JPS6151934B2 - - Google Patents

Info

Publication number
JPS6151934B2
JPS6151934B2 JP4573781A JP4573781A JPS6151934B2 JP S6151934 B2 JPS6151934 B2 JP S6151934B2 JP 4573781 A JP4573781 A JP 4573781A JP 4573781 A JP4573781 A JP 4573781A JP S6151934 B2 JPS6151934 B2 JP S6151934B2
Authority
JP
Japan
Prior art keywords
group
mol
acid
polyquinazolone
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4573781A
Other languages
Japanese (ja)
Other versions
JPS57159505A (en
Inventor
Masao Abe
Takashi Ichinose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP4573781A priority Critical patent/JPS57159505A/en
Publication of JPS57159505A publication Critical patent/JPS57159505A/en
Publication of JPS6151934B2 publication Critical patent/JPS6151934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はポリキナゟロン系重合䜓からなる気䜓
分離膜に関する。 近幎、省資源、省゚ネルギヌの芳点から有機重
合䜓膜による気䜓分離、特に空気の酞玠富化が泚
目されおいるが、埓来知られおいる酞玠富化甚膜
は酞玠の透過速床が小さすぎ、或いは窒玠に察す
る酞玠の透過係数比が小さいため、工業的な芏暡
で酞玠富化を行なうには適しない。䟋えばポリゞ
メチルシロキサンは酞玠の透過係数が10-8cm3
STP・cmcm2・sec・cmHg台であ぀お、埓来知
られおいる重合䜓膜のなかでは最倧であるが、窒
玠に察する透過係数比が粟々皋床であ぀お、酞
玠の遞択透過性又は分離性に劣り、高濃床の酞玠
を埗ようずすれば倚段の膜凊理を芁するこずずな
り、装眮、費甚のいずれの点からも実甚的でな
い。たた、この膜は機械的匷床が小さく、比范的
厚い膜を甚いる必芁があり、埓぀お、透過係数は
倧きくずも、透過速床を倧きくするこずができな
い。 このため特公昭47―51715号公報にはポリビニ
ルトリメチルシランからなる酞玠富化膜が提案さ
れおおり、酞玠の窒玠に察する透過係数比はポリ
ゞメチルシロキサンの玄倍に改善されおいる
が、耐薬品性に劣り、空気䞭の汚染物質、ポンプ
類からの油等により劣化しやすい欠点がある。 たた、近幎、酞玠富化膜に加えお、所謂C1化
孊の展開に䌎い、合成ガスからの気䜓分離膜が必
芁ずされるに至぀おおり、特にこのような気䜓分
離膜は100〜200℃での高い枩床䞋で甚いられるの
で、極めお高い耐熱性が芁求される。 本発明者らは䞊蚘に鑑みお鋭意研究した結果、
ポリキゟロン系重合䜓よりなる膜が気䜓の遞択透
過性、透過速床、耐薬品性、耐熱性、加工性、機
械的匷床にすぐれおいるこずを芋出し、本発明に
倒達したものである。 本発明の気䜓分離膜は、䞀般匏 䜆し、R1は䟡の有機基、R2はそれぞれ独
立にアルキル基又は芳銙族基、R3は
䟡の有機基、は―COOH、―SO3H又はこれら
の金属塩を瀺し、は単䜍ごずに独立に又は
〜の敎数を瀺す。 で衚わされるビスキナゟロン単䜍を繰返し単䜍ず
しお有するポリキナゟロン系重合䜓よりなるこず
を特城ずする。 䞊蚘䞀般匏で衚わされるポリキナゟロン
系重合䜓においお、R1は䟡の芳銙族基であ
り、奜たしくは
The present invention relates to a gas separation membrane made of a polyquinazolone polymer. In recent years, gas separation using organic polymer membranes, especially oxygen enrichment of air, has been attracting attention from the viewpoint of resource and energy conservation.However, conventional oxygen enrichment membranes have an oxygen permeation rate that is too low or Since the permeability coefficient ratio of oxygen to nitrogen is small, it is not suitable for oxygen enrichment on an industrial scale. For example, polydimethylsiloxane has an oxygen permeability coefficient of 10 -8 cm 3
(STP)・cm/cm 2・sec・cmHg, which is the highest among conventionally known polymer membranes, but the permeability coefficient ratio for nitrogen is at most about 2, and the selective permeation of oxygen This method has poor performance and separation properties, and requires multistage membrane treatment in order to obtain a high concentration of oxygen, making it impractical in terms of both equipment and cost. Furthermore, this membrane has low mechanical strength and requires the use of a relatively thick membrane. Therefore, even if the permeation coefficient is large, the permeation rate cannot be increased. For this reason, Japanese Patent Publication No. 47-51715 proposed an oxygen-enriched membrane made of polyvinyltrimethylsilane, which improved the permeability coefficient ratio of oxygen to nitrogen to about twice that of polydimethylsiloxane, but was chemically resistant. It has the disadvantage of being easily degraded by pollutants in the air, oil from pumps, etc. Additionally, in recent years, in addition to oxygen enrichment membranes, with the development of so-called C1 chemistry, gas separation membranes from synthesis gas have become necessary. Because it is used at high temperatures, extremely high heat resistance is required. As a result of intensive research in view of the above, the present inventors found that
The present invention was achieved based on the discovery that membranes made of polyxolone polymers have excellent gas permselectivity, permeation rate, chemical resistance, heat resistance, processability, and mechanical strength. The gas separation membrane of the present invention has the general formula (However, R 1 is a tetravalent organic group, R 2 is each independently an alkyl group or an aromatic group, and R 3 is (p+2)
A valent organic group, Z represents -COOH, -SO 3 H or a metal salt thereof, and p is independently 0 or 1 for each unit.
Indicates an integer of ~4. ) It is characterized by being made of a polyquinazolone polymer having bisquinazolone units represented by the following as repeating units. In the polyquinazolone polymer represented by the above general formula (), R 1 is a tetravalent aromatic group, preferably

【匏】【formula】

【匏】又は[Formula] or

【匏】 である。は䟡の二぀の芳銙族基を結合しお
䟡の芳銙族基を圢成する有機結合基であ぀お、具
䜓䟋ずしお、―CH2―、―CH32―、―CO
―、―SO2―――、――、―NH―、―COO
―、―CONH―等を挙げるこずができる。 R2はアルキル基又は芳銙族基であり、奜たし
くは炭玠数〜のアルキル基、特に奜たしくは
メチル基、又はプニル基である。䞊蚘繰返し単
䜍䞭に二぀のR2が結合されおいるが、必らずし
も䞡方共同じである必芁はない。 次に、R3は䟡の有機基、詳しくは芳銙族、
脂肪族若しくは脂環族の䟡の有機基、又はこれ
らの基が有機結合基にお結合されおいる䟡の
有機基である。ここに結合基の具䜓䟋ずしおは
―CH2―、―CH32―、―CO―、―SO2―、
――、―NH―、――、―CONH―、―COO
―、
[Formula] is. X combines two divalent aromatic groups to form 4
An organic bonding group that forms a valent aromatic group, and specific examples include -CH 2 -, -C(CH 3 ) 2 -, -CO
―, ―SO 2 ―O―, ―S―, ―NH―, ―COO
-, -CONH-, etc. can be mentioned. R2 is an alkyl group or an aromatic group, preferably an alkyl group having 1 to 4 carbon atoms, particularly preferably a methyl group or a phenyl group. Although two R2 's are bonded in the above repeating unit, they do not necessarily have to be the same. Next, R 3 is a divalent organic group, specifically an aromatic group,
It is an aliphatic or alicyclic divalent organic group, or a divalent organic group in which these groups are bonded via an organic bonding group Y. Here, specific examples of the bonding group Y are -CH 2 -, -C(CH 3 ) 2 -, -CO-, -SO 2 -,
-O-, -NH-, -S-, -CONH-, -COO
--,

【匏】【formula】

【匏】 䜆し、R4及びR5はそれぞれ独立に炭玠数
〜10のアルキル基、炭玠数〜10のシクロアルキ
ル基又はプニル基を瀺す。 等を挙げるこずができる。 R3は奜たしくは芳銙族基であり、であ
る堎合、即ち、繰返し単䜍が 䜆し、R1、R2及びR3は前蚘ず同じである。 である堎合、奜たしい具䜓䟋ずしお
[Formula] (However, R 4 and R 5 each independently have a carbon number of 1
~10 alkyl group, cycloalkyl group having 3 to 10 carbon atoms, or phenyl group. ) etc. R 3 is preferably an aromatic group and when p=0, i.e. the repeating unit is (However, R 1 , R 2 and R 3 are the same as above.) In the case where

【匏】【formula】

【匏】【formula】

【匏】 䜆し、は前蚘ず同じである。 等を挙げるこずができる。 埓぀お、単䜍の奜たしい具䜓䟋ずしお を挙げるこずができる。 単䜍を繰返し単䜍ずするポリキナゟロ
ン系重合䜓は、䞀般匏 䜆し、R1及びR2は前蚘ず同じである。 で衚わされるビスオキサゞノンず、このビスオキ
サゞノンモルに察しお0.95〜1.08モル、奜たし
くはほがモルの䞀般匏 H2N―R3―NH2 () 䜆し、R3は前蚘ず同じである。 で衚わされるゞアミンずを、有機溶剀䞭、加熱䞋
に反応させるこずにより埗られる。 䞊蚘䞀般匏で衚わされるビスオキサゞノ
ンにおいおR1及びR2は前蚘したずおりであり、
本発明においお奜たしく甚いられるビスオキサゞ
ノンの具䜓䟋ずしお、 等を挙げるこずができる。 たた、䞊蚘䞀般匏で衚わされるゞアミン
におけるR3は前蚘ず同じであり、ゞアミンの具
䜓䟋ずしお―プニレンゞアミン、―プニ
レンゞアミン、4′―ゞアミノゞプニルメタ
ン、4′―ゞアミノゞプニル゚ヌテル、
4′―ゞアミノゞプニル゚ヌテル―4′―ゞア
ミノゞプニルスルフむド、4′―ゞアミノゞ
プニルスルホン、―ビス―アミノプノ
キシベンれン、―ビス―アミノプノキ
シベンれン、N′―ピペラゞン―ビス―
―アミノ安息銙酞アミド、―キシリレンゞ
アミン、―キシリレンゞアミン、ビス―ア
ミノシクロヘキシルメタン、ヘキサメチレンゞ
アミン、ヘプタメチレンゞアミン、オクタメチレ
ンゞアミン、―ゞアミノシクロヘキサン、
ビス―アミノプニルゞ゚チルシラン、ビ
ス―アミノプロピルテトラメチルゞシロキ
サン等を挙げるこずができ、これらは単独で又は
混合物ずしお甚いられる。 前蚘ビスオキサゞノンの補造方法は、䟋えば、
J.Polymer Sci.60 591962や工業化孊
雑誌7312391970等に蚘茉されおいるよう
に、既に知られおおり、通垞は、䞀般匏 䜆し、R1は前蚘ず同じである。 で衚わされる芳銙族ゞアミノゞカルボン酞ず、䞀
般匏 䜆し、R2は前蚘ず同じ。 で衚わされる脂肪族カルボン酞無氎物、又は䞀般
匏 R2―COCl 䜆し、R2は前蚘ず同じ。 で衚わされる芳銙族カルボン酞塩化物ず反応させ
お埗られる。 通垞、䞊蚘芳銙族ゞアミノゞカルボン酞ずしお
は、―ゞアミノむ゜フタル酞、―ゞ
アミノテレフタル酞、―ゞアミノテレフタ
ル酞、䞀般匏 䜆し、は前蚘ず同じである。 で衚わされるゞアミノゞカルボン酞等が、酞無氎
物ずしおは無氎酢酞等が、たた、酞塩化物ずしお
は塩化ベンゟむル等が甚いられる。 ビスオキサゞノンずゞアミンずの瞮合反
応は溶剀䞭、加熱するこずにより行なわれる。溶
剀ずしおは、ビスオキサゞノンずゞアミンずを溶
解し埗るず共に、これらに察しお䞍掻性であり、
䞔぀、奜たしくは、生成するポリキナゟロン系重
合䜓をも溶解し埗、曎に、反応系を酞性環境に保
぀ものが甚いられる。奜たしい溶剀の具䜓䟋ずし
おは―クレゟヌル、―クレゟヌル等のクレゟ
ヌル、―クロルプノヌル、―クロルプノ
ヌル等のクロルプノヌル、ポリリン酞、硫酞等
であり、これらは単独で、又は混合しお甚いられ
る。必芁ならば、これらの溶剀ずベンれン、トル
゚ン、キシレン、クロルベンれン、ナフサ等の非
極性炭化氎玠溶剀ずの混合溶剀も甚いられる。 原料に察する溶剀の䜿甚量は特に制限されない
が、通垞、ビスオキサゞノンずゞアミンずの合蚈
量100重量郚圓り、60〜900重量郚である。ビスオ
キサゞノンずゞアミンずの反応枩床及び反応時間
は、甚いるこれらの原料の皮類や溶剀の皮類によ
぀おも異なるが、通垞は100〜300℃の枩床で〜
50時間反応させる。 次に、が〜の敎数である堎合のR3、
及びの奜たしい具䜓䟋ずしお
[Formula] (However, Y is the same as above.) etc. can be mentioned. Therefore, as a preferred specific example of unit (a), can be mentioned. A polyquinazolone polymer having unit (a) as a repeating unit has the general formula (However, R 1 and R 2 are the same as above.) Bisoxazinone represented by the general formula H 2 N—R 3 —NH in an amount of 0.95 to 1.08 mol, preferably approximately 1 mol per mol of this bisoxazinone. 2 () (However, R 3 is the same as above.) It is obtained by reacting the diamine represented by the following in an organic solvent under heating. In the bisoxazinone represented by the above general formula (), R 1 and R 2 are as described above,
Specific examples of bisoxazinone preferably used in the present invention include: etc. can be mentioned. Further, R 3 in the diamine represented by the above general formula () is the same as above, and specific examples of the diamine are m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4, 4′-diaminodiphenyl ether, 3,
4'-diaminodiphenyl ether-4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, p-bis(4-aminophenoxy)benzene, m-bis(4-aminophenoxy)benzene, N,N'-piperazine-bis-
(p-aminobenzoic acid amide), m-xylylenediamine, p-xylylenediamine, bis(4-aminocyclohexyl)methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, 1,4-diaminocyclohexane,
Examples include bis(4-aminophenyl)diethylsilane and bis(3-aminopropyl)tetramethyldisiloxane, which may be used alone or as a mixture. The method for producing bisoxazinone includes, for example,
As described in J. Polymer Sci., 60 , S 59 (1962) and Industrial Chemistry Journal 73 , 1239 (1970), it is already known, and usually the general formula (However, R 1 is the same as above.) An aromatic diaminodicarboxylic acid represented by the general formula (However, R 2 is the same as above.) or an aromatic carboxylic acid chloride represented by the general formula R 2 -COCl (However, R 2 is the same as above.) You can get it. Usually, the above-mentioned aromatic diaminodicarboxylic acids include 4,6-diaminoisophthalic acid, 2,5-diaminoterephthalic acid, 2,3-diaminoterephthalic acid, general formula (However, Y is the same as above.) Diaminodicarboxylic acids represented by the following are used, acetic anhydride and the like are used as acid anhydrides, and benzoyl chloride and the like are used as acid chlorides. The condensation reaction between bisoxazinone and diamine (2) is carried out in a solvent by heating. As a solvent, it is capable of dissolving bisoxazinone and diamine, and is inert to them.
Preferably, one is used that can also dissolve the produced polyquinazolone polymer and further maintains the reaction system in an acidic environment. Specific examples of preferred solvents include cresols such as p-cresol and m-cresol, chlorophenols such as p-chlorophenol and o-chlorophenol, polyphosphoric acid, and sulfuric acid, which may be used alone or in combination. It will be done. If necessary, a mixed solvent of these solvents and a nonpolar hydrocarbon solvent such as benzene, toluene, xylene, chlorobenzene, or naphtha may also be used. The amount of solvent used for the raw materials is not particularly limited, but is usually 60 to 900 parts by weight per 100 parts by weight of the total amount of bisoxazinone and diamine. The reaction temperature and reaction time between bisoxazinone and diamine vary depending on the types of these raw materials and the type of solvent used, but are usually 5 to 30 minutes at a temperature of 100 to 300°C.
Incubate for 50 hours. Next, R 3 and Z when p is an integer from 1 to 4
As a preferred example of and p

【匏】【formula】

【匏】【formula】

等を挙げるこずができる。 前蚘単䜍ず次の䞀般匏で衚わされる単
䜍 䜆し、R1、R2、R3及びは前蚘ず同じであ
るが、は〜の敎数を瀺す。 ずを䜵せ有するポリキナゟロン系重合䜓は、ゞア
ミンの䞀郚を芪氎基を有するゞアミンに
眮換するこずにより、同様に埗られる。即ち、前
蚘䞀般匏で衚わされるビスオキサゞノン
ず、䞀般匏で衚わされるゞアミンず、䞀般
匏 䜆し、R3は前蚘ず同じであり、は〜
の敎数を瀺す。 で衚わされるゞアミンずを、前蚘ビスオキ
サゞノンモルに察するこれらゞアミンの合蚈量
のモル比を0.95〜1.08、奜たしくはほがの条件
䞋に、前蚘有機溶剀䞭、加熱䞋に反応させる。反
応条件は同じでよい。 䞊蚘䞀般匏で衚わされる芳銙族ゞアミン
の具䜓䟋ずしおは、―ゞアミノ安息銙酞、
4′―ゞアミノゞプニルメタン―3′―ゞ
カルボン酞、―ゞアミノベンれンスルホン
酞、3′―ベンゞゞンゞカルボン酞、N′―
ビス―アミノベンゟむル――ゞアミ
ノ安息銙酞、む゜フタル――アミノ――カル
ボキシアニリド、3′―ベンゞゞンゞスルホン
酞、4′―ゞアミノゞプニルメタン―
3′―ゞスルホン酞等を挙げるこずができる。 たた、有利には、本発明においお甚いるポリキ
ナゟロン系重合䜓は、本発明者らが既に明らかに
したように特願昭55―86794号、ビスオキサゞ
ノンず前蚘ゞアミン成分及び必芁に応じお
ずを奜たしくはルむス酞觊媒ず含リン脱氎
剀を䜿甚し、非プロトン性極性有機溶剀䞭で加熱
しお反応させるこずによ぀お埗られる。非プロト
ン性極性有機溶剀ずしおは、䟋えば―メチル―
―ピロリドン、ゞメチルアセトアミド、ゞメチ
ルホルムアミド、ゞメチルスルホキシド等が甚い
られる。溶剀の䜿甚量は特に制限されないが、ビ
スオキサゞノンずゞアミン成分の合蚈量10〜50重
量、奜たしくは20〜30重量ずなるように甚い
られる。 ルむス酞觊媒ずしおは無氎塩化第䞀スズ、無氎
塩化第二銅、無氎塩化コバルト、無氎塩化第二
鉄、無氎塩化ニツケル等の金属ハロゲン化物、特
に塩化物が奜適に甚いられる。觊媒の䜿甚量はビ
スオキサゞノン又はゞアミンモルに぀いお
0.002〜0.2モル、奜たしくは0.01〜0.1モルであ
る。觊媒量が䜙りに倚いずきはゲル化が起こるの
で奜たしくない。 含リン脱氎剀ずしおは五酞化リン、リン酞、メ
タリン酞、亜リン酞、次リン酞、次亜リン酞、ピ
ロリン酞、ポリリン酞等が挙げられるが、奜たし
くは五酞化リンが甚いられる。脱氎剀の䜿甚量は
ビスオキサゞノンモルに぀いお、0.001〜0.4モ
ル、奜たしくは0.01〜0.2モルである。脱氎剀は
ゲル化を有効に防止する。 酞性基を有するゞアミンはそれ自身がビスオキ
サゞノンずゞアミンずの重合反応においお觊媒䜜
甚を有する。埓぀お、ゞアミン成分が少なくずも
䞀郚がゞアミンであるずきには、特にルむ
ス酞觊媒を甚いなくずも、高分子量ポリキナゟロ
ン系重合䜓を埗るこずができる。 重合反応は、奜たしくは溶剀にベンれン、キシ
レン、トル゚ン等の氎ず共沞し埗る炭化氎玠溶剀
を加え、重合により生成する反応氎を共沞によ぀
お系倖に陀去しながら、行なわせる。重合反応の
枩床は150〜200℃、時間は数時間乃至数十時間で
あり、普通、100時間以内で十分である。 本発明においお、単䜍を繰返し単䜍ずす
るポリキナゟロン系重合䜓はいずれも極限粘床が
0.30〜1.50、奜たしくは0.4〜1.0の範囲にあるの
がよい。極限粘床が小さすぎるず、気䜓分離膜ず
したずきに自己支持性に劣り、機械的匷床が十分
でないからであり、䞀方、極限粘床が倧きすぎる
ず、均䞀なドヌプ補膜液が埗難く、補膜が容
易でないからである。 本発明においおは、単䜍は党単䜍の
〜70モルを占めおよい。単䜍が䜙りに
倚くなるず、埗られる気䜓分離が実甚的匷床に劣
るようになるので奜たしくない。 単䜍からなるポリキナゟロン系重合䜓
は、重合反応溶剀ずしお䟋瀺したような有機溶剀
を陀いおほずんどの有機溶剀に䞍溶性であ぀お、
極めおすぐれた耐薬品性を有しおいる。曎に、こ
の重合䜓は450℃たで加熱しおも重量枛少がみら
れず、極めおすぐれた耐熱性を有しおいる。 本発明による気䜓分離膜は皮々の方法によ぀お
補造するこずができるが、普通は、䞊蚘ポリキナ
ゟロン系重合䜓を補膜液溶剀に溶解しお均䞀な補
膜液ずし、これを適宜の支持基材に流延塗垃した
埌、加熱凊理、又は枛圧䞋に加熱凊理しお溶剀を
蒞発させお均質な膜ずする。 気䜓の透過速床を倧きくするためには膜厚は薄
い皋奜たしいが、䞀方、機械的匷床の点からは厚
い方が奜たしく、これらの芳点から膜厚は0.05〜
30Όが望たしい。埓぀お、補膜液の重合䜓濃床は
13重量以䞋がよい。 補膜液溶剀は重合反応溶剀ず同様にゞメチルス
ルホキシド、―メチル――ピロリドン、
―ゞメチルアセトアミド、―ゞメチルホ
ルムアミド等の非プロトン性極性有機溶剀が奜た
しい。 ドヌプを塗垃するための支持基材は特に限定さ
れない。ガラス、ステンレス、アルミニりム、ポ
リ゚チレン、ポリプロピレン等で䟋瀺される材料
からなる平滑な衚面を有する板郚材が䟋瀺され
る。 補膜液を支持基材に塗垃埌、加熱する枩床は補
膜液溶剀にもよるが、䞊蚘非プロトン性極性有機
溶剀の堎合には80〜140℃、奜たしくは100〜120
℃である。特に奜たしくはこのような枩床範囲で
溶剀のほずんどを蒞発させた埌、150〜170℃皋床
に昇枩しお溶剀を完党に蒞発させる。必芁なら
ば、この埌、膜ず支持基材を氎䞭に浞挬しお、膜
を基材から剥離するこずができる。 本発明の気䜓分離膜は、前蚘したように耐薬品
性、耐熱性にすぐれおいるず共に、埌述する実斜
䟋にみられるように、倧きい気䜓透過係数ず分離
係数を有し、曎に機械的匷床にもすぐれおいるの
で、酞玠富化は勿論、C1化孊における高枩での
気䜓分離にも奜適に甚いるこずができる。 以䞋に本発明の実斜䟋を挙げるが、本発明はこ
れらに限定されるものではない。尚、以䞋の実斜
䟋においお、気䜓の透過係数は25℃で高真空法
により求めたものであり、分離係数αは25℃にお
ける圓該気䜓の透過係数窒玠の透過係数N
から求めたものである。 実斜䟋  撹拌機、窒玠ガス導入装眮、反応生成氎抜取り
装眮付き還流冷华噚及び250℃の枩床たで加熱可
胜な倖套济を備えたフラスコに―メチル――
ピロリドン85を仕蟌み、五酞化リン0.39を添
加、溶解した。次に、䞋蚘構造 のビスオキサゞノン18.390.055モルず、
4′―ゞアミノゞプニル゚ヌテル8.81
0.044モル及び4′―ゞアミノゞプニルメ
タン―3′―ゞカルボン酞3.150.011モル
を溶解させた。共沞脱氎溶剀ずしおキシレン14
を加え、窒玠気流䞋、180℃に加熱し、キシレン
を還流させ、反応生成氎を共沞によ぀お連続的に
陀去し぀぀、15時間反応を行な぀お、粘皠な重合
䜓溶液を埗た。この重合䜓溶液を倧量の氎䞭に投
入しお重合䜓を凝固、沈殿させ、ミキサヌを甚い
お氎䞭で激しく撹拌、粉砕した。この粉末を別
した埌、60℃で10時間真空也燥し、察数粘床0.71
のポリキナゟロンを埗た。このポリキナゟロンは
80モルのビスキナゟロン単䜍 ず20モルのビスキナゟロン単䜍 ずを有しおいる。 次に、このポリキナゟロン10を―メチル―
―ピロリドン90に溶解した埌、平均孔埄10ÎŒ
の玙を甚いお加圧過し、異物等を陀去した。
この重合䜓溶液をガラス板䞊に流延塗垃した埌、
真空也燥機内で宀枩で時間、曎に90℃で10時間
也燥させお溶剀を陀去した。氎䞭に浞挬しおポリ
キナゟロン膜を剥離し、80℃で真空也燥しお、厚
み13Όの膜を埗た。この膜の気䜓透過性を衚に瀺
す。
etc. can be mentioned. The above unit (a) and a unit represented by the following general formula (However, R 1 , R 2 , R 3 and Z are the same as above, and p is an integer of 1 to 4.) It can be similarly obtained by substituting with a diamine having a group Z. That is, the bisoxazinone represented by the general formula (), the diamine represented by the general formula (), and the general formula (However, R 3 is the same as above, p is 1 to 4
indicates an integer. ) is reacted with the diamine ( ) represented by the above in the organic solvent under heating under conditions such that the molar ratio of the total amount of these diamines to 1 mole of the bisoxazinone is 0.95 to 1.08, preferably approximately 1. The reaction conditions may be the same. Specific examples of the aromatic diamine represented by the above general formula () include 3,5-diaminobenzoic acid,
4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 3,5-diaminobenzenesulfonic acid, 3,3'-benzidinedicarboxylic acid, N,N'-
Bis(p-aminobenzoyl)-3,5-diaminobenzoic acid, isophthal-3-amino-5-carboxyanilide, 3,3'-benzidine disulfonic acid, 4,4'-diaminodiphenylmethane-3,
Examples include 3'-disulfonic acid. Furthermore, advantageously, the polyquinazolone polymer used in the present invention includes bisoxazinone, the diamine component (), and optionally ( ), preferably using a Lewis acid catalyst and a phosphorus-containing dehydrating agent, and by heating and reacting in an aprotic polar organic solvent. Examples of the aprotic polar organic solvent include N-methyl-
2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, etc. are used. The amount of the solvent used is not particularly limited, but it is used so that the total amount of bisoxazinone and diamine components is 10 to 50% by weight, preferably 20 to 30% by weight. As the Lewis acid catalyst, metal halides, particularly chlorides, such as anhydrous stannous chloride, anhydrous cupric chloride, anhydrous cobalt chloride, anhydrous ferric chloride, and anhydrous nickel chloride are preferably used. The amount of catalyst used is per mole of bisoxazinone or diamine.
The amount is 0.002 to 0.2 mol, preferably 0.01 to 0.1 mol. If the amount of catalyst is too large, gelation will occur, which is not preferable. Examples of the phosphorus-containing dehydrating agent include phosphorus pentoxide, phosphoric acid, metaphosphoric acid, phosphorous acid, hypophosphoric acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, etc., but phosphorus pentoxide is preferably used. The amount of the dehydrating agent used is 0.001 to 0.4 mol, preferably 0.01 to 0.2 mol, per 1 mol of bisoxazinone. Dehydrating agents effectively prevent gelation. Diamine having an acidic group itself has a catalytic effect in the polymerization reaction between bisoxazinone and diamine. Therefore, when at least a portion of the diamine component is diamine (), a high molecular weight polyquinazolone polymer can be obtained without particularly using a Lewis acid catalyst. The polymerization reaction is preferably carried out by adding a hydrocarbon solvent capable of azeotroping with water, such as benzene, xylene, toluene, etc., to the solvent, and removing reaction water produced by the polymerization from the system by azeotropy. The temperature of the polymerization reaction is 150 to 200°C, and the time is from several hours to several tens of hours, and usually within 100 hours is sufficient. In the present invention, all polyquinazolone polymers having unit () as a repeating unit have an intrinsic viscosity of
It is preferably in the range of 0.30 to 1.50, preferably 0.4 to 1.0. If the intrinsic viscosity is too small, the self-supporting properties will be poor when used as a gas separation membrane, and the mechanical strength will not be sufficient. On the other hand, if the intrinsic viscosity is too large, it will be difficult to obtain a uniform dope (film-forming liquid). This is because film formation is not easy. In the present invention, the unit (b) is 0 of all units.
It may account for ~70 mol%. If the number of units (b) is too large, the resulting gas separation will be inferior in practical strength, which is not preferable. The polyquinazolone polymer consisting of the unit () is insoluble in most organic solvents except for those exemplified as polymerization reaction solvents, and
It has extremely excellent chemical resistance. Furthermore, this polymer shows no weight loss even when heated to 450°C, and has extremely excellent heat resistance. The gas separation membrane according to the present invention can be produced by various methods, but usually, the polyquinazolone polymer is dissolved in a membrane-forming liquid solvent to form a uniform membrane-forming liquid, and this is mixed with an appropriate support base. After the material is cast and coated, the solvent is evaporated by heat treatment or heat treatment under reduced pressure to form a homogeneous film. In order to increase the gas permeation rate, the thinner the film is, the more preferable it is, but on the other hand, from the point of view of mechanical strength, the thicker the better, and from these points of view, the film thickness should be 0.05~
30Ό is desirable. Therefore, the polymer concentration of the membrane forming solution is
The content should preferably be 13% by weight or less. The membrane forming solution solvent is dimethyl sulfoxide, N-methyl-2-pyrrolidone, N,
Aprotic polar organic solvents such as N-dimethylacetamide and N,N-dimethylformamide are preferred. The supporting base material for applying the dope is not particularly limited. Examples include plate members having smooth surfaces made of materials such as glass, stainless steel, aluminum, polyethylene, and polypropylene. The temperature at which the membrane forming solution is heated after being applied to the support substrate depends on the membrane forming solution solvent, but in the case of the above aprotic polar organic solvent, it is 80 to 140°C, preferably 100 to 120°C.
It is ℃. Particularly preferably, most of the solvent is evaporated in this temperature range, and then the temperature is raised to about 150 to 170°C to completely evaporate the solvent. If desired, the membrane and supporting substrate can then be immersed in water to peel the membrane from the substrate. The gas separation membrane of the present invention has excellent chemical resistance and heat resistance as described above, and has a large gas permeability coefficient and separation coefficient as seen in the examples described later, and also has high mechanical strength. Because of its excellent properties, it can be suitably used not only for oxygen enrichment but also for gas separation at high temperatures in C1 chemistry. Examples of the present invention are listed below, but the present invention is not limited thereto. In the following examples, the gas permeability coefficient P is determined by the high vacuum method at 25°C, and the separation coefficient α is the gas permeability coefficient at 25°C/nitrogen permeability coefficient (P N
2 ). Example 1 N-methyl-2- was placed in a flask equipped with a stirrer, a nitrogen gas introduction device, a reflux condenser with a reaction product water extraction device, and a jacket bath capable of heating up to a temperature of 250°C.
85 g of pyrrolidone was charged, and 0.39 g of phosphorus pentoxide was added and dissolved. Next, the structure below 18.39 g (0.055 mol) of bisoxazinone,
4,4′-diaminodiphenyl ether 8.81g
(0.044 mol) and 3.15 g (0.011 mol) of 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid
was dissolved. 14g xylene as azeotropic dehydration solvent
was added and heated to 180°C under a nitrogen stream to reflux the xylene, and the reaction was carried out for 15 hours while continuously removing the reaction product water by azeotropy to obtain a viscous polymer solution. Ta. This polymer solution was poured into a large amount of water to coagulate and precipitate the polymer, which was then vigorously stirred and pulverized in water using a mixer. After separating this powder, it was vacuum dried at 60℃ for 10 hours, and the logarithmic viscosity was 0.71.
of polyquinazolone was obtained. This polyquinazolone
80 mol% bisquinazolone units and 20 mol% bisquinazolone units It has Next, 10g of this polyquinazolone was added to N-methyl-
After dissolving in 90g of 2-pyrrolidone, the average pore size is 10Ό.
Pressure was applied using paper to remove foreign matter.
After casting this polymer solution onto a glass plate,
The solvent was removed by drying in a vacuum dryer at room temperature for 5 hours and then at 90°C for 10 hours. The polyquinazolone membrane was peeled off by immersion in water and vacuum dried at 80°C to obtain a membrane with a thickness of 13 Όm. The gas permeability of this membrane is shown in the table.

【衚】 実斜䟋  撹拌機、窒玠ガス導入装眮、反応生成氎抜取り
装眮付き還流噚及び250℃の枩床たで加熱可胜な
倖套济を備えたフラスコに―メチル――ピロ
リドン74.8を仕蟌み、重合觊媒ずしお無氎塩化
第䞀スズ600mg0.003モルを加え、曎に脱氎剀
ずしお五酞化リン426mg0.003モルを加えお溶
解した。次に、実斜䟋ず同じビスオキサゞノン
20.10.06モルず4′―ゞアミノゞプニ
ル゚ヌテル12.00.06モルを加えお溶解し、
曎に共沞溶剀ずしおキシレン15を加えた。 窒玠気流䞋で170〜190℃の枩床に加熱しおキシ
レンを還流させ、反応生成氎を共沞によ぀お連続
的に陀き぀぀、重合を行な぀た。反応を開始しお
10時間埌にNMP15を加えお反応混合物を垌釈
し、曎に32時間重合を続けた。キシレンを留去し
お、粘皠なポリキナゟロン重合䜓溶液を埗た。こ
の重合䜓の察数粘床は0.78であ぀お、次の単䜍か
らなる。 このポリキナゟロンから実斜䟋ず同様にしお
埗た気䜓分離膜は、酞玠の透過係数2.1×10-10c.c.
STP・cmcm2・sec・cmHg、分離係数は5.0で
あ぀た。 実斜䟋  実斜䟋においお、4′―ゞアミノゞプニ
ル゚ヌテルの代りに、4′―ゞアミノゞプニ
ルメタン8.720.044モルを、たた、4′―
ゞアミノゞプニルメタン―3′―ゞカルボン
酞の代りに―ゞアミノ安息銙酞1.67
0.011モルを甚いたほかは党く同様にしお、察
数粘床0.59のポリキナゟロンを埗た。このポリキ
ナゟロンは80モルのビスキナゟロン単䜍 ず20モルのビスキナゟロン単䜍 ずを有しおいる。 このポリキナゟロンから実斜䟋ず同様にしお
぀く぀た気䜓分離膜の酞玠透過係数は9.8×10-11
c.c.STP・cmcm2・sec・cmHg、分離係数は5.1
であ぀た。 実斜䟋  実斜䟋においお、4′―ゞアミノゞプニ
ル゚ヌテル12の代りに、4′―ゞアミノゞフ
゚ニル゚ヌテル9.610.048モルずピペラゞ
ンビス―アミノ安息銙酞アミド3.89
0.012モルを甚いた以倖は実斜䟋ず党く同様
にしお、察数粘床0.72のポリキナゟロンを埗た。
このポリキナゟロンは前蚘ビスキナゟロン単䜍
80モルずビスキナゟロン単䜍 20モルずからなる。 このポリキナゟロンから実斜䟋ず同様にしお
぀く぀た気䜓分離膜の酞玠透過係数は2.4×10-10
c.c.STP・cmcm2・sec・cmHg、分離係数は4.7
であ぀た。
[Table] Example 2 74.8 g of N-methyl-2-pyrrolidone was charged into a flask equipped with a stirrer, a nitrogen gas introduction device, a reflux device with a reaction product water removal device, and a jacket bath capable of heating to a temperature of 250°C. 600 mg (0.003 mol) of anhydrous stannous chloride was added as a polymerization catalyst, and 426 mg (0.003 mol) of phosphorus pentoxide was further added and dissolved as a dehydrating agent. Next, the same bisoxazinone as in Example 1
Add and dissolve 20.1 g (0.06 mol) and 12.0 g (0.06 mol) of 4,4'-diaminodiphenyl ether,
Furthermore, 15 g of xylene was added as an azeotropic solvent. The xylene was refluxed by heating to a temperature of 170 to 190° C. under a nitrogen stream, and polymerization was carried out while continuously removing reaction product water by azeotropy. start the reaction
After 10 hours, 15 g of NMP was added to dilute the reaction mixture, and the polymerization was continued for an additional 32 hours. The xylene was distilled off to obtain a viscous polyquinazolone polymer solution. The logarithmic viscosity of this polymer is 0.78 and consists of the following units: A gas separation membrane obtained from this polyquinazolone in the same manner as in Example 1 had an oxygen permeability coefficient of 2.1×10 -10 cc.
(STP)・cm/cm 2・sec・cmHg, and the separation coefficient was 5.0. Example 3 In Example 1, 8.72 g (0.044 mol) of 4,4'-diaminodiphenylmethane was used instead of 4,4'-diaminodiphenyl ether, and 4,4'-
1.67 g of 3,5-diaminobenzoic acid instead of diaminodiphenylmethane-3,3'-dicarboxylic acid
Polyquinazolone with a logarithmic viscosity of 0.59 was obtained in exactly the same manner except that (0.011 mol) was used. This polyquinazolone has 80 mol% bisquinazolone units and 20 mol% bisquinazolone units It has The oxygen permeability coefficient of the gas separation membrane made from this polyquinazolone in the same manner as in Example 1 was 9.8×10 -11
cc (STP)・cm/ cm2・sec・cmHg, separation factor is 5.1
It was hot. Example 4 In Example 2, 9.61 g (0.048 mol) of 4,4'-diaminodiphenyl ether and 3.89 g of piperazine bis(p-aminobenzoic acid amide) were used instead of 12 g of 4,4'-diaminodiphenyl ether.
A polyquinazolone with a logarithmic viscosity of 0.72 was obtained in exactly the same manner as in Example 2 except that (0.012 mol) was used.
This polyquinazolone contains 80 mol% of the above bisquinazolone units () and bisquinazolone units. It consists of 20 mol%. The oxygen permeability coefficient of the gas separation membrane made from this polyquinazolone in the same manner as in Example 1 was 2.4×10 -10
cc(STP)・cm/ cm2・sec・cmHg, separation factor is 4.7
It was hot.

Claims (1)

【特蚱請求の範囲】  䞀般匏 䜆し、R1は䟡の有機基、R2はそれぞれ独
立にアルキル基又は芳銙族基、R3は
䟡の有機基、は―COOH、―SO3H又はこれら
の金属塩を瀺し、は単䜍ごずに独立に又は
〜の敎数を瀺す。 で衚わされるビスキナゟロン単䜍を繰返し単䜍ず
しお有するポリキナゟロン系重合䜓よりなる気䜓
分離膜。  R1が であり、R2がメチル基又はプニル基であり、
がであ぀お、R3が 及び又は であるこずを特城ずする特蚱請求の範囲第項蚘
茉の気䜓分離膜。  R1が であり、R2がメチル基又はプニル基であり、
が、又はであ぀お、がであるずき、
R3が 及び又は であり、がでないずき、R3が
【匏】【匏】又は であるこずを特城ずする特蚱請求の範囲第項蚘
茉の気䜓分離膜。
[Claims] 1. General formula (However, R 1 is a tetravalent organic group, R 2 is each independently an alkyl group or an aromatic group, and R 3 is (p+2)
A valent organic group, Z represents -COOH, -SO 3 H or a metal salt thereof, and p is independently 0 or 1 for each unit.
Indicates an integer of ~4. ) A gas separation membrane made of a polyquinazolone polymer having bisquinazolone units represented by the following as repeating units. 2 R 1 is and R 2 is a methyl group or a phenyl group,
If p is 0 and R 3 is and/or The gas separation membrane according to claim 1, characterized in that: 3 R 1 is and R 2 is a methyl group or a phenyl group,
When p is 0, 1 or 2, and p is 0,
R 3 is and/or and when p is not 0, R 3 is [formula] [formula] or The gas separation membrane according to claim 1, characterized in that:
JP4573781A 1981-03-27 1981-03-27 Gas separation film comprising polyquinazolone type polymer Granted JPS57159505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4573781A JPS57159505A (en) 1981-03-27 1981-03-27 Gas separation film comprising polyquinazolone type polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4573781A JPS57159505A (en) 1981-03-27 1981-03-27 Gas separation film comprising polyquinazolone type polymer

Publications (2)

Publication Number Publication Date
JPS57159505A JPS57159505A (en) 1982-10-01
JPS6151934B2 true JPS6151934B2 (en) 1986-11-11

Family

ID=12727629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4573781A Granted JPS57159505A (en) 1981-03-27 1981-03-27 Gas separation film comprising polyquinazolone type polymer

Country Status (1)

Country Link
JP (1) JPS57159505A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695295A (en) * 1986-09-24 1987-09-22 The Dow Chemical Company Gas separation membranes from polymers containing a hydrocarbon backbone and pendant (hydrocarbylamido)alkyl ester moieties
US5618334A (en) * 1995-06-30 1997-04-08 Praxair Technology, Inc. Sulfonated polyimide gas separation membranes
US5725633A (en) * 1995-06-30 1998-03-10 Praxair Technology, Inc. Sulfonated polyimide gas separation membranes
JPH09227676A (en) * 1996-02-23 1997-09-02 Nitto Denko Corp Fluoropolyquinazolone polymer and separating membrane made therefrom
US7896369B2 (en) * 2008-02-04 2011-03-01 Hendrickson Usa, L.L.C. Vehicle suspension assembly with unique geometry

Also Published As

Publication number Publication date
JPS57159505A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US4528004A (en) Aromatic polyimide composite separating membrane
JP2855668B2 (en) Polyimide separation membrane
JPH0247931B2 (en)
JPS6355974B2 (en)
GB2102334A (en) Producing aromatic polyimide membrane
JPS6218426A (en) Polyimide composition
JPH08501978A (en) Gas separation membrane made of alkyl-substituted polyimide, polyamide and polyamide-imide
JP2947352B2 (en) Semipermeable membrane made from regiospecific polyamide-imide and gas separation method using the same
WO2012133744A1 (en) Composite hollow fiber membrane
JPS6151934B2 (en)
JPS6252613B2 (en)
JPS6311045B2 (en)
JPH038818B2 (en)
WO1991000774A1 (en) Separative membrane made of aromatic polyimide
JP2810661B2 (en) Method for producing polyamic acid copolymer
JP3116976B2 (en) Polyimide separation membrane
JP3989650B2 (en) Polyimide film
JP2827212B2 (en) Polyamideimide separation membrane
JPS6012106A (en) Gas separation membrane
KR100351628B1 (en) New polyimides and gas separation Membrane
JPH0685861B2 (en) Dope liquid for separation membrane production
JP2001040089A (en) Polyimide resin, its production and gas separation membrane composed thereof
US4354017A (en) Process for the production of polyquinazolone-based polymers
JPH0685860B2 (en) Separation membrane manufacturing method
JP2874178B2 (en) Aromatic polyimide separation membrane