JPS6311045B2 - - Google Patents

Info

Publication number
JPS6311045B2
JPS6311045B2 JP57210384A JP21038482A JPS6311045B2 JP S6311045 B2 JPS6311045 B2 JP S6311045B2 JP 57210384 A JP57210384 A JP 57210384A JP 21038482 A JP21038482 A JP 21038482A JP S6311045 B2 JPS6311045 B2 JP S6311045B2
Authority
JP
Japan
Prior art keywords
membrane
gas separation
polyimide
permeability coefficient
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57210384A
Other languages
Japanese (ja)
Other versions
JPS5998704A (en
Inventor
Akio Iwama
Noritaka Kazuse
Kentaro Tasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP57210384A priority Critical patent/JPS5998704A/en
Publication of JPS5998704A publication Critical patent/JPS5998704A/en
Publication of JPS6311045B2 publication Critical patent/JPS6311045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリイミドからなる気体分離膜に関す
る。 近年、省資源、省エネルギーの観点から有機重
合体膜による気体分離、特に空気の酸素富化が注
目されているが、従来知られている酸素富化用膜
は酸素の透過係数が小さすぎ、或いは窒素に対す
る酸素の透過係数比が小さいため、工業的な規模
で酸素富化を行なうには適しない。例えば、ポリ
ジメチルシロキサンは、酸素の透過係数が10-8cm3
(STP)・cm/cm2・秒・cmHgのオーダーであつ
て、従来、知られている重合体膜の中では最大で
あるが、この膜は機械的強度が小さいために、実
用化には膜厚を100μm以上にする必要があり、
この結果、膜自体に対する気体の透過係数は大き
くとも、膜による気体分離の効率を決定する透過
速度を大きくすることができない。また、窒素に
対する酸素の透過係数比も精々2程度であつて、
酸素の選択分離性に劣り、高濃度の酸素を得よう
とすれば、多段の膜処理を要することとなり、装
置、費用のいずれの点からも実用的ではない。 このため、特公昭47−51715号公報には、ポリ
ビニルトリメチルシランからなる酸素富化膜が提
案されており、窒素に対する酸素の透過係数比は
ポリジメチルシロキサンの約2倍に改善されてい
るが、耐薬品性に劣り、空気中の汚染物質、ポン
プ類からの油等により劣化しやすい欠点がある。 また、近年、酸素富化に加えて、所謂C1化学
の展開に伴い、合成ガスのための気体分離膜が要
求されるに至つており、特に、このような目的の
ための気体分離膜は100〜200℃、或いはより以上
の高温下で用いられるため、極めて高い耐熱性が
要求される。 本発明者らは、上記した問題を解決するために
鋭意研究した結果、ポリイミドからなる膜が気体
分離性にすぐれると共に、耐熱性、機械的強度、
耐薬品性、加工性等にすぐれることを見出して、
本発明に至つたものである。 本発明による気体分離膜は、実質的に一般式 (但し、Rは2価の有機基を示す。) で表わされる繰返し単位からなるポリイミドより
なり、実質的に孔径が25Å以上の微孔を有さず、
且つ、厚みが10μm以下である均質層を有する膜
からなることを特徴とする。 実質的に上記一般式で表わされる繰返し単位か
らなるポリイミドは、例えば、特開昭55−152507
号公報に記載されているように既に知られてお
り、好ましくは、1,2,3,4―ブタンテトラ
カルボン酸と、これとほぼ等モルの一般式 H2N―R―NH2 (但し、Rは前記と同じである。) で表わされるジアミンとを溶剤中で加熱下に縮合
重合させることによつて得ることができる。 かかるジアミンとしては、例えば、m―フエニ
レンジアミン、p―フエニレンジアミン、4,
4′―ジアミノジフエニルメタン、4,4′―ジアミ
ノジフエニルプロパン、4,4′―ジアミノジフエ
ニルエーテル、3,4′―ジアミノジフエニルエー
テル、4,4′ジアミノフエニルスルフイド、4,
4′ジアミノフエニルスルホン、3,3′―ジアミノ
ジフエニルスルホン、p―ビス(4―アミノフエ
ノキシ)ベンゼン、m―ビス(4―アミノフエノ
キシ)ベンゼン、m―キシリレンジアミン、p―
キシリレンジアミン、ジ(4―アミノシクロヘキ
シル)メタン、ヘキサメチレンジアミン、ヘプタ
メチレンジアミン、オクタメチレンジアミン、
1,4―ジアミノシクロヘキサン、ビス(p―ア
ミノフエニル)ホスフインオキシド、ビス―(p
―アミノフエニル)ジメチルシラン等を挙げるこ
とができる。特に、本発明においては、前記一般
式において、Rが芳香族環を含む有機基であるジ
アミンを用いて得られるポリイミドが好ましい。 このようにして得られる芳香族環を有する有機
基Rをもつポリイミドは特に耐熱性にすぐれるの
で、高温でのガス分離に使用することができ、ま
た、高温下では一般に気体は高い透過係数を有す
るので、効率的な気体分離を行なうことができる
からである。 芳香族基を有する有機基の好ましい具体例とし
て、例えば、
The present invention relates to a gas separation membrane made of polyimide. In recent years, gas separation using organic polymer membranes, especially oxygen enrichment of air, has been attracting attention from the viewpoint of resource and energy conservation. Since the permeability coefficient ratio of oxygen to nitrogen is small, it is not suitable for oxygen enrichment on an industrial scale. For example, polydimethylsiloxane has an oxygen permeability coefficient of 10 -8 cm 3
(STP)・cm/cm 2・sec・cmHg, which is the largest of the conventionally known polymer films, but this film has low mechanical strength and cannot be put into practical use. The film thickness must be 100μm or more,
As a result, even if the gas permeation coefficient through the membrane itself is large, the permeation rate, which determines the efficiency of gas separation by the membrane, cannot be increased. In addition, the permeability coefficient ratio of oxygen to nitrogen is at most about 2,
The selective separation of oxygen is poor, and if a high concentration of oxygen is to be obtained, multistage membrane treatment is required, making it impractical in terms of both equipment and cost. For this reason, Japanese Patent Publication No. 47-51715 proposes an oxygen-enriching membrane made of polyvinyltrimethylsilane, which improves the permeability coefficient ratio of oxygen to nitrogen to about twice that of polydimethylsiloxane. It has poor chemical resistance and is susceptible to deterioration due to airborne contaminants, oil from pumps, etc. In recent years, in addition to oxygen enrichment, with the development of so-called C1 chemistry, gas separation membranes for synthesis gas have been required, and in particular, gas separation membranes for such purposes are Since it is used at high temperatures of 100 to 200°C or higher, extremely high heat resistance is required. As a result of intensive research to solve the above-mentioned problems, the present inventors found that a membrane made of polyimide has excellent gas separation properties, heat resistance, mechanical strength,
Discovered that it has excellent chemical resistance and processability,
This led to the present invention. The gas separation membrane according to the invention has substantially the general formula (However, R represents a divalent organic group.) Made of polyimide consisting of a repeating unit represented by
Moreover, it is characterized by being composed of a film having a homogeneous layer having a thickness of 10 μm or less. A polyimide consisting essentially of repeating units represented by the above general formula is disclosed in, for example, JP-A-55-152507.
Preferably, 1,2,3,4-butanetetracarboxylic acid and approximately equimolar amount of general formula H 2 NR—NH 2 (however, , R is the same as above.) It can be obtained by condensation polymerization of a diamine represented by the following in a solvent under heating. Examples of such diamines include m-phenylenediamine, p-phenylenediamine, 4,
4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'diaminophenyl sulfide, 4,
4'diaminophenyl sulfone, 3,3'-diaminodiphenylsulfone, p-bis(4-aminophenoxy)benzene, m-bis(4-aminophenoxy)benzene, m-xylylenediamine, p-
xylylenediamine, di(4-aminocyclohexyl)methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine,
1,4-diaminocyclohexane, bis(p-aminophenyl)phosphine oxide, bis-(p
-aminophenyl)dimethylsilane and the like. In particular, in the present invention, a polyimide obtained by using a diamine in which R in the general formula is an organic group containing an aromatic ring is preferred. The polyimide having an organic group R having an aromatic ring obtained in this way has particularly excellent heat resistance, so it can be used for gas separation at high temperatures, and gases generally have a high permeability coefficient at high temperatures. This is because efficient gas separation can be performed. Preferred specific examples of the organic group having an aromatic group include, for example,

【式】【formula】

【式】等を挙げることができ、 ここに、Xは2価の有機基であり、その好ましい
具体例として、 ―CH2― ―C(CH32― ―O― ―SO2
―S― ―CO― ―Si(CH32― 等を挙げることができる。 本発明においては、 イミド環の数/イミド環の数+アミド結合の数×100
(%) で定義されるイミド化率が70%以上である実質的
に前記繰返し単位からなるポリイミドを用いるこ
とができるが、好ましくは、イミド化率は90%以
上であり、特に好ましくは、98〜100%である。 また、ポリイミドは、その極限粘度(N―メチ
ル―2―ピロリドン溶液として30℃で測定、以下
同じ。)が0.6〜4、好ましくは0.8〜2である。
極限粘度が低すぎるときは、膜化したときに自己
支持性に劣るようになり、また、高すぎるとき
は、後述するように、ポリイミドの均一な溶液、
即ち、製膜溶液を調製することが困難となり、従
つて、均一な気体分離膜を調製することも困難と
なるからである。 本発明による気体分離膜は種々の方法によつて
製造することができるが、普通は、上記ポリイミ
ドを有機溶剤に溶解して均一な製膜溶液を調製
し、これを適宜の支持基材上に流延塗布した後、
常圧下又は減圧下に加熱処理して溶剤を蒸発させ
ることにより得ることができる。ここに、製膜溶
液を調製するための有機溶剤としては、通常、N
―メチル―2―ピロリドン、N―メチル―2―ピ
ペリドン、ジメチルアセトアミド、ジメチルホル
ムアミド等が好ましく用いられる。 製膜溶液を流延塗布するための支持基材は特に
制限されないが、通常、ガラス、ステンレス、ア
ルミニウム、ポリエチレン、ポリプロピレン等で
例示される平滑な表面を有する板部材が用いられ
る。 製膜溶液を支持基材上に塗布した後、加熱する
温度は製膜溶液の溶剤にも依るが、前記したよう
な比較的高沸点の極性有機溶剤の場合には、80〜
140℃、好ましくは、100〜120℃である。特に、
本発明においては、このような温度範囲で溶剤の
殆どを蒸発させた後、150〜200℃の温度に加熱し
て溶剤を更に蒸発させる。このようにして、溶剤
を完全に蒸発除去して得た膜は直ちに気体分離膜
として使用することができる。また、溶剤をほぼ
完全に蒸発除去した場合も、得られる膜はそのま
ま気体分離に供し得るが、必要に応じて、基材上
に形成された膜を基材と共に水中に浸漬すれば、
膜中に残存する溶剤を水により完全に抽出除去で
きると共に、膜を基材から容易に剥離することが
でき、これを乾燥して、気体分離膜とすることも
できる。 このようにして得られる気体分離膜は、実質的
に25Å以上の径の孔を有しない実質的に均質で緻
密な層を有している。これは膜を電子顕微鏡によ
り2万倍以上の倍率で観察することにより確認す
ることができる。気体の透過速度を大きくするに
は、上記均質層の厚みは薄い程よいが、一方、機
械的強度の点からは厚い方が好ましく、これらの
観点から、上記均質層の厚みは0.05〜10μm程度
が好ましい。 尚、本発明の気体分離膜においては、膜全体が
上記のような均質層のみからなる均質膜であつて
もよく、また、膜の一部、通常、表面層のみが上
記のような均質層からなり、この均質層が多孔質
層によつて支持される異方性膜であつてもよい。
均質膜を調製するには、例えば、希薄な製膜溶液
を用いる。例えば、ポリイミド濃度が5重量%以
下の製膜溶液を用いることにより、膜全体が上記
のような均質層のみからなる厚み数μmの気体分
離膜を得ることができる。また、異方性膜は、上
記均質層が実質的に25Å以上の径の孔を有しない
緻密な層からなり、この緻密層が同一の樹脂から
なる多孔質層に実質的に連続して一体に支持され
ている所謂非対称構造の異方性膜でもよく、ま
た、上記緻密な均質膜が同種又は異種の樹脂から
なる多孔質層に構造的に不連続的に層状に形成さ
れているか、若しくは貼着されている複合膜であ
つてもよい。いすれにしても、異方性膜の場合も
均質層の厚みは10μm以下が好ましいが、特に
0.001〜1μm程度が好ましい。 本発明による気体分離膜は、前記したように、
耐薬品性、耐熱性にすぐれていると共に、多くの
気体について大きい気体透過係数と相互の間で大
きい透過係数比を有し、また、機械的強度にもす
ぐれているので、酸素富化は勿論、C1化学にお
ける高温での気体分離にも好適に用いることがで
きる。特に、従来より知られている多くの気体分
離膜が常温付近では気体が大きい透過係数を有し
ても、高温下では一般に小さくなるのに対して、
本発明による気体分離膜は高温下においても高い
透過係数比を保持しており、従つて、高温での気
体分離が要求される合成ガスの分離や組成調整等
に好適であると共に、前記したように、一般に高
温下では気体は大きい透過係数を有するから、本
発明の気体分離膜によれば、効率よく気体分離を
行なうことができる。 例えば、従来より知られている気体分離膜によ
れば、混合ガスの分離を行なう場合は、その膜の
耐熱性の限界から、常圧乃至100Kg/cm2程度、好
ましくは、10〜80Kg/cm2程度の圧力範囲で常温乃
至精々100℃までの温度範囲を採用しなければな
らないが、本発明による気体分離膜によれば、最
高400℃程度までの温度での気体分離が可能であ
り、特に実用的に100〜300℃の温度範囲で混合ガ
スの分離のような気体分離に供し得る大きい利点
を有する。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。尚、以下の実施例において、気体の透過
係数Pは高真空法により求めたものであり、透過
係数比αは当該気体の透過係数を対照気体の透過
係数で除して求めた。 参考例 (ポリイミドの調製) 撹拌機、窒素ガス導入装置、反応生成水抜取り
装置付き還流冷却器及び250℃の温度まで加熱可
能な外套浴を備えた2反応器にN―メチル―2
―ピロリドン1500g、1,2,3,4―ブタンテ
トラカルボン酸281g及び4,4′―ジアミノジフ
エニルエーテル240gを仕込んだ後、約70℃まで
加熱して均一な溶液とした。この後、共沸脱水溶
剤としてキシレン170gを添加し、窒素気流下に
190℃に加熱し、キシレンを還流させて、反応生
成水を共沸によつて連続的に反応容器から除去し
つつ、17時間反応を続けた。次いで、共沸溶剤キ
シレンを反応系外へ留去して、粘稠なポリイミド
のN―メチル―2―ピロリドン溶液を得た。 このポリイミド溶液を激しく撹拌した水中に投
入してポリイミドを凝固沈殿させた後、濾別、単
離し、アセトン中に投入し、十分に洗浄した後、
10mmHgの減圧下に50℃で10時間、乾燥した。 このようにして得られたポリイミドは、前記一
般式においてRが であり、核磁気共鳴スペクトル及び赤外線吸収ス
ペクトルより、そのイミド化率が99%以上である
ことが確認された。また、その極限粘度は1.51で
あつた。 実施例 1 上で得られたポリイミド3gをN―メチル―2
―ピロリドン97gに溶解した後、平均孔径4μm
の濾紙により濾過して異物等を除き、均一な製膜
溶液を得た。この製膜溶液をガラス板上に流延塗
布した後、10mmHgの減圧下、25℃で5時間、更
に90℃で10時間乾燥して溶剤を除去した。 このようにしてガラス板上に形成された膜をガ
ラス板と共に水中に投入、5時間浸漬して、膜を
ガラス板から剥離した後、80℃で10時間真空乾燥
して、厚み3μの均質膜を得た。この膜は、その
表面を倍率20000倍の電子顕微鏡で観察すること
により、孔径が25Å以上の孔を有しないことが確
認された。 この膜の25℃における種々の気体に対する透過
係数P(c.c.(STP)・cm/cm2・秒・cmHg)及び窒
素に対する透過係数比αを第1表に示す。
[Formula] etc., where X is a divalent organic group, and preferred specific examples thereof include -CH 2 - -C(CH 3 ) 2 - -O- -SO 2 -
-S- -CO- -Si(CH 3 ) 2 - etc. can be mentioned. In the present invention, the number of imide rings/the number of imide rings + the number of amide bonds x 100
(%) It is possible to use a polyimide consisting essentially of the above-mentioned repeating units with an imidization rate defined as 70% or more, but preferably the imidization rate is 90% or more, particularly preferably 98% or more. ~100%. Further, the intrinsic viscosity of the polyimide (measured as an N-methyl-2-pyrrolidone solution at 30°C, the same applies hereinafter) is 0.6 to 4, preferably 0.8 to 2.
If the intrinsic viscosity is too low, the self-supporting properties will be poor when formed into a film, and if it is too high, as will be described later, a homogeneous solution of polyimide,
That is, it becomes difficult to prepare a membrane-forming solution and, therefore, it becomes difficult to prepare a uniform gas separation membrane. The gas separation membrane according to the present invention can be produced by various methods, but usually, the above polyimide is dissolved in an organic solvent to prepare a uniform membrane-forming solution, and this is spread on a suitable support substrate. After casting coating,
It can be obtained by heat treatment under normal pressure or reduced pressure to evaporate the solvent. Here, the organic solvent for preparing the film forming solution is usually N.
-Methyl-2-pyrrolidone, N-methyl-2-piperidone, dimethylacetamide, dimethylformamide and the like are preferably used. The support base material for casting the membrane forming solution is not particularly limited, but a plate member with a smooth surface, exemplified by glass, stainless steel, aluminum, polyethylene, polypropylene, etc., is usually used. The heating temperature after coating the film-forming solution on the support substrate depends on the solvent of the film-forming solution, but in the case of a polar organic solvent with a relatively high boiling point as mentioned above, it is 80 to 80°C.
The temperature is 140°C, preferably 100-120°C. especially,
In the present invention, after most of the solvent is evaporated in this temperature range, the solvent is further evaporated by heating to a temperature of 150 to 200°C. The membrane obtained by completely removing the solvent by evaporation in this manner can be immediately used as a gas separation membrane. Furthermore, even when the solvent is almost completely removed by evaporation, the resulting membrane can be used for gas separation as is, but if necessary, the membrane formed on the substrate can be immersed together with the substrate in water.
The solvent remaining in the membrane can be completely extracted and removed with water, and the membrane can be easily peeled off from the base material, and it can also be dried to form a gas separation membrane. The gas separation membrane thus obtained has a substantially homogeneous and dense layer with substantially no pores having a diameter of 25 Å or more. This can be confirmed by observing the film with an electron microscope at a magnification of 20,000 times or more. In order to increase the gas permeation rate, the thinner the thickness of the above-mentioned homogeneous layer is, the better; however, from the point of view of mechanical strength, the thicker the better, and from these points of view, the thickness of the above-mentioned homogeneous layer is about 0.05 to 10 μm. preferable. In the gas separation membrane of the present invention, the entire membrane may be a homogeneous membrane consisting only of the above-mentioned homogeneous layer, or a part of the membrane, usually only the surface layer, may be a homogeneous membrane consisting of only the above-mentioned homogeneous layer. The homogeneous layer may be an anisotropic membrane supported by a porous layer.
To prepare a homogeneous membrane, for example, a dilute membrane forming solution is used. For example, by using a membrane-forming solution with a polyimide concentration of 5% by weight or less, it is possible to obtain a gas separation membrane with a thickness of several μm, the entire membrane consisting of only a homogeneous layer as described above. Further, in the anisotropic film, the homogeneous layer is composed of a dense layer having substantially no pores with a diameter of 25 Å or more, and this dense layer is substantially continuous and integrated with the porous layer made of the same resin. The film may be an anisotropic film with a so-called asymmetric structure supported by It may also be a composite membrane that is attached. In any case, even in the case of an anisotropic film, the thickness of the homogeneous layer is preferably 10 μm or less, but especially
The thickness is preferably about 0.001 to 1 μm. As described above, the gas separation membrane according to the present invention has the following features:
In addition to having excellent chemical resistance and heat resistance, it also has large gas permeability coefficients for many gases and a large ratio of permeability coefficients between them.It also has excellent mechanical strength, so it can be used not only for oxygen enrichment. , it can also be suitably used for gas separation at high temperatures in C1 chemistry. In particular, even though many conventionally known gas separation membranes have large gas permeability coefficients at room temperature, they generally become small at high temperatures.
The gas separation membrane according to the present invention maintains a high permeability coefficient ratio even at high temperatures, and is therefore suitable for synthesis gas separation and composition adjustment that require gas separation at high temperatures, and as described above. In addition, since gases generally have a large permeability coefficient at high temperatures, the gas separation membrane of the present invention allows efficient gas separation. For example, according to conventionally known gas separation membranes, when separating mixed gases, due to the limit of heat resistance of the membrane, the pressure is about 100 Kg/cm2, preferably 10 to 80 Kg/cm2. However , with the gas separation membrane of the present invention, gas separation is possible at temperatures up to about 400°C, and in particular It has a great advantage that it can be practically used for gas separation, such as separation of mixed gases, in the temperature range of 100 to 300°C. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. In the following examples, the permeability coefficient P of a gas was determined by a high vacuum method, and the permeability coefficient ratio α was determined by dividing the permeability coefficient of the gas by the permeability coefficient of a reference gas. Reference example (Preparation of polyimide) N-methyl-2 was placed in two reactors equipped with a stirrer, a nitrogen gas introduction device, a reflux condenser with a reaction product water extraction device, and a jacket bath capable of heating up to a temperature of 250°C.
- After charging 1500 g of pyrrolidone, 281 g of 1,2,3,4-butanetetracarboxylic acid and 240 g of 4,4'-diaminodiphenyl ether, it was heated to about 70°C to form a homogeneous solution. After this, 170g of xylene was added as an azeotropic dehydration solvent, and the mixture was heated under a nitrogen stream.
The reaction was continued for 17 hours while heating to 190° C., refluxing xylene, and continuously removing reaction product water from the reaction vessel by azeotropy. Next, the azeotropic solvent xylene was distilled out of the reaction system to obtain a viscous solution of polyimide in N-methyl-2-pyrrolidone. This polyimide solution was poured into vigorously stirred water to coagulate and precipitate the polyimide, then filtered and isolated, poured into acetone, and thoroughly washed.
It was dried at 50° C. for 10 hours under a reduced pressure of 10 mmHg. In the polyimide thus obtained, R is It was confirmed from the nuclear magnetic resonance spectrum and infrared absorption spectrum that the imidization rate was 99% or more. Moreover, its limiting viscosity was 1.51. Example 1 3 g of the polyimide obtained above was mixed with N-methyl-2
- Average pore size 4μm after dissolving in 97g of pyrrolidone
The mixture was filtered through filter paper to remove foreign substances and the like to obtain a uniform membrane forming solution. This film-forming solution was cast onto a glass plate, and then dried at 25° C. for 5 hours and then at 90° C. for 10 hours under reduced pressure of 10 mmHg to remove the solvent. The film thus formed on the glass plate was put into water together with the glass plate, immersed for 5 hours, peeled off from the glass plate, and vacuum dried at 80°C for 10 hours to form a homogeneous film with a thickness of 3μ. I got it. By observing the surface of this film with an electron microscope at a magnification of 20,000 times, it was confirmed that it did not have pores with a pore diameter of 25 Å or more. Table 1 shows the permeability coefficient P (cc(STP)·cm/cm 2 ·sec·cmHg) of this membrane for various gases at 25°C and the permeability coefficient ratio α for nitrogen.

【表】 また、上で得た気体分離膜について、合成ガス
成分である水素と一酸化炭素の透過係数Pを25℃
及び100℃の温度でそれぞれ求め、これらから一
酸化炭素に対する水素の透過係数比αを求めた。
結果を第2表に示す。本発明による気体分離膜が
常温では勿論、高温においても高い分離係数を有
することが明らかである。
[Table] Also, for the gas separation membrane obtained above, the permeability coefficient P of hydrogen and carbon monoxide, which are syngas components, at 25℃
and 100°C, and from these values, the permeability coefficient ratio α of hydrogen to carbon monoxide was determined.
The results are shown in Table 2. It is clear that the gas separation membrane according to the present invention has a high separation coefficient not only at room temperature but also at high temperature.

【表】 実施例 2 参考例において、4,4′―ジアミノジフエニル
エーテルの代わりに、4,4′―ジアミノジフエニ
ルメタン238gを用いた以外は、全く同様にして
前記一般式においてRが であり、イミド化率99%以上、極限粘度0.85であ
るポリイミドを得た。 このポリイミドを用いて、実施例1と同様にし
て厚み3μmの均質層のみからなり、電子顕微鏡
による観察の結果、孔径が25Å以上の孔をもたな
い気体分離膜を調製した。 この膜は、25℃において酸素透過係数が1.3×
10-10、窒素に対する透過係数比は5.5であつた。 実施例 3 参考例において、4,4′―ジアミノジフエニル
エーテルの代わりに、ビス(p―アミノフエニ
ル)ジメチルシラン290gを用いた以外は、全く
同様にして前記一般式においてRが であり、イミド化率99%以上、極限粘度0.66であ
るポリイミドを得た。 このポリイミドを用いて、実施例1と同様にし
て厚み3μmの均質層のみからなり、電子顕微鏡
による観察の結果、孔径が25Å以上の孔をもたな
い気体分離膜を調製した。 この膜は、25℃において酸素透過係数が9.6×
10-10、窒素に対する透過係数比は4.9であつた。
[Table] Example 2 In the same manner as in Reference Example, except that 238 g of 4,4'-diaminodiphenyl methane was used instead of 4,4'-diaminodiphenyl ether, R was A polyimide with an imidization rate of 99% or more and an intrinsic viscosity of 0.85 was obtained. Using this polyimide, a gas separation membrane was prepared in the same manner as in Example 1, consisting of only a homogeneous layer with a thickness of 3 μm and having no pores with a pore size of 25 Å or more as observed by an electron microscope. This membrane has an oxygen permeability coefficient of 1.3× at 25℃
10 -10 , and the permeability coefficient ratio for nitrogen was 5.5. Example 3 In the same manner as in Reference Example, except that 290 g of bis(p-aminophenyl)dimethylsilane was used instead of 4,4'-diaminodiphenyl ether, R was A polyimide with an imidization rate of 99% or more and an intrinsic viscosity of 0.66 was obtained. Using this polyimide, a gas separation membrane was prepared in the same manner as in Example 1, consisting of only a homogeneous layer with a thickness of 3 μm and having no pores with a pore size of 25 Å or more as observed by an electron microscope. This membrane has an oxygen permeability coefficient of 9.6× at 25℃
10 -10 , and the permeability coefficient ratio for nitrogen was 4.9.

Claims (1)

【特許請求の範囲】 1 実質的に一般式 (但し、Rは2価の有機基を示す。) で表わされる繰返し単位からなるポリイミドより
なり、実質的に孔径が25Å以上の微孔を有さず、
且つ、厚みが10μm以下である均質層を有する膜
からなる気体分離膜。
[Claims] 1. Substantially general formula (However, R represents a divalent organic group.) Made of polyimide consisting of a repeating unit represented by
A gas separation membrane comprising a homogeneous layer having a thickness of 10 μm or less.
JP57210384A 1982-11-29 1982-11-29 Gas separation membrane comprising polyimide Granted JPS5998704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210384A JPS5998704A (en) 1982-11-29 1982-11-29 Gas separation membrane comprising polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210384A JPS5998704A (en) 1982-11-29 1982-11-29 Gas separation membrane comprising polyimide

Publications (2)

Publication Number Publication Date
JPS5998704A JPS5998704A (en) 1984-06-07
JPS6311045B2 true JPS6311045B2 (en) 1988-03-11

Family

ID=16588444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210384A Granted JPS5998704A (en) 1982-11-29 1982-11-29 Gas separation membrane comprising polyimide

Country Status (1)

Country Link
JP (1) JPS5998704A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133117A (en) * 1984-11-30 1986-06-20 Ube Ind Ltd Separation of gaseous carbon dioxide
US4717394A (en) * 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4717393A (en) * 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
CA1321153C (en) 1987-11-12 1993-08-10 Shunichi Shimatani Process for separating methane using permeable membrane
JPH0235922A (en) * 1987-11-12 1990-02-06 Nitto Denko Corp Methane concentration-separation process using membrane
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
JP2574599B2 (en) * 1992-07-02 1997-01-22 松下電器産業株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPS5998704A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
CA1169193A (en) Gas separating material
US5112941A (en) Aromatic polymide separation membrane
JPS61133118A (en) Polyimide membrane for gas separation
JPH053329B2 (en)
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
JPS6311045B2 (en)
JP2018122280A (en) Asymmetric membrane
US5032279A (en) Separation of fluids using polyimidesiloxane membrane
JP3992345B2 (en) Separation membrane and olefin separation method using the same
JPH038818B2 (en)
JP3116976B2 (en) Polyimide separation membrane
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JP2827212B2 (en) Polyamideimide separation membrane
JPS63264121A (en) Polyimide membrane for separating gas
JPS6261228B2 (en)
JPH057750A (en) Composite membrane for separating substance
JPS6223972B2 (en)
KR100398059B1 (en) Fluorine-based polyimide composite membrane for gas separation
KR20000067454A (en) Separation membranes using crosslinked polymers with siloxane main chains
JPS6151934B2 (en)
KR100351628B1 (en) New polyimides and gas separation Membrane
KR100308525B1 (en) Perfluoroalkyl group-containing polymers for separation membranes
El-Gendi et al. Investigations of rubbery copolyimides for the preparation of asymmetric pervaporation membranes
JPS6245319A (en) Gas separation membrane
JPH01127024A (en) Gas separation membrane