figure 0005130967
Figure 0005130967

実施例1および比較例1、2の結果から、膜透水量および脱塩率を共に向上させるためには、亜硝酸処理およびスルファミン酸処理を併用することが必要であることがわかる。   From the results of Example 1 and Comparative Examples 1 and 2, it can be seen that in order to improve both the membrane water permeability and the desalination rate, it is necessary to use nitrous acid treatment and sulfamic acid treatment in combination.

<特性評価2>
参考例2、参考例3、参考例4、比較例3、比較例4、実施例2、実施例3における膜の特性は、複合半透膜に、温度25℃、pH6.5塩化ナトリウム濃度0.2重量%に調整した塩水を操作圧力0.5MPaで供給して膜ろ過処理を行ない、透過水、供給水の水質を測定することにより、次の式から求めた。
<Characteristic evaluation 2>
The characteristics of the membranes in Reference Example 2, Reference Example 3, Reference Example 4, Comparative Example 3, Comparative Example 4, Example 2, and Example 3 were as follows: composite semipermeable membrane, temperature 25 ° C., pH 6.5 sodium chloride concentration 0 . The salt water adjusted to 2% by weight was supplied at an operating pressure of 0.5 MPa, membrane filtration treatment was performed, and the quality of the permeated water and the feed water was measured, and the following formula was obtained.

(塩除去率)
塩除去率(%)=100×{1−(透過水中の塩濃度/供給水中の塩濃度)}
(膜透過流束)
供給水(塩水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
(Salt removal rate)
Salt removal rate (%) = 100 × {1− (salt concentration in permeated water / salt concentration in feed water)}
(Membrane permeation flux)
Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (salt water) per square meter of the membrane surface with the permeation amount per day (cubic meter).

(参考例2)
<特性評価1>の参考例1で得られた膜を<特性評価2>に示す条件で評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Reference Example 2)
When the membrane obtained in Reference Example 1 of <Characteristic Evaluation 1> was evaluated under the conditions shown in <Characteristic Evaluation 2>, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(参考例3)
PS支持膜を、mPDA3.1重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.080重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合逆浸透膜を得た。このようにして得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Reference Example 3)
The PS support membrane was immersed in a 3.1 wt% aqueous solution of mPDA for 2 minutes, the support membrane was slowly pulled up vertically, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support membrane. An n-decane solution containing% by weight was applied at a rate of 160 cm 3 / m 2 so that the surface of the support membrane was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it washed with 90 degreeC hot water for 2 minutes, and obtained the composite reverse osmosis membrane. When the composite semipermeable membrane thus obtained was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(参考例4)
PS支持膜を、mPDA2.0重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.060重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合逆浸透膜を得た。このようにして得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Reference Example 4)
After immersing the PS support membrane in a 2.0% by weight aqueous solution of mPDA for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from the air nozzle to remove excess aqueous solution from the surface of the support membrane. An n-decane solution containing% by weight was applied at a rate of 160 cm 3 / m 2 so that the surface of the support membrane was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it washed with 90 degreeC hot water for 2 minutes, and obtained the composite reverse osmosis membrane. When the composite semipermeable membrane thus obtained was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(比較例3)
参考例3で得られた膜を、濃硫酸でpH3.0に調整した0.35重量%の亜硝酸ナトリウム水溶液に35℃で2分間浸漬した後、直ちに水浴中へ浸漬した。得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Comparative Example 3)
The membrane obtained in Reference Example 3 was immersed in a 0.35 wt% sodium nitrite aqueous solution adjusted to pH 3.0 with concentrated sulfuric acid at 35 ° C. for 2 minutes, and then immediately immersed in a water bath. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(比較例4)
参考例4で得られた膜を、濃硫酸でpH3.0に調整した0.35重量%の亜硝酸ナトリウム水溶液に35℃で2分間浸漬した後、直ちに水浴中へ浸漬した。得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Comparative Example 4)
The membrane obtained in Reference Example 4 was immersed in a 0.35 wt% sodium nitrite aqueous solution adjusted to pH 3.0 with concentrated sulfuric acid at 35 ° C. for 2 minutes, and then immediately immersed in a water bath. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(実施例2)
比較例3で得られた膜を、0.1%スルファミン酸水溶液に30℃で5分間浸漬した。得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Example 2)
The film obtained in Comparative Example 3 was immersed in a 0.1% aqueous sulfamic acid solution at 30 ° C. for 5 minutes. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

(実施例3)
比較例4で得られた膜を、0.1%スルファミン酸水溶液に30℃で5分間浸漬した。得られた複合半透膜を評価したところ、膜透過流束、塩除去率はそれぞれ表2に示す値であった。
(Example 3)
The film obtained in Comparative Example 4 was immersed in a 0.1% aqueous sulfamic acid solution at 30 ° C. for 5 minutes. When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux and the salt removal rate were the values shown in Table 2, respectively.

Figure 0005130967
Figure 0005130967

実施例2、3および比較例3、4の結果から、膜透水量および脱塩率を最も向上させるためには、亜硝酸処理およびスルファミン酸処理を併用することが必要であることがわかる。   From the results of Examples 2 and 3 and Comparative Examples 3 and 4, it can be seen that it is necessary to use nitrous acid treatment and sulfamic acid treatment together in order to improve the membrane water permeability and the desalination rate most.

Claims (1)

複合半透膜の製造方法であって、メタフェニレンジアミンを含む多官能アミンと多官能酸ハロゲン化物とを多孔性支持膜上で反応させることで、第一級アミノ基を含む分離機能層を有する半透膜を形成する工程と、
前記分離機能層を有する半透膜を、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する化合物(I)に接触させてジアゾニウム塩を形成させる工程と、
スルファミン酸、アンモニア、その酸性塩、及びアミノ酸からなる群から選ばれる少なくとも1種の前記化合物(I)との反応性をもつ水溶性化合物(II)を接触させる工程と
を有することを特徴とする複合半透膜の製造方法。
A method for producing a composite semipermeable membrane, comprising a separation functional layer containing a primary amino group by reacting a polyfunctional amine containing metaphenylenediamine with a polyfunctional acid halide on a porous support membrane. Forming a semipermeable membrane;
Contacting the semipermeable membrane having the separation functional layer with a compound (I) that reacts with a primary amino group to produce a diazonium salt or a derivative thereof to form a diazonium salt;
And a step of contacting a water-soluble compound (II) having reactivity with at least one compound (I) selected from the group consisting of sulfamic acid, ammonia, an acid salt thereof, and an amino acid. A method for producing a composite semipermeable membrane.
JP2008067219A 2007-03-19 2008-03-17 Manufacturing method of composite semipermeable membrane Expired - Fee Related JP5130967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067219A JP5130967B2 (en) 2007-03-19 2008-03-17 Manufacturing method of composite semipermeable membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007070326 2007-03-19
JP2007070326 2007-03-19
JP2008067219A JP5130967B2 (en) 2007-03-19 2008-03-17 Manufacturing method of composite semipermeable membrane

Publications (3)

Publication Number Publication Date
JP2008260009A JP2008260009A (en) 2008-10-30
JP2008260009A5 JP2008260009A5 (en) 2011-05-06
JP5130967B2 true JP5130967B2 (en) 2013-01-30

Family

ID=39982904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067219A Expired - Fee Related JP5130967B2 (en) 2007-03-19 2008-03-17 Manufacturing method of composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP5130967B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9486745B2 (en) 2009-12-22 2016-11-08 Toray Industries, Inc. Semipermeable membrane and manufacturing method therefor
EP2517782A4 (en) 2009-12-24 2017-01-04 Toray Industries, Inc. Composite semipermeable membrane and method for producing same
CN108472596B (en) 2015-12-18 2021-10-22 东丽株式会社 Composite semipermeable membrane and method for producing composite semipermeable membrane

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1318091C (en) * 1987-01-15 1993-05-25 Filmtec Corporation Reverse osmosis membranes
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5755964A (en) * 1996-02-02 1998-05-26 The Dow Chemical Company Method of treating polyamide membranes to increase flux
JP3862184B2 (en) * 1996-12-05 2006-12-27 日東電工株式会社 Method for producing composite reverse osmosis membrane
JP2005177741A (en) * 2003-11-26 2005-07-07 Toray Ind Inc Treatment method of semipermeable membrane, modified semipermeable membrane and its production method
JP4525296B2 (en) * 2003-12-03 2010-08-18 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP2006021094A (en) * 2004-07-07 2006-01-26 Toray Ind Inc Compound semi-permeable membrane and its manufacturing method

Also Published As

Publication number Publication date
JP2008260009A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP5807547B2 (en) Semipermeable membrane and method for producing the same
JP5895838B2 (en) Separation membrane element and method for producing composite semipermeable membrane
JP5741431B2 (en) Composite semipermeable membrane and method for producing the same
JP6136266B2 (en) Composite semipermeable membrane
JP5262668B2 (en) Composite nanofiltration membrane
WO2010050421A1 (en) Composite semipermeable membrane and manufacturing method therefor
JP5131028B2 (en) Manufacturing method of composite semipermeable membrane
JP4618081B2 (en) Processing method and manufacturing method of composite semipermeable membrane
JP4525296B2 (en) Manufacturing method of composite semipermeable membrane
JP5267273B2 (en) Manufacturing method of composite semipermeable membrane
JP2011125856A (en) Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2005177741A (en) Treatment method of semipermeable membrane, modified semipermeable membrane and its production method
JP5120006B2 (en) Manufacturing method of composite semipermeable membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP3780734B2 (en) Composite semipermeable membrane
JP2013223861A (en) Composite diaphragm
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JP5126155B2 (en) Manufacturing method of composite semipermeable membrane
JP2003200027A (en) Method for manufacturing composite semipermeable membrane
JP2010125439A (en) Method of manufacturing composite semi-permeable membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5130967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees