JPS59112802A - Gas permselective composite membrane - Google Patents
Gas permselective composite membraneInfo
- Publication number
- JPS59112802A JPS59112802A JP57222406A JP22240682A JPS59112802A JP S59112802 A JPS59112802 A JP S59112802A JP 57222406 A JP57222406 A JP 57222406A JP 22240682 A JP22240682 A JP 22240682A JP S59112802 A JPS59112802 A JP S59112802A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- polymer
- layer
- membrane
- composite membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- -1 polypentene Polymers 0.000 claims abstract description 7
- 229920000098 polyolefin Polymers 0.000 claims abstract description 5
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 4
- 230000009477 glass transition Effects 0.000 claims abstract description 3
- 229920001083 polybutene Polymers 0.000 claims abstract description 3
- 229920000306 polymethylpentene Polymers 0.000 claims abstract description 3
- 239000011116 polymethylpentene Substances 0.000 claims abstract description 3
- 229920000642 polymer Polymers 0.000 claims description 25
- 239000005062 Polybutadiene Substances 0.000 claims description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 9
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 9
- 229920002857 polybutadiene Polymers 0.000 claims description 9
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 7
- 150000001993 dienes Chemical class 0.000 claims description 3
- 230000035699 permeability Effects 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 15
- 239000002052 molecular layer Substances 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 46
- 238000000926 separation method Methods 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 239000010408 film Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920005597 polymer membrane Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
- B01D71/701—Polydimethylsiloxane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は気体分離性が良く、かつ気体透過性も優れる選
択気体透過性複合膜に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a selective gas permeable composite membrane that has good gas separation properties and excellent gas permeability.
従来例の構成とその問題点
近年、膜による分離技術の進歩は目覚しく、いくつかの
分野、例えば海水の淡水化、工場廃液中の有用物の回収
等の分野ではすでに工業的規模で実用化されている。Structure of conventional examples and their problems In recent years, membrane separation technology has made remarkable progress, and it has already been put into practical use on an industrial scale in some fields, such as seawater desalination and recovery of useful substances from factory waste fluid. ing.
一方、有機高分子膜を用いた混合ガスの分離は膜の選択
性が小さく、一段の分離では高純度の気体を選択的に得
るのがむずかしいこと、また透過量が小さいため大量の
ガスを生産できないこと等の理由から、膜を用いたガス
分離の実用化例は少ない。On the other hand, in the separation of mixed gases using organic polymer membranes, the selectivity of the membrane is low, and it is difficult to selectively obtain high-purity gas in one-step separation, and the amount of permeation is small, so a large amount of gas is produced. There are few examples of practical use of gas separation using membranes for reasons such as the inability to do so.
しかし、ガスの最終用途として必ずしも高純度のガスを
必要としない分野も多々ある。例えば酸素の場合、高炉
送風用、燃料補助用、医療用における呼吸用等では高純
度酸素を必要としない。However, there are many fields where high purity gas is not necessarily required for the end use of gas. For example, in the case of oxygen, high purity oxygen is not required for blast furnace ventilation, fuel supplementation, medical breathing, etc.
むしろ高純度では燃焼温度があがりすぎるため炉の損傷
や火災の危険、あるいは医療用では未熟児の失明等がか
えって不都合な場合も多い。そのためこのような分野で
は膜による気体分離法が有利となる。On the contrary, when the purity is high, the combustion temperature rises too high, causing damage to the furnace and the risk of fire, and when used for medical purposes, it often causes inconveniences such as blindness in premature infants. Therefore, gas separation methods using membranes are advantageous in such fields.
膜による空気からの酸素の分離では、一段の分離で高純
度の酸素を有する空気を得ることは困難であるが、中程
度の酸素を富化した空気は比較的容易に得られる。すな
わち膜分離法は酸素濃度が約25〜60%の酸素富化空
気を空気より直接製造することができ、混合器やボンベ
の取扱いもなく、操作上簡単でありまた経済的にも有利
な方法である。In the separation of oxygen from air by membranes, it is difficult to obtain air with high purity of oxygen in one stage of separation, but air with moderate oxygen enrichment can be obtained relatively easily. In other words, the membrane separation method can directly produce oxygen-enriched air with an oxygen concentration of about 25 to 60% from air, and there is no need to handle mixers or cylinders, making it easy to operate and economically advantageous. It is.
現在まで高分子膜を用いての混合ガスの分離に関して既
にいくつかの文献、特許出願などで指摘されているごと
く、この場合は高分子膜のガスに対する透過係数の大小
、ならびに薄膜としての機械的強度、および薄膜化技術
が重要な問題となる。As has already been pointed out in several literatures and patent applications regarding the separation of mixed gases using polymer membranes, in this case, the permeability coefficient of the polymer membrane for gases, as well as the mechanical Strength and film thinning technology are important issues.
現在報告されている高分子材料で比較的気体透過能のす
ぐれている物質は天然ゴム、ポリブタジェンのごトキ合
成ゴム、ポリオレフィン、更にすぐ五たものではシリコ
ーンゴムが知られている。Among the currently reported polymer materials, substances with relatively excellent gas permeability are natural rubber, synthetic rubber such as polybutadiene, polyolefin, and among the five others, silicone rubber is known.
シリコーンゴムはほとんど全ての気体に対して他のいか
なる高分子材料よりもすぐれる。しかし各気体の分離比
が小さくなり、空気の酸素富化に使用した場合23%か
ら3o%までの低濃度酸素富化空気しか得られない。従
がって30係以上の酸素富化空気を得ようとする場合さ
らに分離比の大きな材料が、必要となってくる。その1
つとして特開昭56−92926号公報に示されている
ポリオレフィンあるいはジエンポリマーを主体とす、、
る気体分離膜がある。この公報に示されている材料の1
つであるポリ−4−メチルペンテン−1は酸素透過係数
が約2.5x10 cc−cm///c4−5ec−
cmHqでシリコーンゴムの10分の1以下になってし
まうが、酸素と窒素の分離比が高く約4.0の値を示す
。従がって、この材料を用いると約40%の酸素富化空
気を容易に得ることができる。しかし透過係数が小さい
ためシリコーンゴムと同じ膜厚とした場合約10分の1
以下の酸素量しか得られないことになる。この点からこ
の様な材料を用いる場合薄膜化技術が非常に重要になっ
てくる。Silicone rubber is better against almost all gases than any other polymeric material. However, the separation ratio of each gas becomes small, and when used to enrich air with oxygen, only air enriched with oxygen at a low concentration of 23% to 30% can be obtained. Therefore, in order to obtain oxygen-enriched air with a ratio of 30 or more, a material with a higher separation ratio is required. Part 1
Mainly based on polyolefin or diene polymer as shown in Japanese Patent Application Laid-Open No. 56-92926,
There are gas separation membranes. 1 of the materials shown in this publication
Poly-4-methylpentene-1 has an oxygen permeability coefficient of approximately 2.5x10 cc-cm///c4-5ec-
Although it is less than one-tenth of silicone rubber in terms of cmHq, it has a high oxygen and nitrogen separation ratio of about 4.0. Therefore, approximately 40% oxygen enriched air can easily be obtained using this material. However, the permeability coefficient is small, so if the film thickness is the same as that of silicone rubber, it will be about 1/10th of that of silicone rubber.
This means that only the following amount of oxygen can be obtained. From this point of view, thin film technology becomes extremely important when using such materials.
そこで我々はこの材料に関して薄膜化の実験を行ない気
体透過膜への応用を検討した。その結果ポリ−4−メチ
ルペンテン−1は溶剤への溶解性が悪くきわめて成膜性
が悪いことがわかった。またポリブタジェンの場合は非
常に成膜性が良好であることがわかった。しかし両者の
場合その気体の分離性は優れるが非常に透過性が悪くそ
れぞれの酸素透通流量は多孔質ポリプロピレンを支持体
として製膜した場合、前者が8.68x10−5cc/
c4・sec−cmHq で後者は6.20x10−5
cc /に4 ・sec −cmHqであった。そして
気体分離性は酸素と窒素でそれぞれ約3.7と約3.0
であった。この透過流量の値から有効膜厚を計算すると
両者とも約0.3μmとなり比較的厚くなってし甘う。Therefore, we conducted experiments on thinning this material and considered its application to gas permeable membranes. As a result, it was found that poly-4-methylpentene-1 has poor solubility in solvents and extremely poor film-forming properties. It was also found that polybutadiene has very good film forming properties. However, in both cases, the gas separation property is excellent, but the permeability is very poor, and the oxygen permeation rate for each is 8.68 x 10-5 cc/
c4・sec-cmHq and the latter is 6.20x10-5
It was 4·sec-cmHq in cc/. The gas separation properties are approximately 3.7 and 3.0 for oxygen and nitrogen, respectively.
Met. When the effective film thicknesses are calculated from the values of the permeation flow rates, they are both about 0.3 μm, which is relatively thick.
この様に膜厚が厚くなる原因としては第1図に示すよう
に膜材料1が支持体2の孔3内へ含浸する現象が生じて
いるものと思われる。つマシガラス転移温度Tqが常温
以下にあるような高分子では常温で膜が屈曲性に富むた
め膜上面より圧力が加わると第1図に示すように支持体
孔3内への含浸が生じ結果的に膜厚が厚くなってしまう
ものと思われる。The reason for the increase in film thickness is thought to be the phenomenon in which the membrane material 1 impregnates into the pores 3 of the support 2, as shown in FIG. For polymers whose glass transition temperature Tq is below room temperature, the membrane is highly flexible at room temperature, so when pressure is applied from the top of the membrane, impregnation into the support pores 3 occurs as shown in Figure 1. It is thought that the film thickness will become thicker.
すなわち、Tqが常温以下である高分子は常温において
屈曲性に富むため、仮にラングミュア法、により水面上
で高分子薄膜が形成できても、多孔質支持体2上に引き
上げると膜材料1は支持体孔3中へ入り込んでしまい、
高分子は第1図に示すような状態になる。従がって膜厚
が厚くなり気体透過流量は非常に小さくなってし甘う。In other words, since polymers with Tq below room temperature have high flexibility at room temperature, even if a thin polymer film can be formed on the water surface using the Langmuir method, the film material 1 will not be supported when pulled up onto the porous support 2. It entered body hole 3,
The polymer is in the state shown in FIG. Therefore, the film thickness becomes thick and the gas permeation flow rate becomes very small.
発明の目的
本発明はこのような欠点を克服し、気体透過性に優れ、
かつ分離性も良い選択気体透過性膜を得ることを目的と
する。Purpose of the Invention The present invention overcomes these drawbacks, has excellent gas permeability,
The purpose of the present invention is to obtain a selective gas permeable membrane that also has good separation properties.
発明の構成
本発明はT(Jが常温以下の高分子材料″の層と支持体
との間にポリオルガノシロキサンを主成分とする成膜性
のすぐれた高気体透過性高分子層を挿入して複合膜化し
た選択気体透過性複合膜である。Structure of the Invention The present invention is characterized in that a highly gas permeable polymer layer containing polyorganosiloxane as a main component and having excellent film-forming properties is inserted between a layer of T (a polymer material where J is below room temperature) and a support. This is a selective gas-permeable composite membrane made into a composite membrane.
実施例の説明
以下本発明を実施例について図面とともに詳細に説明す
る。DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments and drawings.
第2図は本発明による選択気体透過性複合膜の実施例を
示す。図において、1はTqが常温以下で、気体分離性
は比較的よいが、気体透過性の悪い高分子材料Bより成
る薄膜である。高分子材料としては、ポリオレフィンま
たはポリブテン、ポリヘンテン、ホリメチルペンテン、
ポリヘキセン。FIG. 2 shows an embodiment of a selective gas permeable composite membrane according to the present invention. In the figure, reference numeral 1 indicates a thin film made of polymeric material B having a Tq below room temperature and relatively good gas separation but poor gas permeability. Polymer materials include polyolefin or polybutene, polyhentene, polymethylpentene,
Polyhexene.
ポリメチルヘキサン、ポリブタジェン、ポリインプレン
から成る群よち選はれたいずれか1種のジエンポリマー
が使用される。2は多孔質支持体で、多孔質ポリプロピ
レンなどが使用される。3は多孔質支持体2の孔、4は
成膜性に優れ、かつ気体透過性の高い高分子Aの薄膜で
ある。高分子Aとしてはポリオルガノシロキサンを主成
分とするシリコーン系高分子が好適で、たとえばポリジ
メチルシロキサンあるいはシリコーン共重合体が好適で
ある。高分子Aと高分子Bとから成る複合膜は気体透過
性に優れる高分子A層4を支持体2側に配することによ
り高気体透過性で、かつ気淋分離性の良い気体透過複合
膜を与える。つまり気体透過性の良い材料の層4を第1
層としているだめ、この層4が高分子3層1の支持体孔
3への侵入を防止するので、高分子3層1は非常に薄く
構成する−ことができる。One diene polymer selected from the group consisting of polymethylhexane, polybutadiene, and polyimprene is used. 2 is a porous support, and porous polypropylene or the like is used. 3 is the pore of the porous support 2, and 4 is a thin film of polymer A which has excellent film formability and high gas permeability. As the polymer A, a silicone polymer containing polyorganosiloxane as a main component is preferable, such as polydimethylsiloxane or a silicone copolymer. The composite membrane composed of polymer A and polymer B has high gas permeability and good gas separation property by arranging the polymer A layer 4, which has excellent gas permeability, on the support 2 side. give. In other words, the layer 4 of material with good gas permeability is the first layer.
Since this layer 4 prevents the polymer 3 layer 1 from penetrating into the support pores 3, the polymer 3 layer 1 can be constructed very thinly.
そして第1層4は主にシリコーン系高分子で構成される
ため非常に気体透過性に優れ、複合化した時の複合膜の
特性はほとんど第2層1の特性となる。従がって高分子
Bを単独使用した場合に比較して、気体分離性は高いま
ま変化はないが気体透過性が4〜10倍すぐれる選択気
体透過性複合膜を与える。Since the first layer 4 is mainly composed of a silicone polymer, it has excellent gas permeability, and the properties of the composite membrane when composited are almost the same as those of the second layer 1. Therefore, compared to the case where polymer B is used alone, a selective gas permeable composite membrane is obtained which has gas permeability 4 to 10 times better, although the gas separation property remains high.
以下具体的な実施例について説明する。Specific examples will be described below.
〈実施例1〉
高分子Aとして特開昭54−101879号公報に示さ
れるポリヒドロキシスチレン(PH3)−ポリジメチル
シロキサン(PDMS)共重合体を用い、高分子Bとし
てポリブタジェン(日本合成ゴム(株)RB−810)
を用い、それぞれ2〜4重量係ベンゼン溶液を調整後ラ
ングミュア法により水面上に各高分子膜を展開した。支
持体は多孔質ポリプロピレン(ポリプラスチック社製ジ
ュラガード2400)を使用した。それぞれの高分子膜
をA、 Bの順で支持体上にすくい上げて複合膜を作
成した。この複合膜の気体透過特性を第3図aに示す。<Example 1> Polyhydroxystyrene (PH3)-polydimethylsiloxane (PDMS) copolymer shown in JP-A-54-101879 was used as polymer A, and polybutadiene (Japan Synthetic Rubber Co., Ltd.) was used as polymer B. )RB-810)
After preparing a benzene solution with a weight ratio of 2 to 4, each polymer membrane was spread on the water surface using the Langmuir method. The support used was porous polypropylene (Duraguard 2400 manufactured by Polyplastics). Each polymer membrane was scooped up onto a support in the order of A and B to create a composite membrane. The gas permeation characteristics of this composite membrane are shown in Figure 3a.
第3図aに示すようにこの複合膜の気体透過特性は非常
にすぐれ、酸素透過流量が2×10 c cA4 m
sec −cmHg で酸素と窒素の分離比は約3.
○であった。As shown in Figure 3a, the gas permeation properties of this composite membrane are very good, and the oxygen permeation flow rate is 2×10 c cA4 m
The separation ratio of oxygen and nitrogen at sec -cmHg is approximately 3.
It was ○.
第3図すは高分子Aを使用せず高分子Bとしてブタジェ
ン(日本合成ゴム(株)RB−81o)のみを実施例1
と同様の方法で支持体にすくい上げたときの特性であシ
、従来例のものである。同図かられかるように、ポリブ
タジェンだけの場合は酸素透過量が非常に小さく 2
、5X10−4ccA4−豊・C1nHq である。Figure 3 shows Example 1 using only butadiene (RB-81o, Japan Synthetic Rubber Co., Ltd.) as polymer B without using polymer A.
The characteristics when scooped onto a support in the same manner as above are those of the conventional example. As can be seen from the figure, in the case of only polybutadiene, the amount of oxygen permeation is very small.
, 5X10-4ccA4-Yutaka C1nHq.
しだがって実施例1に示した本発明による複合膜はポリ
ブタジェンだけの場合に比して酸素透過量が約8倍に上
昇する。Therefore, the composite membrane according to the present invention shown in Example 1 has an oxygen permeation rate that is approximately 8 times higher than that of the membrane made of only polybutadiene.
〈実施例2〉
高分子Aとしてポリジメチルシロキサン(PDMS)(
平均分子量約200,000)を使用し、その他はすべ
て実施例1と同一にして複合膜を作成した。<Example 2> Polydimethylsiloxane (PDMS) (
A composite membrane was prepared using a polymer having an average molecular weight of about 200,000, and using the same method as in Example 1 in all other respects.
得られた複合膜は第4図に示すようにPDMS膜4が支
持体孔3内入り込み膜厚が厚くなる。これはPDMS自
身常温で非常に屈曲性に富むからである。しかし、PD
MSは気体透過性が優れているので、PDMSの膜厚が
ある程度厚くても酸素透過流量は十分得られ、第3図C
に示すようにポリブタジェンだけの場合に比して約3倍
の透過流量が得られた。As shown in FIG. 4, the resulting composite membrane has a thick PDMS membrane 4 that penetrates into the support pores 3. This is because PDMS itself is extremely flexible at room temperature. However, P.D.
Since MS has excellent gas permeability, a sufficient oxygen permeation flow rate can be obtained even if the PDMS film is thick to some extent, as shown in Figure 3C.
As shown in Figure 3, the permeation flow rate was approximately three times that of the case using only polybutadiene.
以上の実施では、高分子Bとしてポリブタジェンのみを
示したが、前述したその他の高分子を利用した場合も全
く同様である。In the above implementation, only polybutadiene was shown as the polymer B, but the same applies if the other polymers mentioned above are used.
以上のような構成の複合膜は、燃焼機器、医療用、内燃
機関、廃棄物処理等に利用できる。The composite membrane having the above structure can be used for combustion equipment, medical use, internal combustion engines, waste treatment, etc.
発明の効果
以上のように本発明はTqが常温以下にある高分子Bと
シリコーン系高分子Aとを複合化した選択気体透過性複
合膜であり、高分子Bだけの膜特性に比較して気体分離
性は高いま青変化せず4〜10倍の気体透過性をもつ選
択気体透過性複合膜を得ることができる。Effects of the Invention As described above, the present invention is a selective gas permeable composite membrane that combines polymer B with Tq below room temperature and silicone polymer A. It is possible to obtain a selective gas permeable composite membrane having a high gas separation property and a gas permeability 4 to 10 times higher without causing blue change.
第1図は従来の選択気体透過性膜の構造を示す断面図、
第2図は本発明による選択気体透過性複合膜の実施例を
示す断面図、第3図は従来例および本発明による選択気
体透過性膜の酸素窒素分離比−酸素透過流量特性図、第
4図は本発明による選択気体透過性複合膜の他の実施例
を示す断面図である。
1・・・・・・Tqが常温以下の高分子膜、2・・・・
・・支持体、3・・・・・・支持体孔、4・・・・・・
シリコーン系高分子膜。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
/
第2図
!Figure 1 is a cross-sectional view showing the structure of a conventional selective gas permeable membrane.
FIG. 2 is a sectional view showing an embodiment of the selective gas permeable composite membrane according to the present invention, FIG. 3 is a diagram showing the oxygen nitrogen separation ratio-oxygen permeation flow rate characteristic of the conventional example and the selective gas permeable membrane according to the present invention, and FIG. The figure is a sectional view showing another embodiment of the selective gas permeable composite membrane according to the present invention. 1...Polymer membrane with Tq below room temperature, 2...
...Support, 3...Support hole, 4...
Silicone polymer membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/ Figure 2!
Claims (4)
ン系高分子Aとガラス転移温度が常温以下である高分子
Bの2層から成る膜を多孔質支持体に支持させたことを
特徴とする選択気体透過性複合膜。(1) A selective gas characterized by having a porous support support a membrane consisting of two layers: a silicone polymer A whose main component is polyorganosiloxane and a polymer B whose glass transition temperature is below room temperature. Permeable composite membrane.
サンである特許請求の範囲第1項記載の選択気体透過性
複合膜。(2) The selective gas permeable composite membrane according to claim 1, wherein the silicone polymer A is polydimethylsiloxane.
である特許請求の範囲第1項記載の選択気体透過性複合
膜。(3) The selective gas permeable composite membrane according to claim 1, wherein the silicone polymer A is a silicone copolymer.
。 ポリペンテン、ポリメチルペンテン、ポリヘキセン、ポ
リメチルヘキセン、ポリブタジェン、およびポリインプ
レンから成る群より選ばれた少くと°も1種のジエンポ
リマーである特許請求の範囲第1項記載の選択気体透過
性複合膜。(4) Polymer B is polyolefin and polybutene. The selective gas permeable composite according to claim 1, which is at least one diene polymer selected from the group consisting of polypentene, polymethylpentene, polyhexene, polymethylhexene, polybutadiene, and polyimprene. film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57222406A JPS59112802A (en) | 1982-12-17 | 1982-12-17 | Gas permselective composite membrane |
JP19966588A JPH0194917A (en) | 1982-12-17 | 1988-08-10 | Permselective composite membrane for gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57222406A JPS59112802A (en) | 1982-12-17 | 1982-12-17 | Gas permselective composite membrane |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19966588A Division JPH0194917A (en) | 1982-12-17 | 1988-08-10 | Permselective composite membrane for gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59112802A true JPS59112802A (en) | 1984-06-29 |
JPS6256775B2 JPS6256775B2 (en) | 1987-11-27 |
Family
ID=16781874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57222406A Granted JPS59112802A (en) | 1982-12-17 | 1982-12-17 | Gas permselective composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59112802A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990006805A1 (en) * | 1988-12-16 | 1990-06-28 | The British Petroleum Company Plc | Permeation membrane and process for making it |
US4950314A (en) * | 1986-08-14 | 1990-08-21 | Toray Industries Inc. | Gas separation membrane |
US4990165A (en) * | 1987-07-31 | 1991-02-05 | Union Carbide Industrial Gases Technology Corporation | Permeable membranes for enhanced gas separation |
US6059862A (en) * | 1995-12-28 | 2000-05-09 | Mizobe; Kunitaka | Separation module provided with antistatic device |
JP2008178863A (en) * | 2006-12-28 | 2008-08-07 | Shin Etsu Polymer Co Ltd | Manufacturing method of selectively permeable membrane structure, selectively permeable membrane structure and air conditioning system |
US8394181B2 (en) | 2006-12-28 | 2013-03-12 | Shin-Etsu Polymer Co., Ltd. | Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220152528A (en) | 2020-03-13 | 2022-11-16 | 도오레 화인케미칼 가부시키가이샤 | Methods of making silicone polymers |
-
1982
- 1982-12-17 JP JP57222406A patent/JPS59112802A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950314A (en) * | 1986-08-14 | 1990-08-21 | Toray Industries Inc. | Gas separation membrane |
US4990165A (en) * | 1987-07-31 | 1991-02-05 | Union Carbide Industrial Gases Technology Corporation | Permeable membranes for enhanced gas separation |
WO1990006805A1 (en) * | 1988-12-16 | 1990-06-28 | The British Petroleum Company Plc | Permeation membrane and process for making it |
US6059862A (en) * | 1995-12-28 | 2000-05-09 | Mizobe; Kunitaka | Separation module provided with antistatic device |
JP2008178863A (en) * | 2006-12-28 | 2008-08-07 | Shin Etsu Polymer Co Ltd | Manufacturing method of selectively permeable membrane structure, selectively permeable membrane structure and air conditioning system |
US8394181B2 (en) | 2006-12-28 | 2013-03-12 | Shin-Etsu Polymer Co., Ltd. | Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system |
Also Published As
Publication number | Publication date |
---|---|
JPS6256775B2 (en) | 1987-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60161703A (en) | Gas permselective composite membrane | |
US4631075A (en) | Composite membrane for gas separation | |
JPH0457372B2 (en) | ||
JPS59112802A (en) | Gas permselective composite membrane | |
JPS58223411A (en) | Composite film for selective permeation of gas | |
JPH0224574B2 (en) | ||
JPH0413011B2 (en) | ||
JPS62136212A (en) | Preparation of permselective composite membrane | |
JPH02139023A (en) | Selectively gas permeable multilayer membrane | |
JPH0194917A (en) | Permselective composite membrane for gas | |
JPH0155658B2 (en) | ||
JPS62136224A (en) | Composite membrane for separating gas | |
JPS6182823A (en) | Gas-permeable composite membrane | |
JPS63278525A (en) | Production of vapor-liquid separation membrane | |
JPH0380925A (en) | Gas permselective membrane | |
JPS60114324A (en) | Gas permeable compound membrane | |
JPS61120617A (en) | Composite membrane for separating gas | |
JPS61291018A (en) | Gas permeable laminated body | |
JPS5959214A (en) | Gas separating composite membrane | |
JP3295144B2 (en) | Gas separation composite membrane | |
JP3299298B2 (en) | Gas selective permeable composite membrane | |
JPH0421528B2 (en) | ||
JPS63182017A (en) | Composite membrane for separating gas | |
JPH0761426B2 (en) | Selective gas permeable composite membrane | |
JPS61278329A (en) | Composite membrane for gas separation |