JPS6245319A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPS6245319A
JPS6245319A JP18407385A JP18407385A JPS6245319A JP S6245319 A JPS6245319 A JP S6245319A JP 18407385 A JP18407385 A JP 18407385A JP 18407385 A JP18407385 A JP 18407385A JP S6245319 A JPS6245319 A JP S6245319A
Authority
JP
Japan
Prior art keywords
membrane
solvent
gas
gas separation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18407385A
Other languages
Japanese (ja)
Inventor
Shuichi Sawada
修一 沢田
Tadao Ikeda
池田 忠生
Chihiro Imai
今井 千裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP18407385A priority Critical patent/JPS6245319A/en
Publication of JPS6245319A publication Critical patent/JPS6245319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gas separation membrane excellent in heat resistance, chemical resistance and mechanical strength and having high transmission coefficient of hydrogen gas without damaging gas separation capacity, by setting the thickness of a dense layer comprising a polyparabanic acid type polymer to 20mum or less. CONSTITUTION:A polyparabanic acid type polymer having a repeating unit shown by formula (wherein R is a divalent org. group) is used. Both of a homopolymer and a copolymer may be used but one with intrinsic viscosity (DMF 25 deg.C) of 0.4-4 is pref. Further, one having diphenylether-4,4'-diyl is excellent in heat resistance. A membrane is formed from a dope solution so as to set the thickness of a dense layer substantially having no fine pore to 20mum or less. After the solvent of the dope solution is evaporated at ambient temp.-140 deg.C, the membrane is heated to 150-200 deg.C to further evaporate the residual solvent or the solvent is evaporated at 50 deg.C-the b.p. of the solvent or less and the resulting membrane is immersed in water at 0-40 deg.C and gelled to obtain an anisotropic membrane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複素環式重合体からなる気体分離膜に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to gas separation membranes made of heterocyclic polymers.

従来の技術 近年、省資源、省エネルギーの観点から有機重合体を膜
素材とする気体分離膜が注目されている。しかし、気体
透過係数の大きい膜素材は、分離係数が小さく、一方/
Tj駈係政の大きい膜素材は、気体透過係数が小さいと
いうように相互に相反する関係にあり、気体分離膜によ
って工業的々規模で分離を行わせることが困維であった
。例えば、気体透過係数の大きい膜素トオとして知られ
ているポリジメチルシロキサンば、酸素の透過係数が6
. OX 10−’c11?(s’rp)−、、/、p
 *θeC−6nHg1水索の透過係数が6.5X10
−”crI(STP)・帰/cW?・sec’ffiH
gと大きいが、酸素と窒素の分離係数が2.0、水素と
窒素の分離係数が2.3と低く、高濃度の酸素または水
素を得るためには多段処理が必要になり経済的な点から
実用的でない。
BACKGROUND OF THE INVENTION In recent years, gas separation membranes made of organic polymers have been attracting attention from the viewpoint of resource and energy conservation. However, membrane materials with a large gas permeability coefficient have a small separation coefficient;
Membrane materials with large Tj ratios have a mutually contradictory relationship, such as low gas permeability coefficients, and it has been difficult to perform separation on an industrial scale using gas separation membranes. For example, polydimethylsiloxane, which is known as a membrane material with a high gas permeability coefficient, has an oxygen permeability coefficient of 6.
.. OX 10-'c11? (s'rp)-, , /, p
*The permeability coefficient of θeC-6nHg1 water cable is 6.5X10
-”crI(STP)・Return/cW?・sec'ffiH
Although it is large, the separation coefficient for oxygen and nitrogen is 2.0 and the separation coefficient for hydrogen and nitrogen is low at 2.3, making it economical as multi-stage processing is required to obtain high concentration oxygen or hydrogen. Therefore, it is not practical.

また、気体透過係数の大きい膜素材は、概して機械的強
度が小さいため薄膜化が難かしく、気体透過係数を膜厚
で割った実質的な透過速度を大きくすることができない
欠点がある。ζらに、膜分離プロセスの高度化および多
様化にf!f−つて耐熱性、耐薬品性、機械的強度に優
れる分ζ1膜が要求されている。
Furthermore, membrane materials with a large gas permeability coefficient generally have low mechanical strength, making it difficult to form a thin film, and there is a drawback that the substantial permeation rate, which is calculated by dividing the gas permeability coefficient by the film thickness, cannot be increased. f! for the advancement and diversification of membrane separation processes. Therefore, there is a demand for a ζ1 film that has excellent heat resistance, chemical resistance, and mechanical strength.

このため、例えばピロメリット酸と芳香族ジアミ/ヤビ
フェニルテトラカルボン酸と芳香族ジアミンとから得ら
れる芳盾族ポリイミドからなる気体分離膜(特開昭49
−45152号公報、特開昭56−157455号公報
)、特定の芳香族コポリイミドの分離膜(特開昭60−
22902喝公報)などが提案されている。
For this reason, for example, a gas separation membrane made of an aromatic polyimide obtained from pyromellitic acid, aromatic diami/yabiphenyltetracarboxylic acid, and aromatic diamine (Japanese Unexamined Patent Publication No. 49
-45152, JP-A-56-157455), a separation membrane of a specific aromatic copolyimide (JP-A-60-1986),
22902) have been proposed.

発明−・:罫犬しようとする間−4点 (−かしながら、公知の芳香族ポリイミドからなる気体
分離膜は、・1村熱性、耐葵品性、機械的す〕ミ題、ま
た気体分離能は改良されるものの、気体透過係数、特に
水素ガスの透過係aは滴定できるものではなかった。
Invention: 4 points (-However, the gas separation membrane made of known aromatic polyimide has the following problems: heat resistance, heat resistance, mechanical properties, and gas Although the separation ability was improved, the gas permeability coefficient, especially the hydrogen gas permeation coefficient a, could not be titrated.

本発明は、′&北だ気体分離能を保ちながら、気体透過
係数のうちでも特に水素ガスの透過係故が犬さく、かつ
耐熱性、耐薬品性、機械的強度(て優れる気体分離膜を
提供することを目的とする。
The present invention provides a gas separation membrane that maintains excellent gas separation ability, has a particularly low hydrogen gas permeation coefficient, and has excellent heat resistance, chemical resistance, and mechanical strength. The purpose is to provide.

問題点を解決するだめの手段 本発明者らは、上記の問題点を解決するために鋭意研究
を行った結果、複素環式重合体であるポリパラバン酸系
重合体からなる膜が、気体分離能および水素ガスの透過
性が大きく、かつ耐熱性、耐薬品性、強度などに優れる
ことを見出し、本発明を完成した。
Means to Solve the Problems The present inventors have conducted intensive research to solve the above problems, and have found that a membrane made of polyparabanic acid polymer, which is a heterocyclic polymer, has a high gas separation ability. The present invention was completed based on the discovery that the material has high hydrogen gas permeability and excellent heat resistance, chemical resistance, strength, etc.

すなわち、本発明は、一般式 〔但し、Rは2価の有機基である〕 を繰り返し単位とする単独重合体または共重合体からな
り、かつ分離に有効な緻密層の厚みが20μm以下であ
る気体分離膜を要旨とする。
That is, the present invention consists of a homopolymer or copolymer having the general formula [wherein R is a divalent organic group] as a repeating unit, and the thickness of the dense layer effective for separation is 20 μm or less. The main topic is gas separation membranes.

本発明における上記一般式を繰り返し単位とする単独重
合体または共重合体としては、ポリパラバン酸系重合体
(以下PPAと略称する)があげられる。このPPAは
、例えば米国特許第八661.859号明細書、特公昭
47−19715号公報、特公昭49−12360号公
報などに間ホされているものである。上記一般式におけ
(ジフェニルメタン−a、a’−ジイル)、そして、そ
の重合体あるいは共重合体の固有粘度(DMF25℃で
)は、[14〜4.0のものが望ましく、高度に可撓性
のある膜を得るにはα6〜2.0のものが特に望ましい
。また、耐熱性分より向上させるためにはRとしてジフ
ェニルエーテル−4,/−ジイルをもつものが望ましい
Examples of the homopolymer or copolymer having the above general formula as a repeating unit in the present invention include a polyparabanic acid polymer (hereinafter abbreviated as PPA). This PPA is disclosed in, for example, U.S. Pat. In the above general formula, (diphenylmethane-a,a'-diyl) and its polymer or copolymer have an intrinsic viscosity (at DMF of 25°C) of [14 to 4.0], and are highly flexible. In order to obtain a film with good properties, α6 to 2.0 is particularly desirable. Further, in order to improve the heat resistance more than the heat resistance, it is desirable to have diphenyl ether-4,/-diyl as R.

固有粘度が低すざるときは、製膜したとき自己支持性に
劣り、一方、高すぎるときは重合体あるいは共重合体の
均一な製膜用ドープ液を調製することが困難となる。従
って、均一な気体分離膜全成形することが困難となる。
When the intrinsic viscosity is too low, self-supporting properties are poor when a film is formed, while when it is too high, it becomes difficult to prepare a uniform dope for forming a polymer or copolymer into a film. Therefore, it becomes difficult to form the entire gas separation membrane uniformly.

上記のような五i:L嫂の繰り返し単位を有する芳香族
複素環式重合体または共重合体であるPPAを用いるこ
とにより、気体分離膜に耐熱性および耐薬品性の機能を
付与すると共に機械的強度を向上し、特に芳香族系重合
体の分子間力の大きさにより分離特性の向上に必姿な緻
密な構造体を得ることができる。
By using PPA, which is an aromatic heterocyclic polymer or copolymer having the above-mentioned 5i:L repeating units, it is possible to impart heat-resistant and chemical-resistant functions to the gas separation membrane, as well as provide mechanical resistance. In particular, due to the large intermolecular force of aromatic polymers, it is possible to obtain a dense structure that is essential for improving separation characteristics.

また、本発明における気体分1iilf膜は、実質的に
細孔分有さない緻密層の厚みが20μ情以下で、望まし
くはα01〜20μm、より望ましくはα05〜10μ
毒である。気体分離膜の緻密層の厚みが20μmを越え
ると気体透過速度が不十分である。気体透過速度を犬き
くするためには、膜厚が薄い程よいが、−万、機械的強
度の点からtit厚い方が好渣しく、これらの観点から
緻密層の厚みは上記の範囲が望ましい。
Further, the gas content 1IILF membrane of the present invention has a dense layer having substantially no pores with a thickness of 20 μm or less, preferably α01 to 20 μm, more preferably α05 to 10 μm.
It's poisonous. If the thickness of the dense layer of the gas separation membrane exceeds 20 μm, the gas permeation rate will be insufficient. In order to increase the gas permeation rate, the thinner the film is, the better; however, from the point of view of mechanical strength, the thicker the film is, the better, and from these points of view, the thickness of the dense layer is preferably within the above range.

なお、気体分離膜は、膜全体が上記のような緻密ノーの
みからなる均質膜であってもよく、また、緻密層を多孔
質層に積層して支持した異方性膜であってもよく、さら
Kは緻密層と多孔質層とが一体となった異方性膜であっ
てもよい。
Note that the gas separation membrane may be a homogeneous membrane in which the entire membrane is composed of only dense layers as described above, or it may be an anisotropic membrane in which a dense layer is laminated and supported on a porous layer. , or K may be an anisotropic film in which a dense layer and a porous layer are integrated.

本発明における気体分離膜の利造方法は、特に制限はな
く公知の方法により平膜状、中空糸状、管状などの4毀
(・G瀾する。例えば、前記の重合体重だは共重合体(
以下重合体という)を有機溶媒に俗解して均一な製膜用
ドープ族をル′4製し、これを適宜の支持基材上に流延
塗布した後、常圧下または減圧下に常温または加熱処理
して溶媒を蒸発除去させるか、あるいけ溶媒の一部を蒸
発させた#膜を凝固浴中でゲル化させることにより得ら
れる。ここで、製膜用ドープ液?調袈するための有機溶
媒は、使用する種類によってドープ液の凝集状態が異な
るだめ、そのドープ族から成形される膜の気体透過性能
におよぼす影響が大きい。従って、有機溶媒の選定は重
要である。本発明にお・けるドープ11j73製用有機
f8mとしては、例えばジメチルホルムアミド、ジメチ
ルアセトアミド、N−メチル−2−ピロリドン、N−メ
チル−2−ピペリドン、ジメチルスルホキサイドなど?
あげることができるが、特にジメチルホルムアミドが好
″ましい。
The method for producing the gas separation membrane in the present invention is not particularly limited, and it can be made into a flat membrane shape, hollow fiber shape, tubular shape, etc. by a known method.
A uniform film-forming dope is prepared by using an organic solvent (hereinafter referred to as a polymer), and this is cast onto an appropriate support base material, and then heated at room temperature or under normal pressure or reduced pressure. It can be obtained by processing to remove the solvent by evaporation, or by gelling the membrane in which a part of the solvent has been evaporated in a coagulation bath. Here, dope liquid for film formation? The state of aggregation of the dope varies depending on the type of organic solvent used, and therefore has a large effect on the gas permeation performance of the membrane formed from the dope. Therefore, the selection of organic solvent is important. Examples of the organic f8m for dope 11j73 in the present invention include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-2-piperidone, and dimethylsulfoxide.
Among these, dimethylformamide is particularly preferred.

なお、重合体の溶液は、適当なフィルター?用いて固形
物の除去、あるいは真空脱泡などによって光分に脱泡し
で製1莫用ドープ液とすることが望ましい。
In addition, should the polymer solution be filtered through an appropriate filter? It is preferable to remove the solid matter using the dope, or to defoam it to light by vacuum degassing or the like to obtain a dope solution for production.

製膜用ドープ液から液状の薄膜を形成する方法は、公知
の流延製膜法が採用できる。例えば、表面が平滑な支持
基材(ガラス板、ステンレス板、アルミニウム板、銅板
、合成樹脂板など)の表面にドープ族を流延し、ドクタ
ーブレードによって均一に液状薄膜とする方法、平滑な
ロールまたはベルトの表面にドープ液を供給し、ドクタ
ーナイフで均一な厚さとして流延して薄膜を形成させる
方法などがあげられる。さらには、重合体をダイスより
押出して薄膜を形成させる方法も採用できる。
As a method for forming a liquid thin film from a film-forming dope, a known casting film-forming method can be employed. For example, a method of casting a dope onto the surface of a support substrate with a smooth surface (glass plate, stainless steel plate, aluminum plate, copper plate, synthetic resin plate, etc.) and uniformly forming a liquid thin film using a doctor blade, or using a smooth roll. Alternatively, a method may be used in which a dope solution is supplied to the surface of the belt and cast to a uniform thickness using a doctor knife to form a thin film. Furthermore, a method of forming a thin film by extruding the polymer through a die can also be adopted.

支持基材上に流延塗布した製膜用ドープ液の薄膜は、常
圧下または減圧下で、常温および加熱処理して溶媒を蒸
発して除去する。ここで、加熱処理は、ドープ族の溶媒
にもよるが、通常は室温から140℃の範囲で殆んどの
溶媒を蒸発させた後、150〜200℃に加熱して残存
する溶媒をさらに蒸発させることによって全体が均質で
緻密な層を有する均質膜が得られる。
The thin film of the film-forming dope solution cast onto the support substrate is removed by evaporation of the solvent by heat treatment at room temperature or under normal pressure or reduced pressure. Here, the heat treatment depends on the solvent of the dope group, but usually, most of the solvent is evaporated in the range from room temperature to 140°C, and then the remaining solvent is further evaporated by heating to 150 to 200°C. This results in a homogeneous film having a uniform and dense layer throughout.

また、上記の支持基材上のドープ族の薄膜から溶媒の一
部、通常は表面層のみを温度50℃〜溶媒の沸点以下、
好ましくは80℃〜溶媒の沸点−40℃の範囲で蒸発さ
せた後に、薄膜を支持基材ごと例えば温度O〜40℃の
水もしくは水と溶媒との混合液のような凝固浴中に5分
〜2時間浸漬させゲル化を行わせることにより、緻密層
と多孔質層とが一体となった異方性膜が得られる。
In addition, a part of the solvent, usually only the surface layer, is removed from the doped thin film on the support substrate at a temperature of 50°C to below the boiling point of the solvent.
After evaporation, preferably in the range from 80°C to the boiling point of the solvent -40°C, the thin film together with the supporting substrate is placed in a coagulation bath such as water or a mixture of water and solvent at a temperature of 0 to 40°C for 5 minutes. By immersing for ~2 hours to effect gelation, an anisotropic film in which a dense layer and a porous layer are integrated can be obtained.

発明の効果 本発明の気体分離膜は、耐熱性、耐薬品性、機械的強度
などに優れると共に、従来の気体分離膜に比べて、気体
分1iiIi能を損うことなく特に水素ガスの透過係数
が大きく、水素ガスと窒素ガスあるいはメタンガスなど
との分離性能が向上するものである。また、高温下にお
いても気体分離係数の低下が小さいという特徴がある。
Effects of the Invention The gas separation membrane of the present invention has excellent heat resistance, chemical resistance, mechanical strength, etc., and has a lower permeability coefficient, especially for hydrogen gas, without impairing the gas fraction 1iiiIi ability compared to conventional gas separation membranes. is large, and the separation performance between hydrogen gas and nitrogen gas or methane gas is improved. It is also characterized by a small decrease in gas separation coefficient even at high temperatures.

従って、酸素の富化はもちろん、高温での気体分離が要
求される合成ガスの調製やC,プロセスにおける気体分
離、石油精製および石油化学プロセスにおける廃ガスか
らの水素ガスの回収、さらにはバイオガスからのメタン
ガスの分離などの分野において好適に用いることができ
る。
Therefore, it is useful not only for oxygen enrichment but also for the preparation of synthesis gas that requires gas separation at high temperatures, gas separation in processes that require gas separation at high temperatures, recovery of hydrogen gas from waste gas in oil refining and petrochemical processes, and even biogas. It can be suitably used in fields such as separation of methane gas from.

実施例 以下に実施例をあげて本発明の詳細な説明する。Example The present invention will be described in detail below with reference to Examples.

実施例1 前記の重合体の一般式におけるRとしてジフェニルメタ
ン−4,4′−ジイル基を有する固イイ粘度1.0のP
PA iジメチルフォルムアミドに均一に溶解して8重
量%溶液を調製し、1過および脱泡して製膜用ドープ液
とした。この製膜用ドープ液ケガラス板上に流延塗布し
た後、室温の窒素気流中にて30時間、次いでI C1
mH17減圧下の70℃で12時間、さらに150℃に
て2時間乾燥して溶媒を蒸発除去17て厚み10μmの
均質な緻密層を有する膜を得だ。
Example 1 P with a solid viscosity of 1.0 having a diphenylmethane-4,4'-diyl group as R in the general formula of the above polymer
PA i was uniformly dissolved in dimethylformamide to prepare an 8% by weight solution, which was filtered once and defoamed to obtain a dope solution for film formation. After casting the film-forming dope onto a glass plate, the film-forming dope was cast in a nitrogen stream at room temperature for 30 hours, and then I C1
The mixture was dried at 70° C. for 12 hours under a reduced pressure of mH17 and then at 150° C. for 2 hours to remove the solvent by evaporation to obtain a film having a homogeneous dense layer with a thickness of 10 μm.

この膜を用いた気体透過速度の測定法は、膜の下流側を
真空状態にした後、膜の上流側から所定のガスを1 k
g/ cm ”の圧力で供給し、一定時間に1漠の下流
側に透過流出するガス量をガスクロマトグラフ法で評価
する気体透過率測定袋C’Z (Qi1本社製、GTR
−3a )を用いて行った。
The method for measuring gas permeation rate using this membrane is to create a vacuum on the downstream side of the membrane, and then inject a specified gas from the upstream side of the membrane for 1 k
Gas permeability measurement bag C'Z (manufactured by Qi1 headquarters, GTR
-3a).

この膜の30℃における各種気体に対する透過係数およ
び窒素ガス(一対する透過係数比(分離係数)を光−1
に示した。
The permeability coefficient of this film for various gases at 30°C and the permeability coefficient ratio (separation coefficient) for nitrogen gas (light -1
It was shown to.

表−1 また、上記の膜について100℃における各種気体に対
する透過係数および窒素ガスに対する透過係数比(分離
係数)を表−2に示した。
Table 1 Table 2 also shows the permeability coefficients for various gases and the permeability coefficient ratio (separation coefficient) for nitrogen gas at 100°C for the above membranes.

表−2 実1雀例2 実施例1において、PPAの溶媒をジメチルホルムアミ
ドに代りN−メチル−2−ピロリドンを用いた以外は実
が・4例1と同様にして製膜した。
Table 2 Example 2 A film was formed in the same manner as Example 1 except that N-methyl-2-pyrrolidone was used instead of dimethylformamide as the solvent for PPA in Example 1.

この膜の50℃における各種気体に対する透過係数L・
よび窒素ガスに対する透過係数比(分離係数)を表−3
に示しだ。
The permeability coefficient L of this membrane for various gases at 50°C
Table 3 shows the permeability coefficient ratio (separation coefficient) for and nitrogen gas.
It shows.

表−3 実施例3 実施例1で用い* ppAl 2. s yをジメチル
ホルムアミド87.57に溶解させ、′i濾過および脱
泡してドープ族を調製した。このドープ液を平滑なガラ
ス板上に流延し、ドクターブレードで厚さ200μ慣の
薄)漠を形成させ、その薄膜を90℃にて8分間保持し
た後、水とジメチルホルムアミドの等積混合溶媒系の凝
固浴に6℃にて2時間浸漬させた。次いで、メタノール
浴中に3時間浸漬させた後、100℃にて3時間熱風乾
燥して緻密層の厚みが1/1mの異方性膜を得た。
Table-3 Example 3 Used in Example 1* ppAl 2. The dope family was prepared by dissolving sy in dimethylformamide 87.57, filtered and defoamed. This dope solution was cast onto a smooth glass plate, and a thin film with a thickness of 200 μm was formed using a doctor blade. After holding the thin film at 90°C for 8 minutes, water and dimethylformamide were mixed in equal volumes. It was immersed in a solvent-based coagulation bath at 6° C. for 2 hours. Next, the film was immersed in a methanol bath for 3 hours and then dried with hot air at 100° C. for 3 hours to obtain an anisotropic film with a dense layer having a thickness of 1/1 m.

この膜の30℃における各種気体に対する3 3B速度
および窒素ガスに対する透過速度比(分離係数)を表−
4に示した。
The table below shows the 33B velocity for various gases and the permeation velocity ratio (separation coefficient) for nitrogen gas at 30°C for this membrane.
4.

表−4 比較例1 21反応器にピロメリツ)[に無水物272、a、4’
−−)7ミノジフエニルエーテル259およびN、N−
ジメチルアセトアミド576ノを仕込み、窒素ガス流通
下、9拌しながら室温下で2時間重合反応を行わせた。
Table 4 Comparative Example 1 21 Anhydride 272, a, 4'
--) 7minodiphenyl ether 259 and N,N-
576 g of dimethylacetamide was charged, and a polymerization reaction was carried out at room temperature for 2 hours while stirring under nitrogen gas flow.

得られた回付粘度05のポリアミック酸を含有する反応
液をドクターブレードで平滑なガラス板上に流延塗布し
、100℃にて1時;I、ij乾燥した後、200℃に
て2時間加熱しポリアミック酸をイミド環化して、15
μγrt19のポリイミド膜を得た。この膜の30℃V
こお・りる各種気体に対する透過係数お・よび窒素ガス
に対する透過係数比(分離係数)を表−5に示した。
The obtained reaction solution containing polyamic acid with a rolling viscosity of 05 was cast onto a smooth glass plate using a doctor blade, dried at 100°C for 1 hour, and then dried at 200°C for 2 hours. By heating and imide cyclizing polyamic acid, 15
A polyimide film of μγrt19 was obtained. 30℃V of this film
The permeability coefficients for various gases and permeability coefficient ratios (separation coefficients) for nitrogen gas are shown in Table 5.

表−5 以上Table-5 that's all

Claims (1)

【特許請求の範囲】 一般式 ▲数式、化学式、表等があります▼ 〔但し、Rは2価の有機基を示す〕 を繰り返し単位とする単独重合体または共重合体からな
り、かつ分離に有効な緻密層の厚みが20μm以下であ
る気体分離膜。
[Claims] Consisting of a homopolymer or copolymer having the general formula ▲numerical formula, chemical formula, table, etc.▼ [However, R represents a divalent organic group] as a repeating unit, and effective for separation. A gas separation membrane in which the thickness of the dense layer is 20 μm or less.
JP18407385A 1985-08-23 1985-08-23 Gas separation membrane Pending JPS6245319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18407385A JPS6245319A (en) 1985-08-23 1985-08-23 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18407385A JPS6245319A (en) 1985-08-23 1985-08-23 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPS6245319A true JPS6245319A (en) 1987-02-27

Family

ID=16146905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18407385A Pending JPS6245319A (en) 1985-08-23 1985-08-23 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS6245319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4091840B4 (en) * 1989-10-16 2005-03-17 Daicel Chemical Industries, Ltd., Sakai Polyparabanic acid membrane for selective separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4091840B4 (en) * 1989-10-16 2005-03-17 Daicel Chemical Industries, Ltd., Sakai Polyparabanic acid membrane for selective separation

Similar Documents

Publication Publication Date Title
JP2855668B2 (en) Polyimide separation membrane
CA1169193A (en) Gas separating material
US4485056A (en) Production of aromatic polyimide separating membranes
US4378324A (en) Process for preparing aromatic polyimide semipermeable membranes
EP0509260B1 (en) Composite or asymmetric fluorine-containing polyimide membrane, a process for manufacturing the same and a method for the separation and concentration of gas using the same
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
JPH07121343B2 (en) Gas separation hollow fiber membrane and method for producing the same
JPS6153103B2 (en)
JPS61133118A (en) Polyimide membrane for gas separation
EP0648812B1 (en) Blends of polyethersulfones with aromatic polyimides, polyamides or polyamide-imides and gas separation membranes made therefrom
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
JP2509962B2 (en) Polyimide separation membrane
JPH07114935B2 (en) Polyarylate separation membrane
JPH0331093B2 (en)
US5032279A (en) Separation of fluids using polyimidesiloxane membrane
JPH0685858B2 (en) Method for manufacturing separation membrane
JP3992345B2 (en) Separation membrane and olefin separation method using the same
JPS6311045B2 (en)
JPS6245319A (en) Gas separation membrane
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JPS63264121A (en) Polyimide membrane for separating gas
JPH0685860B2 (en) Separation membrane manufacturing method
JP2827212B2 (en) Polyamideimide separation membrane
JPS6223972B2 (en)
JP2874178B2 (en) Aromatic polyimide separation membrane