JP2009078218A - Method of manufacturing composite semi-permeable membrane - Google Patents

Method of manufacturing composite semi-permeable membrane Download PDF

Info

Publication number
JP2009078218A
JP2009078218A JP2007248759A JP2007248759A JP2009078218A JP 2009078218 A JP2009078218 A JP 2009078218A JP 2007248759 A JP2007248759 A JP 2007248759A JP 2007248759 A JP2007248759 A JP 2007248759A JP 2009078218 A JP2009078218 A JP 2009078218A
Authority
JP
Japan
Prior art keywords
membrane
composite semipermeable
semipermeable membrane
permeable membrane
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248759A
Other languages
Japanese (ja)
Inventor
Hiroki Tomioka
洋樹 富岡
Takao Sasaki
崇夫 佐々木
Atsushi Okabe
淳 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007248759A priority Critical patent/JP2009078218A/en
Publication of JP2009078218A publication Critical patent/JP2009078218A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a composite semi-permeable membrane enabling unreacted components to be efficiently removed therefrom without impairing the solute removing performance, leaving little residue of the unreacted components. <P>SOLUTION: A method of manufacturing the composite semi-permeable membrane is disclosed for manufacturing the composite semi-permeable membrane by performing interfacial polycondensation of multifunctional amine with multifunctional acid derivatives to form a separation functional layer of cross-linked aromatic polyamide on a porous support membrane, wherein the semi-permeable membrane is brought into contact with an aqueous solution containing a urea compound after the interfacial polycondensation, then subjected to cleaning with water of 70°C or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、逆浸透膜や限外ろ過膜等として用いるのに好適な複合半透膜の製造方法に関する。   The present invention relates to a method for producing a composite semipermeable membrane suitable for use as a reverse osmosis membrane or an ultrafiltration membrane.

複合半透膜は、液状混合物中に含まれる成分を選択的に分離するために使用されるものであり、超純水の製造、海水またはかん水の脱塩、染色や電着塗料廃水の除去・分離回収による工業用水のクローズドシステム構築、食品工業での有効成分の濃縮等に用いられている。その具体例として、多官能芳香族アミンと多官能酸誘導体(例えば塩化物)との界面重縮合反応によって得られる架橋ポリアミドからなる薄膜層を多孔性支持膜上に接触させた複合半透膜があり、この複合半透膜は、透過性や選択分離性の高い逆浸透膜として実用化されている。その複合半透膜において、高透水性を発現するために、界面重縮合反応で添加剤を用いて逆浸透膜を製造する技術も開発されている。該添加剤としては、水酸化カリウムやリン酸三ナトリウムなど界面反応にて生成する酸性物質を系外に除去するための化合物や、アシル化触媒、溶解度パラメーターが8〜14(cal/cm20.5 の化合物などが提案されている。また、脱塩性能を向上させる手段としては複合半透膜を熱水処理する方法が提案されている。また、多価アルコールとトリアルキルアミンおよび有機酸の混合物を含有する水溶液に浸漬して熱水処理し、透過水量の低下を抑える方法が提案されている。 The composite semipermeable membrane is used to selectively separate the components contained in the liquid mixture, including the production of ultrapure water, the desalination of seawater or brine, and the removal of dyeing and electrodeposition paint wastewater. It is used for the construction of closed systems for industrial water by separation and recovery, and concentration of active ingredients in the food industry. As a specific example, there is a composite semipermeable membrane in which a thin film layer made of a crosslinked polyamide obtained by interfacial polycondensation reaction between a polyfunctional aromatic amine and a polyfunctional acid derivative (for example, chloride) is contacted on a porous support membrane. Yes, this composite semipermeable membrane has been put to practical use as a reverse osmosis membrane having high permeability and selective separation. In order to express high water permeability in the composite semipermeable membrane, a technology for producing a reverse osmosis membrane using an additive in an interfacial polycondensation reaction has also been developed. Examples of the additive include a compound for removing an acidic substance generated by an interfacial reaction such as potassium hydroxide and trisodium phosphate out of the system, an acylation catalyst, and a solubility parameter of 8 to 14 (cal / cm 2 ). 0.5 compounds have been proposed. As a means for improving the desalting performance, a method of hydrothermally treating the composite semipermeable membrane has been proposed. In addition, a method has been proposed in which immersion in an aqueous solution containing a mixture of a polyhydric alcohol, a trialkylamine, and an organic acid is treated with hot water to suppress a decrease in the amount of permeated water.

しかし、これらの製法による複合半透膜には、芳香族系モノマーもしくは低重合度ポリマーといった未反応成分が残存しているので、そのまま分離膜として膜モジュールに組み込んで使用すると、残存する未反応成分が透過液中に含まれて流出する問題があった。   However, since unreacted components such as aromatic monomers or low polymerization degree polymers remain in the composite semipermeable membranes produced by these production methods, the remaining unreacted components are used as they are incorporated into a membrane module as a separation membrane. However, there was a problem of being contained in the permeate and flowing out.

そこで、製造された複合半透膜中に残存している未反応成分を除去することを目的として、複合半透膜に対して有機物水溶液を接触させ未反応残存物を除去する方法(特許文献1)、半透膜をリチウム塩、ストロンチウム塩に接触処理する方法(特許文献2)、未反応のモノマーを50℃以上の洗浄液で洗浄除去する方法(特許文献3)などが提案されている。   Therefore, for the purpose of removing unreacted components remaining in the produced composite semipermeable membrane, a method of removing an unreacted residue by bringing an organic aqueous solution into contact with the composite semipermeable membrane (Patent Document 1). ), A method of contacting the semipermeable membrane with a lithium salt or a strontium salt (Patent Document 2), a method of cleaning and removing unreacted monomers with a cleaning solution of 50 ° C. or higher (Patent Document 3), and the like.

また、アミン不浸透処理を施した多孔性支持体上に架橋ポリアミドの分離機能層を形成することにより、膜洗浄後の未反応多官能アミン成分の残存量を極めて少ない水準とする方法(特許文献4)が提案されている。
しかしながら、これら従来の方法で洗浄処理しても、近年逆浸透膜の性能として強く要求されている、脱塩率やホウ素除去率などの溶質除去性能を悪化させることなく、複合半透膜に残存する未反応成分を効率的に洗浄除去させることができなかった。
Also, a method for reducing the residual amount of unreacted polyfunctional amine component after membrane cleaning to a very low level by forming a separation functional layer of crosslinked polyamide on a porous support subjected to amine impermeability treatment (Patent Document) 4) has been proposed.
However, even if these conventional methods are used for the cleaning treatment, they remain in the composite semipermeable membrane without deteriorating the solute removal performance such as desalination rate and boron removal rate, which has been strongly demanded as the performance of the reverse osmosis membrane in recent years. Unreacted components to be removed could not be efficiently washed away.

特開2000−24470号公報JP 2000-24470 A 特開2003−117361号公報JP 2003-117361 A 特許第3525759号公報Japanese Patent No. 3525759 特開2006−122886号公報JP 2006-122886 A

本発明の目的は、溶質除去性能を阻害することなく、複合半透膜から効率的に未反応成分を除去することができる洗浄方法を採用することによって、脱塩率およびホウ素除去率が高く、かつ、未反応成分の残存量の少ない複合半透膜を製造することにある。   The object of the present invention is to adopt a cleaning method that can efficiently remove unreacted components from the composite semipermeable membrane without hindering the solute removal performance, thereby providing a high desalting rate and boron removal rate, And it is in manufacturing a composite semipermeable membrane with few residual amounts of an unreacted component.

上記目的を達成するための本発明は、多官能アミンと多官能酸誘導体を界面重縮合させて架橋芳香族ポリアミドの分離機能層を多孔性支持膜上に形成させて複合半透膜を製造する方法において、前記界面重縮合の後に、下記一般式(1)で示される構造を有する有機化合物(以下、尿素類化合物と呼ぶ)を含む水溶液に接触させた後、70℃以上の水で洗浄処理を行うことを特徴とする、複合半透膜の製造方法である。   In order to achieve the above object, the present invention produces a composite semipermeable membrane by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid derivative to form a separation functional layer of a crosslinked aromatic polyamide on a porous support membrane. In the method, after the interfacial polycondensation, after being brought into contact with an aqueous solution containing an organic compound having a structure represented by the following general formula (1) (hereinafter referred to as a urea compound), washing with water at 70 ° C. or higher It is the manufacturing method of the composite semipermeable membrane characterized by performing.

Figure 2009078218
Figure 2009078218

本発明法によれば、溶質除去性能を阻害することなく、複合半透膜から効率的に未反応成分を除去することができるので、近年逆浸透膜の性能として強く要求されている、脱塩率およびホウ素除去率が高く、かつ、未反応成分の残存量の少ない複合半透膜を得ることができる。   According to the method of the present invention, since unreacted components can be efficiently removed from the composite semipermeable membrane without hindering the solute removal performance, desalting has been strongly demanded as a reverse osmosis membrane performance in recent years. A composite semipermeable membrane having a high rate and a high boron removal rate and a small amount of unreacted components remaining can be obtained.

本発明による複合半透膜は、脱塩性能、透水性能、ホウ素除去性能などの流体分離機能を発揮する分離機能層と、この機能層を支持するための多孔性支持膜とからなる。この多孔性支持膜は、基材と多孔質樹脂層からなる。   The composite semipermeable membrane according to the present invention comprises a separation functional layer that exhibits fluid separation functions such as desalting performance, water permeation performance, and boron removal performance, and a porous support membrane for supporting this functional layer. This porous support membrane consists of a base material and a porous resin layer.

上記のような複合半透膜は、たとえば、不織布などの基材上に多孔質層を形成させて多孔質支持膜とした後、その多孔性支持膜の表面で、多官能アミンと多官能酸誘導体とを界面重縮合させて架橋芳香族ポリアミドの分離機能層を形成させることにより得ることができる。   The composite semipermeable membrane as described above, for example, forms a porous support film by forming a porous layer on a substrate such as a non-woven fabric, and then forms a polyfunctional amine and polyfunctional acid on the surface of the porous support membrane. It can be obtained by interfacial polycondensation with a derivative to form a separation functional layer of crosslinked aromatic polyamide.

本発明では、上記のようにして製造された複合半透膜を、尿素類化合物を含む水溶液に接触させた後、70℃以上の水で洗浄処理し、膜中に残存している未反応成分を除去する。この洗浄処理による未反応成分の除去効率を高めるために、膜中の未反応成分を酸化せしめる処理を、尿素類化合物水溶液と接触させる前に行ってもよい。ここで、未反応成分(未反応の芳香族系モノマー)を酸化させる処理としては、塩素を含む液体や気体を用いた処理を適用することができる。酸化せしめることによって、芳香族系モノマーの有するカチオン性を除去することができ、洗浄除去効率をさらに高めることができる。   In the present invention, the composite semipermeable membrane produced as described above is brought into contact with an aqueous solution containing a urea compound, and then washed with water at 70 ° C. or higher to leave unreacted components remaining in the membrane. Remove. In order to increase the removal efficiency of unreacted components by this washing treatment, a treatment for oxidizing the unreacted components in the film may be performed before contacting with the urea compound aqueous solution. Here, as the treatment for oxidizing the unreacted component (unreacted aromatic monomer), a treatment using a liquid or gas containing chlorine can be applied. By oxidizing, the cationic property of the aromatic monomer can be removed, and the washing removal efficiency can be further enhanced.

ここで用いる尿素類化合物水溶液には、複合半透膜から、多官能アミン、多官能酸誘導体、およびその低分子量重合体などの未反応成分を抽出除去するために効果がある成分が含まれる。即ち、抽出除去を促進させる成分として、前記した一般式(1)で示される構造を有する有機化合物(尿素類化合物)が含有される。この尿素類化合物は、分子量が59〜1000であることが好ましい。具体的には、尿素、グアニジン、チオ尿素およびそれらの塩から選ばれる成分が挙げられる。なかでも、有害性がなく経済性が高いという観点から、尿素が好ましい。   The urea compound aqueous solution used here contains components that are effective for extracting and removing unreacted components such as polyfunctional amines, polyfunctional acid derivatives, and low molecular weight polymers thereof from the composite semipermeable membrane. That is, an organic compound (urea compound) having the structure represented by the general formula (1) is contained as a component that promotes extraction and removal. This urea compound preferably has a molecular weight of 59 to 1,000. Specific examples include components selected from urea, guanidine, thiourea, and salts thereof. Among these, urea is preferable from the viewpoint that it is not harmful and has high economic efficiency.

これらの尿素類化合物水溶液で未反応成分の抽出除去効果を十分得るためには、尿素類化合物の濃度が1〜5モル体積%であることが好ましい。尿素類化合物水溶液の濃度を5モル体積%としても未反応成分の抽出除去効果は飽和するので、これ以上高くする必要はない。   In order to sufficiently obtain the effect of extracting and removing unreacted components with these urea compound aqueous solutions, the concentration of the urea compound is preferably 1 to 5 mol%. Even if the concentration of the urea compound aqueous solution is set to 5 mol%, the effect of extracting and removing unreacted components is saturated, and it is not necessary to increase the concentration further.

複合半透膜と尿素類化合物水溶液との接触時間は、複合半透膜の種類や処理温度により異なるが、通常1時間〜10日の範囲が好ましく、特に好ましくは1日〜5日であると十分な未反応成分の抽出除去効果が得られる。   The contact time between the composite semipermeable membrane and the urea compound aqueous solution varies depending on the type and processing temperature of the composite semipermeable membrane, but is usually preferably in the range of 1 hour to 10 days, particularly preferably 1 day to 5 days. A sufficient effect of extracting and removing unreacted components can be obtained.

複合半透膜を尿素類化合物水溶液に接触させることで残存する未反応成分を抽出除去すると、分離機能層内の空隙が増えるため、透水性能が向上し、溶質除去率は低下する。そこで本発明の洗浄処理では、複合半透膜を尿素類化合物水溶液に接触させた後に、70℃以上の水で洗浄処理することにより、分離機能層を構成する分子鎖が、未反応成分の抽出除去された後の空隙を埋めるように変形させるため、溶質除去性能を洗浄前と同等以上にすることができる。   When the remaining unreacted components are extracted and removed by bringing the composite semipermeable membrane into contact with the urea compound aqueous solution, voids in the separation functional layer increase, so that the water permeability is improved and the solute removal rate is reduced. Therefore, in the cleaning treatment of the present invention, the molecular chain constituting the separation functional layer is extracted from unreacted components by bringing the composite semipermeable membrane into contact with the urea compound aqueous solution and then washing with water at 70 ° C. or higher. Since deformation is performed so as to fill the voids after the removal, the solute removal performance can be made equal to or higher than that before washing.

70℃以上の水で洗浄処理することによって未反応成分の抽出効率をさらに高めることができる。洗浄処理の温度は70〜100℃の範囲が好ましく、さらに80℃〜100℃の範囲内であると短時間で十分な洗浄効果が得られることから特に好ましい。   By washing with water at 70 ° C. or higher, the extraction efficiency of unreacted components can be further increased. The temperature of the cleaning treatment is preferably in the range of 70 to 100 ° C, and more preferably in the range of 80 to 100 ° C, since a sufficient cleaning effect can be obtained in a short time.

70℃以上の水で洗浄処理を行う時間は、複合半透膜の種類や処理温度により異なるが、通常10秒〜24時間の範囲が好ましく、さらに30秒〜3時間であると十分な洗浄効果が得られることから特に好ましい。   The time for washing with water of 70 ° C. or more varies depending on the type of composite semipermeable membrane and the treatment temperature, but is usually preferably in the range of 10 seconds to 24 hours, and more preferably 30 seconds to 3 hours. Is particularly preferred since

本発明の洗浄方法によって複合半透膜を洗浄処理することにより、半透膜中に残存する未反応の多官能アミンの量を洗浄処理前の40%以上除去することができ、かつ洗浄後の溶質除去性能を洗浄前と同等以上とすることができる。   By washing the composite semipermeable membrane by the washing method of the present invention, the amount of unreacted polyfunctional amine remaining in the semipermeable membrane can be removed by 40% or more before the washing treatment, and after washing. Solute removal performance can be equal to or better than that before washing.

本発明における複合半透膜は、多孔性支持膜上に分離機能層が形成されたものであるが、分離機能層は多孔性支持膜の少なくとも片面に設けられたものであることが好ましい。多孔性支持膜の両面に分離機能層を設けても良いが、通常、片面に1層の分離機能層があれば実用的には十分である。   The composite semipermeable membrane in the present invention has a separation functional layer formed on a porous support membrane, and the separation functional layer is preferably provided on at least one side of the porous support membrane. Although a separation functional layer may be provided on both sides of the porous support membrane, it is practically sufficient to have one separation functional layer on one side.

分離機能層を形成するために用いる多官能アミンとは、2つ以上の反応性アミノ基を有する多官能アミンのことであり、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼン、パラキシリレンジアミンなどを用いることができるが、反応効率の高い架橋反応を行うためにはメタフェニレンジアミンやパラフェニレンジアミンや1,3,5−トリアミノベンゼンが好ましい。また、多官能酸誘導体としては、トリメシン酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、トリメリット酸ハライド、ピロメリット酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ナフタレンジカルボン酸ハライド、ジフェニルジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンスルホン酸ハライド、クロロスルホニルイソフタル酸ハライドなどを用いることができるが、反応効率の高い架橋反応を行うためにイソフタル酸クロリド、テレフタル酸クロリド、トリメシン酸クロリド、またはこれらの混合物が好ましい。   The polyfunctional amine used to form the separation functional layer is a polyfunctional amine having two or more reactive amino groups, such as metaphenylenediamine, paraphenylenediamine, 1,3,5-triaminobenzene. Paraxylylenediamine and the like can be used, but metaphenylenediamine, paraphenylenediamine, and 1,3,5-triaminobenzene are preferable in order to perform a crosslinking reaction with high reaction efficiency. Polyfunctional acid derivatives include trimesic acid halide, benzophenone tetracarboxylic acid halide, trimellitic acid halide, pyromellitic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarboxylic acid halide, pyridinedicarboxylic acid Halide, benzenesulfonic acid halide, chlorosulfonylisophthalic acid halide, and the like can be used, but isophthalic acid chloride, terephthalic acid chloride, trimesic acid chloride, or a mixture thereof is preferable in order to perform a crosslinking reaction with high reaction efficiency.

ここで多孔性支持膜は、分離機能層を支持するための膜として複合半透膜に強度を与えるために配置されるものである。したがって、多数の孔を有する膜であって強度があれば特に限定されない。好ましくは、略均一な孔あるいは片面からもう一方の面まで徐々に孔径が大きくなる孔をもっていて、その孔の大きさはその片面の表面が100nm以下であるような構造の多孔質層が基材上に形成されたものが好ましい。さらに、その孔径は、1〜100nmの範囲内であるとより好ましい。孔径が1nmを下回ると、透過流束が低下する傾向にあり、100nmを超えると多孔性支持膜の強度が低下しやすい。   Here, the porous support membrane is disposed to give strength to the composite semipermeable membrane as a membrane for supporting the separation functional layer. Therefore, the film is not particularly limited as long as it is a film having a large number of holes and has strength. Preferably, the substrate has a substantially uniform hole or a porous layer having a structure in which the hole diameter gradually increases from one surface to the other surface, and the surface of one surface is 100 nm or less. Those formed above are preferred. Furthermore, the pore diameter is more preferably in the range of 1 to 100 nm. If the pore diameter is less than 1 nm, the permeation flux tends to decrease, and if it exceeds 100 nm, the strength of the porous support membrane tends to decrease.

また、多孔性支持膜の厚みは、1μm〜5mmの範囲内にあると好ましく、10〜100μmの範囲内にあるとより好ましい。厚みが1μmを下回ると多孔性支持膜の強度が低下しやすく、5mmを超えると取り扱いにくくなる。   The thickness of the porous support membrane is preferably in the range of 1 μm to 5 mm, and more preferably in the range of 10 to 100 μm. When the thickness is less than 1 μm, the strength of the porous support membrane tends to be lowered, and when it exceeds 5 mm, handling becomes difficult.

多孔性支持膜は、ポリエステル繊維やポリアミド繊維からなる不織布や平織物のような布帛を基材とし、この基材上に多孔質層が形成されたものである。この多孔質層に用いる樹脂素材としては特に限定されないが、たとえば、ポリスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして用いることができる。上記のうち、セルロース系ポリマーとしては、酢酸セルロース、硝酸セルロースなど、ビニル系ポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどを用いると好ましい。中でも、ポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーやコポリマーが好ましい。さらに、これらの素材の中でも、化学的、機械的、熱的に安定性が高く、成型が容易であるポリスルホンを用いることが特に好ましい。   The porous support membrane is made by using a fabric such as a nonwoven fabric or a plain fabric made of polyester fiber or polyamide fiber as a base material, and a porous layer is formed on the base material. The resin material used for the porous layer is not particularly limited. It can be used alone or blended. Among the above, it is preferable to use cellulose acetate, cellulose nitrate or the like as the cellulose polymer and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile or the like as the vinyl polymer. Among these, homopolymers and copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. Furthermore, among these materials, it is particularly preferable to use polysulfone which has high chemical, mechanical and thermal stability and is easy to mold.

このようにして得られた多孔性支持膜上に、多官能アミン化合物の水溶液、多官能酸誘導体の溶液を順に塗布してin−situ界面重縮合反応をさせて、実質的に分離性能を有するポリアミド分離機能層を形成させる。   On the porous support membrane thus obtained, an aqueous solution of a polyfunctional amine compound and a solution of a polyfunctional acid derivative are sequentially applied to cause an in-situ interfacial polycondensation reaction, thereby substantially having separation performance. A polyamide separation functional layer is formed.

多官能アミン化合物水溶液中の多官能アミン化合物の濃度は、0.5〜20重量%の範囲内にあることが好ましく、1〜15重量%の範囲内にあることがより好ましい。多官能アミン化合物濃度が0.5重量%を下回ると、純水透過係数が30×10−12/m・Pa・s以下の複合半透膜を作製することが困難となり、20重量%を超えると分離機能層の膜厚が大きくなり実用レベルの透過水量を得ることが困難となる。 The concentration of the polyfunctional amine compound in the polyfunctional amine compound aqueous solution is preferably in the range of 0.5 to 20% by weight, and more preferably in the range of 1 to 15% by weight. When the polyfunctional amine compound concentration is less than 0.5% by weight, it becomes difficult to produce a composite semipermeable membrane having a pure water permeability coefficient of 30 × 10 −12 m 3 / m 2 · Pa · s or less. If it exceeds 50%, the thickness of the separation functional layer becomes large, and it becomes difficult to obtain a permeated water amount at a practical level.

多官能酸誘導体を溶解する溶媒は、水と非混和性であり、かつ、多官能酸ハロゲン化物を溶解するとともに、微多孔性支持膜を破壊せず、界面重縮合により架橋ポリマーを形成し得るものであればよい。例えば、炭化水素化合物、シクロヘキサン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどが挙げられるが、反応速度、溶媒の揮発性から、好ましくは、n−ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどである。   The solvent that dissolves the polyfunctional acid derivative is immiscible with water, dissolves the polyfunctional acid halide, does not destroy the microporous support film, and can form a crosslinked polymer by interfacial polycondensation. Anything is acceptable. For example, hydrocarbon compounds, cyclohexane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like are mentioned. From the reaction rate and solvent volatility, n-hexane, heptane, octane, Nonane, decane, undecane, dodecane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like.

上記有機溶媒中の多官能酸誘導体の濃度は、0.04〜1.0重量%の範囲内であると好ましい。0.04重量%を下回ると、活性層である分離機能層の形成が不十分となりやすく、1.0重量%を超えると実用レベルの透過水量を得ることが困難となり、また、コスト高となる。   The concentration of the polyfunctional acid derivative in the organic solvent is preferably in the range of 0.04 to 1.0% by weight. If the amount is less than 0.04% by weight, the formation of the separation functional layer, which is an active layer, is likely to be insufficient. If the amount exceeds 1.0% by weight, it is difficult to obtain a practical level of permeated water, and the cost is increased. .

これら多官能アミン化合物、多官能酸誘導体およびその他の成分の比率は、上記範囲内の濃度でもって製造する複合半透膜の純水透過係数が所望水準となるように適宜調整すればよい。   The ratio of these polyfunctional amine compound, polyfunctional acid derivative, and other components may be adjusted as appropriate so that the pure water permeability coefficient of the composite semipermeable membrane produced with a concentration within the above range becomes a desired level.

以下実施例をもって本発明をさらに具体的に説明する。ただし、本発明はこれにより限定されるものではない。
以下の参考例、比較例、実施例における測定値は、次の方法により求めた。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited thereby.
The measured values in the following Reference Examples, Comparative Examples, and Examples were obtained by the following method.

(ホウ素除去率)
複合半透膜に、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%、ホウ素濃度約5.0ppm)を操作圧力5.5MPaで供給して処理を行ない、透過水の水質、供給水の水質を測定し、次の式からホウ素除去率を求めた。
ホウ素除去率(%)=100×{1−(透過水中のホウ素濃度/供給水中のホウ素濃度)}
(Boron removal rate)
The composite semipermeable membrane is treated by supplying seawater (TDS concentration: about 3.5%, boron concentration: about 5.0 ppm) adjusted to a temperature of 25 ° C. and a pH of 6.5 at an operating pressure of 5.5 MPa. The water quality and the quality of the feed water were measured, and the boron removal rate was calculated from the following equation.
Boron removal rate (%) = 100 × {1− (boron concentration in permeated water / boron concentration in feed water)}

(半透膜中のm−PDA含有量)
複合半透膜をエタノール溶液に浸漬し、一晩抽出した後、エタノール溶液のUV測定を行い、膜中アミン濃度を測定した。
(M-PDA content in semipermeable membrane)
The composite semipermeable membrane was immersed in an ethanol solution and extracted overnight, then UV measurement of the ethanol solution was performed, and the amine concentration in the membrane was measured.

(参考例1)
多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5デシテックスのポリエステルフィラメントと単糸繊度1.5デシテックスのポリエステルフィラメントとから構成される、通気度0.7cm/cm・秒、平均孔径7μm以下の湿式不織布であって、縦30cm、横20cmの大きさの物を、ガラス板上に固定した。その上に、ジメチルホルムアミド(DMF)溶媒のポリスルホン濃度15重量%の溶液(2.5ポアズ:20℃)を、総厚み210〜215μmになるようにキャストし、直ちに水に浸積してポリスルホンの多孔性支持膜を製造した。得られた多孔性支持膜をPS支持膜と記す。
(Reference Example 1)
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a porous support membrane, was produced by the following method. That is, it is a wet nonwoven fabric composed of a polyester filament having a single yarn fineness of 0.5 dtex and a polyester filament having a single yarn fineness of 1.5 dtex and having an air permeability of 0.7 cm 3 / cm 2 · sec and an average pore diameter of 7 μm or less. Then, an object having a size of 30 cm in length and 20 cm in width was fixed on a glass plate. Furthermore, a 15% by weight polysulfone concentration solution (2.5 poise: 20 ° C.) in dimethylformamide (DMF) solvent was cast to a total thickness of 210 to 215 μm, and immediately immersed in water to form a polysulfone solution. A porous support membrane was produced. The obtained porous support membrane is referred to as a PS support membrane.

このようにして得られたPS支持膜を、メタフェニレンジアミン(以下m−PDAという)3.4重量%水溶液中に2分間浸漬し、該PS支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(以下TMCという)0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合逆浸透膜とした。このようにして得られた複合半透膜の性能ならびに膜中アミン濃度を評価したところ、表1に示す値であった。 The PS support membrane thus obtained was immersed in a 3.4% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as m-PDA) for 2 minutes, and the PS support membrane was slowly pulled up in the vertical direction. After removing excess aqueous solution from the surface of the supporting membrane by blowing nitrogen, an n-decane solution containing 0.175% by weight of trimesic acid chloride (hereinafter referred to as TMC) was completely removed at a rate of 160 cm 3 / m 2. It applied so that it might get wet, and left still for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it washed with 90 degreeC hot water for 2 minutes, and was set as the composite reverse osmosis membrane. When the performance of the composite semipermeable membrane thus obtained and the amine concentration in the membrane were evaluated, the values shown in Table 1 were obtained.

(実施例1)
参考例で得られた複合半透膜を、4モル体積%の尿素水溶液に25℃で5日間浸漬した後、90℃の熱水で2分間洗浄した。得られた複合半透膜の性能ならびに膜中アミン濃度を評価したところ、表1に示す値であった。
Example 1
The composite semipermeable membrane obtained in the Reference Example was immersed in a 4 mol% aqueous urea solution at 25 ° C for 5 days, and then washed with hot water at 90 ° C for 2 minutes. When the performance of the obtained composite semipermeable membrane and the amine concentration in the membrane were evaluated, the values shown in Table 1 were obtained.

(比較例1)
参考例で得られた複合半透膜を、4モル体積%の尿素水溶液に25℃で5日間浸漬した後、複合半透膜の性能ならびに膜中アミン濃度を評価したところ、表1に示す値であった。
(Comparative Example 1)
The composite semipermeable membrane obtained in the reference example was immersed in a 4 mol% aqueous urea solution at 25 ° C. for 5 days, and then the performance of the composite semipermeable membrane and the amine concentration in the membrane were evaluated. Met.

(比較例2)
参考例で得られた複合半透膜を、再度90℃の熱水で2分間洗浄した。得られた複合半透膜の性能ならびに膜中アミン濃度を評価したところ、表1に示す値であった。
(Comparative Example 2)
The composite semipermeable membrane obtained in the reference example was again washed with hot water at 90 ° C. for 2 minutes. When the performance of the obtained composite semipermeable membrane and the amine concentration in the membrane were evaluated, the values shown in Table 1 were obtained.

Figure 2009078218
Figure 2009078218

この結果から、脱塩率、膜透過流束、ホウ素除去率を維持し、かつ膜中の残存アミンを十分に除去するためには、複合半透膜を尿素類化合物水溶液に接触させた後に熱水で洗浄処理することが、最も効果が高いことがわかる。   From this result, in order to maintain the desalination rate, membrane permeation flux, boron removal rate, and to sufficiently remove the residual amine in the membrane, the composite semipermeable membrane was brought into contact with an aqueous urea compound solution and then heated. It can be seen that washing with water is most effective.

Claims (3)

多官能アミンと多官能酸誘導体を界面重縮合させて架橋芳香族ポリアミドの分離機能層を多孔性支持膜上に形成させ、複合半透膜を製造する方法において、前記界面重縮合の後に、下記一般式(1)で示される構造を有する有機化合物を含む水溶液に接触させた後、70℃以上の水で洗浄処理を行うことを特徴とする複合半透膜の製造方法。
Figure 2009078218
(式(1)中、Xは酸素原子、硫黄原子、NH基のいずれかを表し、R〜Rは水素原子、炭化水素基のいずれかを表す。)
In the method for producing a composite semipermeable membrane by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid derivative to form a separation functional layer of a crosslinked aromatic polyamide on a porous support membrane, after the interfacial polycondensation, A method for producing a composite semipermeable membrane, comprising: contacting with an aqueous solution containing an organic compound having a structure represented by the general formula (1), followed by washing with water at 70 ° C. or higher.
Figure 2009078218
(In formula (1), X represents an oxygen atom, a sulfur atom or an NH group, and R 1 to R 4 represent a hydrogen atom or a hydrocarbon group.)
前記有機化合物の分子量が、59以上1000以下である請求項1に記載の複合半透膜の製造方法。 The method for producing a composite semipermeable membrane according to claim 1, wherein the organic compound has a molecular weight of 59 or more and 1000 or less. 前記有機化合物が、尿素、グアニジン、チオ尿素、及びそれらの塩から選ばれる少なくとも1種である請求項1または2に記載の複合半透膜の製造方法。 The method for producing a composite semipermeable membrane according to claim 1 or 2, wherein the organic compound is at least one selected from urea, guanidine, thiourea, and salts thereof.
JP2007248759A 2007-09-26 2007-09-26 Method of manufacturing composite semi-permeable membrane Pending JP2009078218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248759A JP2009078218A (en) 2007-09-26 2007-09-26 Method of manufacturing composite semi-permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248759A JP2009078218A (en) 2007-09-26 2007-09-26 Method of manufacturing composite semi-permeable membrane

Publications (1)

Publication Number Publication Date
JP2009078218A true JP2009078218A (en) 2009-04-16

Family

ID=40653378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248759A Pending JP2009078218A (en) 2007-09-26 2007-09-26 Method of manufacturing composite semi-permeable membrane

Country Status (1)

Country Link
JP (1) JP2009078218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056453A1 (en) * 2014-10-06 2016-04-14 栗田工業株式会社 Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane
JP2017148779A (en) * 2016-02-26 2017-08-31 栗田工業株式会社 Deterioration inhibitor of reverse osmosis membrane and water treatment method
WO2018158943A1 (en) * 2017-03-03 2018-09-07 栗田工業株式会社 Degradation inhibitor for reverse osmosis membrane and water treatment method
US11173455B2 (en) 2017-04-19 2021-11-16 Lg Chem, Ltd. Water treatment membrane and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119493A (en) * 1997-07-03 1999-01-26 Nitto Denko Corp Reverse osmotic membrane module and treatment of sea water
JP2003117361A (en) * 2001-10-17 2003-04-22 Toray Ind Inc Method for manufacturing semipermeable membrane
JP2006198461A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Compound reverse osmosis membrane, its manufacturing method and water-treating method using it
JP2009006315A (en) * 2007-05-30 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
JP2009056406A (en) * 2007-08-31 2009-03-19 Kurita Water Ind Ltd Method of improving rejection rate of permeable membrane, permeable membrane having improved rejection rate, and permeable membrane apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119493A (en) * 1997-07-03 1999-01-26 Nitto Denko Corp Reverse osmotic membrane module and treatment of sea water
JP2003117361A (en) * 2001-10-17 2003-04-22 Toray Ind Inc Method for manufacturing semipermeable membrane
JP2006198461A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Compound reverse osmosis membrane, its manufacturing method and water-treating method using it
JP2009006315A (en) * 2007-05-30 2009-01-15 Toray Ind Inc Method for producing composite semipermeable membrane
JP2009056406A (en) * 2007-08-31 2009-03-19 Kurita Water Ind Ltd Method of improving rejection rate of permeable membrane, permeable membrane having improved rejection rate, and permeable membrane apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056453A1 (en) * 2014-10-06 2016-04-14 栗田工業株式会社 Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane
JP2016073915A (en) * 2014-10-06 2016-05-12 栗田工業株式会社 Detergent, cleaning fluid and cleaning method of reverse osmosis membrane
CN106999860A (en) * 2014-10-06 2017-08-01 栗田工业株式会社 Remover, detergent remover and the method for cleaning of reverse osmosis membrane
US10443023B2 (en) 2014-10-06 2019-10-15 Kurita Water Industries Ltd. Alkaline cleaning liquid comprising urea and/or biuret, and cleaning method for reverse osmosis membrane
JP2017148779A (en) * 2016-02-26 2017-08-31 栗田工業株式会社 Deterioration inhibitor of reverse osmosis membrane and water treatment method
WO2018158943A1 (en) * 2017-03-03 2018-09-07 栗田工業株式会社 Degradation inhibitor for reverse osmosis membrane and water treatment method
US11173455B2 (en) 2017-04-19 2021-11-16 Lg Chem, Ltd. Water treatment membrane and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6402627B2 (en) Composite semipermeable membrane
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
KR102289642B1 (en) Composite semipermeable membrane
CN106457165B (en) Composite semipermeable membrane
JPWO2014133133A1 (en) Composite semipermeable membrane
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
JP2009030024A (en) Method for producing composite semipermeable membrane
JP5267273B2 (en) Manufacturing method of composite semipermeable membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP2002224546A (en) Composite semipermeable membrane for sewage disposal and its manufacturing method
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
JPH10165789A (en) Manufacture of dry composite reverse-osmosis membrane
CN108430612B (en) Composite semipermeable membrane
KR20120077997A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP2013223861A (en) Composite diaphragm
JP2008260009A (en) Production method of composite semi-permeable membrane
JP2008259983A (en) Manufacturing method of dry composite semi-permeable membrane
JP3975933B2 (en) Composite semipermeable membrane and sewage treatment method
JP2016123899A (en) Composite semipermeable membrane
KR101825632B1 (en) Preparation Method of High Flux Polyamide composite Membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507