JPS59112802A - Gas permselective composite membrane - Google Patents

Gas permselective composite membrane

Info

Publication number
JPS59112802A
JPS59112802A JP57222406A JP22240682A JPS59112802A JP S59112802 A JPS59112802 A JP S59112802A JP 57222406 A JP57222406 A JP 57222406A JP 22240682 A JP22240682 A JP 22240682A JP S59112802 A JPS59112802 A JP S59112802A
Authority
JP
Japan
Prior art keywords
gas
polymer
layer
membrane
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57222406A
Other languages
Japanese (ja)
Other versions
JPS6256775B2 (en
Inventor
Yukihiro Saito
斉藤 幸廣
Midori Kawahito
川人 美登利
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57222406A priority Critical patent/JPS59112802A/en
Publication of JPS59112802A publication Critical patent/JPS59112802A/en
Publication of JPS6256775B2 publication Critical patent/JPS6256775B2/ja
Priority to JP19966588A priority patent/JPH0194917A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite membrane excellent in gas separability and gas permeability, by providing a silicone high-molecular layer excellent in film forming property between a layer comprising a high-molecular material excellent in gas separability and a support. CONSTITUTION:This composite membrane is obtained by forming a membrane 4 comprising a silicone high-molecular material having excellent film forming property and high gas permeability and a membrane 1 comprising a high-molecular material B of which the glass transition temp. Tg is an atmospheric temp. or less and which is relatively good in gas separability but inferior to gas permeability to the surface of a porous support 2. As the high-molecular material B, polyolefin, polybuten, polypentene, polymethylpentene or polyhexane are represented. Because this membrane has the layer 4 comprising the material good in gas permeability as a first layer, this layer 4 prevents the penetration of the high-molecular B-layer 1 into the support 3 and, therefore, the high- molecular B-layer 1 can be constituted extremely thin and gas permeability can be enhanced while gas separability is kept high.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体分離性が良く、かつ気体透過性も優れる選
択気体透過性複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a selective gas permeable composite membrane that has good gas separation properties and excellent gas permeability.

従来例の構成とその問題点 近年、膜による分離技術の進歩は目覚しく、いくつかの
分野、例えば海水の淡水化、工場廃液中の有用物の回収
等の分野ではすでに工業的規模で実用化されている。
Structure of conventional examples and their problems In recent years, membrane separation technology has made remarkable progress, and it has already been put into practical use on an industrial scale in some fields, such as seawater desalination and recovery of useful substances from factory waste fluid. ing.

一方、有機高分子膜を用いた混合ガスの分離は膜の選択
性が小さく、一段の分離では高純度の気体を選択的に得
るのがむずかしいこと、また透過量が小さいため大量の
ガスを生産できないこと等の理由から、膜を用いたガス
分離の実用化例は少ない。
On the other hand, in the separation of mixed gases using organic polymer membranes, the selectivity of the membrane is low, and it is difficult to selectively obtain high-purity gas in one-step separation, and the amount of permeation is small, so a large amount of gas is produced. There are few examples of practical use of gas separation using membranes for reasons such as the inability to do so.

しかし、ガスの最終用途として必ずしも高純度のガスを
必要としない分野も多々ある。例えば酸素の場合、高炉
送風用、燃料補助用、医療用における呼吸用等では高純
度酸素を必要としない。
However, there are many fields where high purity gas is not necessarily required for the end use of gas. For example, in the case of oxygen, high purity oxygen is not required for blast furnace ventilation, fuel supplementation, medical breathing, etc.

むしろ高純度では燃焼温度があがりすぎるため炉の損傷
や火災の危険、あるいは医療用では未熟児の失明等がか
えって不都合な場合も多い。そのためこのような分野で
は膜による気体分離法が有利となる。
On the contrary, when the purity is high, the combustion temperature rises too high, causing damage to the furnace and the risk of fire, and when used for medical purposes, it often causes inconveniences such as blindness in premature infants. Therefore, gas separation methods using membranes are advantageous in such fields.

膜による空気からの酸素の分離では、一段の分離で高純
度の酸素を有する空気を得ることは困難であるが、中程
度の酸素を富化した空気は比較的容易に得られる。すな
わち膜分離法は酸素濃度が約25〜60%の酸素富化空
気を空気より直接製造することができ、混合器やボンベ
の取扱いもなく、操作上簡単でありまた経済的にも有利
な方法である。
In the separation of oxygen from air by membranes, it is difficult to obtain air with high purity of oxygen in one stage of separation, but air with moderate oxygen enrichment can be obtained relatively easily. In other words, the membrane separation method can directly produce oxygen-enriched air with an oxygen concentration of about 25 to 60% from air, and there is no need to handle mixers or cylinders, making it easy to operate and economically advantageous. It is.

現在まで高分子膜を用いての混合ガスの分離に関して既
にいくつかの文献、特許出願などで指摘されているごと
く、この場合は高分子膜のガスに対する透過係数の大小
、ならびに薄膜としての機械的強度、および薄膜化技術
が重要な問題となる。
As has already been pointed out in several literatures and patent applications regarding the separation of mixed gases using polymer membranes, in this case, the permeability coefficient of the polymer membrane for gases, as well as the mechanical Strength and film thinning technology are important issues.

現在報告されている高分子材料で比較的気体透過能のす
ぐれている物質は天然ゴム、ポリブタジェンのごトキ合
成ゴム、ポリオレフィン、更にすぐ五たものではシリコ
ーンゴムが知られている。
Among the currently reported polymer materials, substances with relatively excellent gas permeability are natural rubber, synthetic rubber such as polybutadiene, polyolefin, and among the five others, silicone rubber is known.

シリコーンゴムはほとんど全ての気体に対して他のいか
なる高分子材料よりもすぐれる。しかし各気体の分離比
が小さくなり、空気の酸素富化に使用した場合23%か
ら3o%までの低濃度酸素富化空気しか得られない。従
がって30係以上の酸素富化空気を得ようとする場合さ
らに分離比の大きな材料が、必要となってくる。その1
つとして特開昭56−92926号公報に示されている
ポリオレフィンあるいはジエンポリマーを主体とす、、
る気体分離膜がある。この公報に示されている材料の1
つであるポリ−4−メチルペンテン−1は酸素透過係数
が約2.5x10  cc−cm///c4−5ec−
cmHqでシリコーンゴムの10分の1以下になってし
まうが、酸素と窒素の分離比が高く約4.0の値を示す
。従がって、この材料を用いると約40%の酸素富化空
気を容易に得ることができる。しかし透過係数が小さい
ためシリコーンゴムと同じ膜厚とした場合約10分の1
以下の酸素量しか得られないことになる。この点からこ
の様な材料を用いる場合薄膜化技術が非常に重要になっ
てくる。
Silicone rubber is better against almost all gases than any other polymeric material. However, the separation ratio of each gas becomes small, and when used to enrich air with oxygen, only air enriched with oxygen at a low concentration of 23% to 30% can be obtained. Therefore, in order to obtain oxygen-enriched air with a ratio of 30 or more, a material with a higher separation ratio is required. Part 1
Mainly based on polyolefin or diene polymer as shown in Japanese Patent Application Laid-Open No. 56-92926,
There are gas separation membranes. 1 of the materials shown in this publication
Poly-4-methylpentene-1 has an oxygen permeability coefficient of approximately 2.5x10 cc-cm///c4-5ec-
Although it is less than one-tenth of silicone rubber in terms of cmHq, it has a high oxygen and nitrogen separation ratio of about 4.0. Therefore, approximately 40% oxygen enriched air can easily be obtained using this material. However, the permeability coefficient is small, so if the film thickness is the same as that of silicone rubber, it will be about 1/10th of that of silicone rubber.
This means that only the following amount of oxygen can be obtained. From this point of view, thin film technology becomes extremely important when using such materials.

そこで我々はこの材料に関して薄膜化の実験を行ない気
体透過膜への応用を検討した。その結果ポリ−4−メチ
ルペンテン−1は溶剤への溶解性が悪くきわめて成膜性
が悪いことがわかった。またポリブタジェンの場合は非
常に成膜性が良好であることがわかった。しかし両者の
場合その気体の分離性は優れるが非常に透過性が悪くそ
れぞれの酸素透通流量は多孔質ポリプロピレンを支持体
として製膜した場合、前者が8.68x10−5cc/
c4・sec−cmHq で後者は6.20x10−5
cc /に4 ・sec −cmHqであった。そして
気体分離性は酸素と窒素でそれぞれ約3.7と約3.0
であった。この透過流量の値から有効膜厚を計算すると
両者とも約0.3μmとなり比較的厚くなってし甘う。
Therefore, we conducted experiments on thinning this material and considered its application to gas permeable membranes. As a result, it was found that poly-4-methylpentene-1 has poor solubility in solvents and extremely poor film-forming properties. It was also found that polybutadiene has very good film forming properties. However, in both cases, the gas separation property is excellent, but the permeability is very poor, and the oxygen permeation rate for each is 8.68 x 10-5 cc/
c4・sec-cmHq and the latter is 6.20x10-5
It was 4·sec-cmHq in cc/. The gas separation properties are approximately 3.7 and 3.0 for oxygen and nitrogen, respectively.
Met. When the effective film thicknesses are calculated from the values of the permeation flow rates, they are both about 0.3 μm, which is relatively thick.

この様に膜厚が厚くなる原因としては第1図に示すよう
に膜材料1が支持体2の孔3内へ含浸する現象が生じて
いるものと思われる。つマシガラス転移温度Tqが常温
以下にあるような高分子では常温で膜が屈曲性に富むた
め膜上面より圧力が加わると第1図に示すように支持体
孔3内への含浸が生じ結果的に膜厚が厚くなってしまう
ものと思われる。
The reason for the increase in film thickness is thought to be the phenomenon in which the membrane material 1 impregnates into the pores 3 of the support 2, as shown in FIG. For polymers whose glass transition temperature Tq is below room temperature, the membrane is highly flexible at room temperature, so when pressure is applied from the top of the membrane, impregnation into the support pores 3 occurs as shown in Figure 1. It is thought that the film thickness will become thicker.

すなわち、Tqが常温以下である高分子は常温において
屈曲性に富むため、仮にラングミュア法、により水面上
で高分子薄膜が形成できても、多孔質支持体2上に引き
上げると膜材料1は支持体孔3中へ入り込んでしまい、
高分子は第1図に示すような状態になる。従がって膜厚
が厚くなり気体透過流量は非常に小さくなってし甘う。
In other words, since polymers with Tq below room temperature have high flexibility at room temperature, even if a thin polymer film can be formed on the water surface using the Langmuir method, the film material 1 will not be supported when pulled up onto the porous support 2. It entered body hole 3,
The polymer is in the state shown in FIG. Therefore, the film thickness becomes thick and the gas permeation flow rate becomes very small.

発明の目的 本発明はこのような欠点を克服し、気体透過性に優れ、
かつ分離性も良い選択気体透過性膜を得ることを目的と
する。
Purpose of the Invention The present invention overcomes these drawbacks, has excellent gas permeability,
The purpose of the present invention is to obtain a selective gas permeable membrane that also has good separation properties.

発明の構成 本発明はT(Jが常温以下の高分子材料″の層と支持体
との間にポリオルガノシロキサンを主成分とする成膜性
のすぐれた高気体透過性高分子層を挿入して複合膜化し
た選択気体透過性複合膜である。
Structure of the Invention The present invention is characterized in that a highly gas permeable polymer layer containing polyorganosiloxane as a main component and having excellent film-forming properties is inserted between a layer of T (a polymer material where J is below room temperature) and a support. This is a selective gas-permeable composite membrane made into a composite membrane.

実施例の説明 以下本発明を実施例について図面とともに詳細に説明す
る。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments and drawings.

第2図は本発明による選択気体透過性複合膜の実施例を
示す。図において、1はTqが常温以下で、気体分離性
は比較的よいが、気体透過性の悪い高分子材料Bより成
る薄膜である。高分子材料としては、ポリオレフィンま
たはポリブテン、ポリヘンテン、ホリメチルペンテン、
ポリヘキセン。
FIG. 2 shows an embodiment of a selective gas permeable composite membrane according to the present invention. In the figure, reference numeral 1 indicates a thin film made of polymeric material B having a Tq below room temperature and relatively good gas separation but poor gas permeability. Polymer materials include polyolefin or polybutene, polyhentene, polymethylpentene,
Polyhexene.

ポリメチルヘキサン、ポリブタジェン、ポリインプレン
から成る群よち選はれたいずれか1種のジエンポリマー
が使用される。2は多孔質支持体で、多孔質ポリプロピ
レンなどが使用される。3は多孔質支持体2の孔、4は
成膜性に優れ、かつ気体透過性の高い高分子Aの薄膜で
ある。高分子Aとしてはポリオルガノシロキサンを主成
分とするシリコーン系高分子が好適で、たとえばポリジ
メチルシロキサンあるいはシリコーン共重合体が好適で
ある。高分子Aと高分子Bとから成る複合膜は気体透過
性に優れる高分子A層4を支持体2側に配することによ
り高気体透過性で、かつ気淋分離性の良い気体透過複合
膜を与える。つまり気体透過性の良い材料の層4を第1
層としているだめ、この層4が高分子3層1の支持体孔
3への侵入を防止するので、高分子3層1は非常に薄く
構成する−ことができる。
One diene polymer selected from the group consisting of polymethylhexane, polybutadiene, and polyimprene is used. 2 is a porous support, and porous polypropylene or the like is used. 3 is the pore of the porous support 2, and 4 is a thin film of polymer A which has excellent film formability and high gas permeability. As the polymer A, a silicone polymer containing polyorganosiloxane as a main component is preferable, such as polydimethylsiloxane or a silicone copolymer. The composite membrane composed of polymer A and polymer B has high gas permeability and good gas separation property by arranging the polymer A layer 4, which has excellent gas permeability, on the support 2 side. give. In other words, the layer 4 of material with good gas permeability is the first layer.
Since this layer 4 prevents the polymer 3 layer 1 from penetrating into the support pores 3, the polymer 3 layer 1 can be constructed very thinly.

そして第1層4は主にシリコーン系高分子で構成される
ため非常に気体透過性に優れ、複合化した時の複合膜の
特性はほとんど第2層1の特性となる。従がって高分子
Bを単独使用した場合に比較して、気体分離性は高いま
ま変化はないが気体透過性が4〜10倍すぐれる選択気
体透過性複合膜を与える。
Since the first layer 4 is mainly composed of a silicone polymer, it has excellent gas permeability, and the properties of the composite membrane when composited are almost the same as those of the second layer 1. Therefore, compared to the case where polymer B is used alone, a selective gas permeable composite membrane is obtained which has gas permeability 4 to 10 times better, although the gas separation property remains high.

以下具体的な実施例について説明する。Specific examples will be described below.

〈実施例1〉 高分子Aとして特開昭54−101879号公報に示さ
れるポリヒドロキシスチレン(PH3)−ポリジメチル
シロキサン(PDMS)共重合体を用い、高分子Bとし
てポリブタジェン(日本合成ゴム(株)RB−810)
を用い、それぞれ2〜4重量係ベンゼン溶液を調整後ラ
ングミュア法により水面上に各高分子膜を展開した。支
持体は多孔質ポリプロピレン(ポリプラスチック社製ジ
ュラガード2400)を使用した。それぞれの高分子膜
をA、  Bの順で支持体上にすくい上げて複合膜を作
成した。この複合膜の気体透過特性を第3図aに示す。
<Example 1> Polyhydroxystyrene (PH3)-polydimethylsiloxane (PDMS) copolymer shown in JP-A-54-101879 was used as polymer A, and polybutadiene (Japan Synthetic Rubber Co., Ltd.) was used as polymer B. )RB-810)
After preparing a benzene solution with a weight ratio of 2 to 4, each polymer membrane was spread on the water surface using the Langmuir method. The support used was porous polypropylene (Duraguard 2400 manufactured by Polyplastics). Each polymer membrane was scooped up onto a support in the order of A and B to create a composite membrane. The gas permeation characteristics of this composite membrane are shown in Figure 3a.

第3図aに示すようにこの複合膜の気体透過特性は非常
にすぐれ、酸素透過流量が2×10 c cA4 m 
sec −cmHg  で酸素と窒素の分離比は約3.
○であった。
As shown in Figure 3a, the gas permeation properties of this composite membrane are very good, and the oxygen permeation flow rate is 2×10 c cA4 m
The separation ratio of oxygen and nitrogen at sec -cmHg is approximately 3.
It was ○.

第3図すは高分子Aを使用せず高分子Bとしてブタジェ
ン(日本合成ゴム(株)RB−81o)のみを実施例1
と同様の方法で支持体にすくい上げたときの特性であシ
、従来例のものである。同図かられかるように、ポリブ
タジェンだけの場合は酸素透過量が非常に小さく 2 
、5X10−4ccA4−豊・C1nHq  である。
Figure 3 shows Example 1 using only butadiene (RB-81o, Japan Synthetic Rubber Co., Ltd.) as polymer B without using polymer A.
The characteristics when scooped onto a support in the same manner as above are those of the conventional example. As can be seen from the figure, in the case of only polybutadiene, the amount of oxygen permeation is very small.
, 5X10-4ccA4-Yutaka C1nHq.

しだがって実施例1に示した本発明による複合膜はポリ
ブタジェンだけの場合に比して酸素透過量が約8倍に上
昇する。
Therefore, the composite membrane according to the present invention shown in Example 1 has an oxygen permeation rate that is approximately 8 times higher than that of the membrane made of only polybutadiene.

〈実施例2〉 高分子Aとしてポリジメチルシロキサン(PDMS)(
平均分子量約200,000)を使用し、その他はすべ
て実施例1と同一にして複合膜を作成した。
<Example 2> Polydimethylsiloxane (PDMS) (
A composite membrane was prepared using a polymer having an average molecular weight of about 200,000, and using the same method as in Example 1 in all other respects.

得られた複合膜は第4図に示すようにPDMS膜4が支
持体孔3内入り込み膜厚が厚くなる。これはPDMS自
身常温で非常に屈曲性に富むからである。しかし、PD
MSは気体透過性が優れているので、PDMSの膜厚が
ある程度厚くても酸素透過流量は十分得られ、第3図C
に示すようにポリブタジェンだけの場合に比して約3倍
の透過流量が得られた。
As shown in FIG. 4, the resulting composite membrane has a thick PDMS membrane 4 that penetrates into the support pores 3. This is because PDMS itself is extremely flexible at room temperature. However, P.D.
Since MS has excellent gas permeability, a sufficient oxygen permeation flow rate can be obtained even if the PDMS film is thick to some extent, as shown in Figure 3C.
As shown in Figure 3, the permeation flow rate was approximately three times that of the case using only polybutadiene.

以上の実施では、高分子Bとしてポリブタジェンのみを
示したが、前述したその他の高分子を利用した場合も全
く同様である。
In the above implementation, only polybutadiene was shown as the polymer B, but the same applies if the other polymers mentioned above are used.

以上のような構成の複合膜は、燃焼機器、医療用、内燃
機関、廃棄物処理等に利用できる。
The composite membrane having the above structure can be used for combustion equipment, medical use, internal combustion engines, waste treatment, etc.

発明の効果 以上のように本発明はTqが常温以下にある高分子Bと
シリコーン系高分子Aとを複合化した選択気体透過性複
合膜であり、高分子Bだけの膜特性に比較して気体分離
性は高いま青変化せず4〜10倍の気体透過性をもつ選
択気体透過性複合膜を得ることができる。
Effects of the Invention As described above, the present invention is a selective gas permeable composite membrane that combines polymer B with Tq below room temperature and silicone polymer A. It is possible to obtain a selective gas permeable composite membrane having a high gas separation property and a gas permeability 4 to 10 times higher without causing blue change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の選択気体透過性膜の構造を示す断面図、
第2図は本発明による選択気体透過性複合膜の実施例を
示す断面図、第3図は従来例および本発明による選択気
体透過性膜の酸素窒素分離比−酸素透過流量特性図、第
4図は本発明による選択気体透過性複合膜の他の実施例
を示す断面図である。 1・・・・・・Tqが常温以下の高分子膜、2・・・・
・・支持体、3・・・・・・支持体孔、4・・・・・・
シリコーン系高分子膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 / 第2図 !
Figure 1 is a cross-sectional view showing the structure of a conventional selective gas permeable membrane.
FIG. 2 is a sectional view showing an embodiment of the selective gas permeable composite membrane according to the present invention, FIG. 3 is a diagram showing the oxygen nitrogen separation ratio-oxygen permeation flow rate characteristic of the conventional example and the selective gas permeable membrane according to the present invention, and FIG. The figure is a sectional view showing another embodiment of the selective gas permeable composite membrane according to the present invention. 1...Polymer membrane with Tq below room temperature, 2...
...Support, 3...Support hole, 4...
Silicone polymer membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/ Figure 2!

Claims (4)

【特許請求の範囲】[Claims] (1)ポリオルガノシロキサンを主成分とするシリコー
ン系高分子Aとガラス転移温度が常温以下である高分子
Bの2層から成る膜を多孔質支持体に支持させたことを
特徴とする選択気体透過性複合膜。
(1) A selective gas characterized by having a porous support support a membrane consisting of two layers: a silicone polymer A whose main component is polyorganosiloxane and a polymer B whose glass transition temperature is below room temperature. Permeable composite membrane.
(2)  シリコーン系高分子Aがポリジメチルシロキ
サンである特許請求の範囲第1項記載の選択気体透過性
複合膜。
(2) The selective gas permeable composite membrane according to claim 1, wherein the silicone polymer A is polydimethylsiloxane.
(3)  シリコーン系高分子Aがシリコーン共重合体
である特許請求の範囲第1項記載の選択気体透過性複合
膜。
(3) The selective gas permeable composite membrane according to claim 1, wherein the silicone polymer A is a silicone copolymer.
(4)  高分子Bがポリオレフィンまだはポリブテン
。 ポリペンテン、ポリメチルペンテン、ポリヘキセン、ポ
リメチルヘキセン、ポリブタジェン、およびポリインプ
レンから成る群より選ばれた少くと°も1種のジエンポ
リマーである特許請求の範囲第1項記載の選択気体透過
性複合膜。
(4) Polymer B is polyolefin and polybutene. The selective gas permeable composite according to claim 1, which is at least one diene polymer selected from the group consisting of polypentene, polymethylpentene, polyhexene, polymethylhexene, polybutadiene, and polyimprene. film.
JP57222406A 1982-12-17 1982-12-17 Gas permselective composite membrane Granted JPS59112802A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57222406A JPS59112802A (en) 1982-12-17 1982-12-17 Gas permselective composite membrane
JP19966588A JPH0194917A (en) 1982-12-17 1988-08-10 Permselective composite membrane for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222406A JPS59112802A (en) 1982-12-17 1982-12-17 Gas permselective composite membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19966588A Division JPH0194917A (en) 1982-12-17 1988-08-10 Permselective composite membrane for gas

Publications (2)

Publication Number Publication Date
JPS59112802A true JPS59112802A (en) 1984-06-29
JPS6256775B2 JPS6256775B2 (en) 1987-11-27

Family

ID=16781874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222406A Granted JPS59112802A (en) 1982-12-17 1982-12-17 Gas permselective composite membrane

Country Status (1)

Country Link
JP (1) JPS59112802A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006805A1 (en) * 1988-12-16 1990-06-28 The British Petroleum Company Plc Permeation membrane and process for making it
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
US4990165A (en) * 1987-07-31 1991-02-05 Union Carbide Industrial Gases Technology Corporation Permeable membranes for enhanced gas separation
US6059862A (en) * 1995-12-28 2000-05-09 Mizobe; Kunitaka Separation module provided with antistatic device
JP2008178863A (en) * 2006-12-28 2008-08-07 Shin Etsu Polymer Co Ltd Manufacturing method of selectively permeable membrane structure, selectively permeable membrane structure and air conditioning system
US8394181B2 (en) 2006-12-28 2013-03-12 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220152528A (en) 2020-03-13 2022-11-16 도오레 화인케미칼 가부시키가이샤 Methods of making silicone polymers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950314A (en) * 1986-08-14 1990-08-21 Toray Industries Inc. Gas separation membrane
US4990165A (en) * 1987-07-31 1991-02-05 Union Carbide Industrial Gases Technology Corporation Permeable membranes for enhanced gas separation
WO1990006805A1 (en) * 1988-12-16 1990-06-28 The British Petroleum Company Plc Permeation membrane and process for making it
US6059862A (en) * 1995-12-28 2000-05-09 Mizobe; Kunitaka Separation module provided with antistatic device
JP2008178863A (en) * 2006-12-28 2008-08-07 Shin Etsu Polymer Co Ltd Manufacturing method of selectively permeable membrane structure, selectively permeable membrane structure and air conditioning system
US8394181B2 (en) 2006-12-28 2013-03-12 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system

Also Published As

Publication number Publication date
JPS6256775B2 (en) 1987-11-27

Similar Documents

Publication Publication Date Title
JPS60161703A (en) Gas permselective composite membrane
US4631075A (en) Composite membrane for gas separation
JPH0457372B2 (en)
JPS59112802A (en) Gas permselective composite membrane
JPS58223411A (en) Composite film for selective permeation of gas
JPH0224574B2 (en)
JPH0413011B2 (en)
JPS62136212A (en) Preparation of permselective composite membrane
JPH02139023A (en) Selectively gas permeable multilayer membrane
JPH0194917A (en) Permselective composite membrane for gas
JPH0155658B2 (en)
JPS62136224A (en) Composite membrane for separating gas
JPS6182823A (en) Gas-permeable composite membrane
JPS63278525A (en) Production of vapor-liquid separation membrane
JPH0380925A (en) Gas permselective membrane
JPS60114324A (en) Gas permeable compound membrane
JPS61120617A (en) Composite membrane for separating gas
JPS61291018A (en) Gas permeable laminated body
JPS5959214A (en) Gas separating composite membrane
JP3295144B2 (en) Gas separation composite membrane
JP3299298B2 (en) Gas selective permeable composite membrane
JPH0421528B2 (en)
JPS63182017A (en) Composite membrane for separating gas
JPH0761426B2 (en) Selective gas permeable composite membrane
JPS61278329A (en) Composite membrane for gas separation