JPS5962303A - Oxygen separating and enriching membrane - Google Patents

Oxygen separating and enriching membrane

Info

Publication number
JPS5962303A
JPS5962303A JP57169696A JP16969682A JPS5962303A JP S5962303 A JPS5962303 A JP S5962303A JP 57169696 A JP57169696 A JP 57169696A JP 16969682 A JP16969682 A JP 16969682A JP S5962303 A JPS5962303 A JP S5962303A
Authority
JP
Japan
Prior art keywords
membrane
siloxane
containing polymer
film
modified fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57169696A
Other languages
Japanese (ja)
Inventor
Gen Kojima
弦 小島
Hiroshi Wachi
和知 博
Hidemasa Ko
英昌 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Original Assignee
KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBUNSHI OYO GIJUTSU KENKYU KUMIAI filed Critical KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Priority to JP57169696A priority Critical patent/JPS5962303A/en
Publication of JPS5962303A publication Critical patent/JPS5962303A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a titled composite membrane which possesses and can sustain various performances such as O2 separating performance and the rate of air permeation, etc. as well as strength by forming the same by laminating in specific order the films consisting of fluoropolymers modified with respectively different specific contents of siloxane. CONSTITUTION:A titled O2 separating and enriching membrane is formed by laminating a film consisting of a fluoropolymer highly modified with siloxane on a porous backing film, and further laminating a film consisting of a fluoropolymer slightly modified with siloxane thereon. The silicon contents of the fluoropolymers modified highly and slightly with siloxanes in this case are adequately 50-99% and 1-50% respectively.

Description

【発明の詳細な説明】 本発明は酸素分離富化膜、特に高い酸素分離富化性と、
空気透過速度が犬で、これら性能を持続し得る複合膜に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an oxygen separation and enrichment membrane, particularly a high oxygen separation and enrichment property,
The air permeation rate is high, and the composite membrane is capable of sustaining these performances.

酸素濃度が30〜50%の酸素富化空気は、例えば高炉
送風用、燃焼補助剤、石油蛋白プロセス用、廃液処理用
、医療における呼気用等に必要とされる。酸素富化空気
を得る方法としては、従来高純度酸素を深冷液化蒸留去
りこより製造し、次いで空気を混合して目的の酸素濃度
を得てきた。
Oxygen-enriched air with an oxygen concentration of 30 to 50% is required, for example, for blast furnace ventilation, combustion auxiliary agents, petroleum protein processing, waste liquid treatment, exhaled air in medical care, and the like. Conventionally, oxygen-enriched air has been obtained by producing high-purity oxygen through cryogenic liquefaction distillation and then mixing with air to obtain the desired oxygen concentration.

しかし、かかる方法では、高純度酸素は一般に圧力容器
に入っているので、圧力容器の取り扱いの危険性、或い
は混合ガス濃度を一定にする為の圧力調節器の必要性、
その操作の煩雑性等種々の問題があった。
However, in such a method, since high-purity oxygen is generally contained in a pressure vessel, there are risks in handling the pressure vessel or the need for a pressure regulator to keep the mixed gas concentration constant.
There were various problems such as the complexity of the operation.

他方、30〜50%の酸素富化空気を得る方法として、
膜分離法がある。
On the other hand, as a method of obtaining 30-50% oxygen enriched air,
There is a membrane separation method.

この方法は、直接酸素富化空気が得られ、操作的に簡単
であり、且経済的にも有利である。
This method provides direct oxygen-enriched air, is operationally simple, and is economically advantageous.

この様な分離膜としては従来から例えばオルガノポリシ
ロキサン−ポリカーボネート共重合体等いくつかの提案
がな逼れている。
Several proposals have been made for such separation membranes, such as organopolysiloxane-polycarbonate copolymers.

しかしながら、これら従来提案されている嘆け、それ自
体かなり性能のよいものもあるが、それだけでは強度的
な問題や取り扱いの困難さから基体となる膜と複合し2
て用いる場合がある。
However, although some of these conventionally proposed products have fairly good performance in themselves, they are difficult to handle due to strength issues and difficulty in handling.
It may be used in some cases.

この様な場合、大抵のものが複合される相手方の膜の性
質や酸素富化膜それ自体の性質等により、性能が低下し
たり、或は性能の持続性が著しく低下するものが多かっ
た。特に多孔性支持膜に分離膜素材の超薄膜を積層した
高分離性複合膜を得ようとする場合、膜の欠陥(ピンホ
ール)発生により、所期の分離性能が得難かつ九本発明
者はかかる点に鑑み、酸素富化膜が必要とする酸素分離
性能及び所定の空気透過速度等の諸性能を十分有し、し
かも強度的にも十分使用に耐え、且それらが長期間持続
し得る複合膜を得ることを目的として種々研究、検討し
た結果、多孔性支持体上に、夫々異なった特定歇のシロ
キサンで変成した含弗素ポリマーから成る膜を特定順序
に積層せしめることにより、前記目的を達成し得ること
を見出した。
In such cases, the performance often deteriorates or the sustainability of the performance deteriorates significantly, depending on the properties of the other membrane to which it is combined or the properties of the oxygen-enriching membrane itself. In particular, when attempting to obtain a high-separation composite membrane in which an ultra-thin membrane of separation membrane material is laminated on a porous support membrane, it is difficult to obtain the desired separation performance due to membrane defects (pinholes). In view of these points, the membrane has sufficient performance such as oxygen separation performance and a predetermined air permeation rate required by an oxygen enrichment membrane, is strong enough to withstand use, and can last for a long period of time. As a result of various studies and examinations aimed at obtaining a composite membrane, the above objective was achieved by laminating membranes made of fluorine-containing polymers modified with different specific siloxanes in a specific order on a porous support. I found out what can be achieved.

かくして本発明は、多孔質支持膜上に高シロキサン変成
含弗素ポリマーから成る膜を積層し、更にその上に低シ
ロキサン変成含弗素ポリマーから成る膜を積層して成る
酸素分離富化膜を提供するにある。
Thus, the present invention provides an oxygen separation and enrichment membrane comprising a membrane made of a high siloxane modified fluorine-containing polymer laminated on a porous support membrane, and a membrane made of a low siloxane modified fluorine containing polymer further laminated thereon. It is in.

本発明において用いられる多孔質支持膜としては、その
物性が平均細孔径10〜2000λ、多孔率10〜90
%を有するのが適当である。
The porous support membrane used in the present invention has physical properties such as an average pore diameter of 10 to 2000λ and a porosity of 10 to 90.
It is appropriate to have %.

これら物性が前記範囲を逸脱する場合には、充分な酸素
透過速度が得難く、又支持膜に超薄膜を積層する時に欠
陥を生じゃすくなるので好ましくない。
If these physical properties deviate from the above ranges, it is difficult to obtain a sufficient oxygen permeation rate, and defects are likely to occur when laminating an ultra-thin film on a support film, which is not preferable.

かかる膜の材質としては、例えばポリスルボン、ポリア
ミド、ポリアクリロニトリル、ポリエチレン、ポリビニ
ルアルコール、ポリテトラフルオロエチレン等が挙げら
れる。又、用いられる高シロキサン変成含弗素ポリマー
中のシロキサンの含有針は、50〜99であるのが適当
である。含有針が前記範囲を逸脱する場合には、酸素−
過速度が不充分となるので好ましくない。
Examples of the material for such a film include polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, and polytetrafluoroethylene. Further, it is appropriate that the siloxane content in the high siloxane modified fluorine-containing polymer used is 50 to 99. If the needle content exceeds the above range, oxygen-
This is not preferable because the overspeed becomes insufficient.

そしてこれら範囲のうち、60〜8oを採用する暢合に
は、充分な酸素透過速度が得られるとともに、長期の耐
久性に対し充分な強度を持つ薄膜が得られるので特に好
ましい。又、高珪素変成含弗素ポリマーとしては、例え
ばポリシロキサンとフルオロオレフィン/オレフィン系
共重合体のグラフト共重合体、ポリシロキサンと、フル
オロオレフィン/ビニルエーテル系共重合体のグラフト
共重合体等を挙げる事ができる。フルオロオレフィンと
しては例えば四弗化エチレン、三弗化塩化エチレン、弗
化ビニリデン等と、オレフィンとしては、例えばエチレ
ン、プロピレン、1−ブチレン等、ビニルエーテルとし
ては、エチルビニルエーテル、フチルビニルエーテル、
シクロヘギシルビニルエーテル等を例示でキル。これら
のポリシロキサン及び含弗素共重合体はそれぞれ反応部
位を有している事が必ヅである。
Of these ranges, a fit of 60 to 8 degrees is particularly preferred because it provides a sufficient oxygen permeation rate and a thin film with sufficient strength for long-term durability. Further, examples of the high silicon modified fluorine-containing polymer include a graft copolymer of polysiloxane and a fluoroolefin/olefin copolymer, a graft copolymer of polysiloxane and a fluoroolefin/vinyl ether copolymer, etc. I can do it. Examples of fluoroolefins include tetrafluoroethylene, trifluorochloroethylene, and vinylidene fluoride; examples of olefins include ethylene, propylene, and 1-butylene; and examples of vinyl ethers include ethyl vinyl ether, phthyl vinyl ether,
Examples include killing cyclohegycyl vinyl ether. Each of these polysiloxanes and fluorine-containing copolymers must have a reactive site.

これらシロキサン変成含弗素ポリマーの裏造法としては
、特に制限はなく、例えばオルガノシロキサン単≠体と
、含弗素単Q体のブロック共重合、オルガノポリシロキ
サンと含弗素共重合体をブレンド、両者に含まれる反応
部位を介して高分子反応によるグラフト共重合等の方法
を採用することが出来る。6・かるポリマーを用いて膜
を製造する手段として(は、例えば限外濾過法、コーデ
ィング法、水上ギヤスティング法等の方法が採用される
。そしてか\るポリマーの薄膜と支持膜からなる収合膜
はピンホールの実質的ない事が重安な点から製膜法は限
外濾過コーティング法が好適に実施逼れる。
There are no particular restrictions on the method for forming the lining of these siloxane-modified fluorine-containing polymers, and examples include block copolymerization of organosiloxane monomer and fluorine-containing monomer Q, blending organopolysiloxane and fluorine-containing copolymer, and combining both. Methods such as graft copolymerization by polymer reaction can be employed via the reaction sites included. 6.Means for producing membranes using such polymers include methods such as ultrafiltration, coating, and water gearing. The ultrafiltration coating method is preferably used as the film forming method since it is important that the composite film has virtually no pinholes.

そして、かかる膜の厚さは、一般に0.05〜10γ、
好ましくはα1〜5γを採用するのが適当である。
The thickness of such a film is generally 0.05 to 10γ,
Preferably, it is appropriate to adopt α1 to 5γ.

次に、前記j臣の上には低珪素変成含弗素ポリマーから
成る膜が積層されるが、かかる低珪素変成含弗素ポリマ
ーは、珪素の含有計が1〜50%であるのが適当である
。含有吐が前記範囲を逸脱する場合には、膜の酸素透過
の選択性が低下するので好ましくない。そしてこれら範
囲のうち、10〜50を採用する場合には、充分な酸素
選択性が得られるとともに酸素透過速度も向上するので
特に好ましい。又低シロキサン変成含弗素ポリマーとし
ては、前記高シロキサン変成含弗素ポリマーと同様のポ
リマーが用いられる。
Next, a film made of a low-silicon modified fluorine-containing polymer is laminated on the layer, and it is appropriate that the low-silicon modified fluorine-containing polymer has a total silicon content of 1 to 50%. . If the content exceeds the above range, it is not preferable because the selectivity of oxygen permeation of the membrane decreases. Among these ranges, it is particularly preferable to use a ratio of 10 to 50 because sufficient oxygen selectivity can be obtained and the oxygen permeation rate can also be improved. As the low siloxane modified fluorine-containing polymer, the same polymer as the above-mentioned high siloxane modified fluorine-containing polymer can be used.

又、かかるポリマーを用いてm=製造する手段としては
、これも前記高珪素変成含弗素ポリマーからの製膜手段
に準じて製造される。
Further, as a means for producing m= using such a polymer, this is also produced in accordance with the above-mentioned method for forming a film from a high-silicon modified fluorine-containing polymer.

そしてかかる低シロキサン変成含弗素ポリマーから得る
膜の厚さは、一般に100〜2000大、好ましくは3
00〜1000大を採用するのが適当である。
The thickness of the film obtained from such a low siloxane modified fluorine-containing polymer is generally 100 to 2000, preferably 3.
It is appropriate to adopt a value of 00 to 1000.

かくして、これら材料を用いて実際複合膜を製造する手
段としては、例えば、高シリコーン変成含弗素ポリマー
の製膜には支持膜を溶解しない溶剤に高シリコーン変成
含弗素ポリマーを1〜3重酸%溶解させた溶液を限界濾
過膜(支持膜)にて限界濾過する方法、又低シリコーン
変成含弗素ポリマーの製膜には水に不溶あるいは溶解の
小さい溶剤に低シリコーン変成含弗素ポリマーを数%溶
解し、本溶液を水面上に滴下することにより両膜の得ら
れる水上キャスティング法等の方法を採用し得る。
Thus, as a means of actually manufacturing a composite membrane using these materials, for example, to form a film of a high-silicone modified fluorine-containing polymer, a high silicone modified fluorine-containing polymer is added in a solvent that does not dissolve the supporting film in an amount of 1 to 3% by heavy acid. A method in which the dissolved solution is subjected to ultrafiltration using an ultrafiltration membrane (support membrane), or a method of forming a film of a low silicone modified fluorine containing polymer by dissolving several percent of the low silicone modified fluorine containing polymer in a solvent that is insoluble or has little solubility in water. However, a method such as an above-water casting method, in which both films can be obtained by dropping this solution onto the water surface, can be employed.

そして、木製脱法を組合せることにより目的の積層して
なる酸素富化膜が形成さ註る。
By combining the wooden removal method, the desired layered oxygen-enriched membrane can be formed.

次に本発明全実施例によジ説明する。Next, all embodiments of the present invention will be explained.

実施例1 E 弗化モノクロルエチレン/シクロヘキシルビニルエ
ーテル/エテルビニルエーテル/グリシジルビニルエー
テルの含有モル比が50/15/32.5/2.5  
であり数平均重合度が6ooである四元共■合体25f
をトリフルオロトリクロロエタ7(R−113)の25
o2に溶解し該浴液に数平均重合度約5000の なる組成を有するアミノ基含有オルガノポリシロギサン
37.59を含むR−113溶液の18Z5りを滴下す
る。滴下終了後約2時間攪拌を続行する。温度を47℃
に上げ溶剤を揮発させ濃縮しながら反応を1時間行なう
。さらに、80℃に加熱し、減圧下に1.5時間反応を
継続する。
Example 1 E The molar ratio of fluorinated monochloroethylene/cyclohexyl vinyl ether/ether vinyl ether/glycidyl vinyl ether is 50/15/32.5/2.5
and the number average degree of polymerization is 6oo.
25 of trifluorotrichloroethane 7 (R-113)
18Z5 of a solution of R-113 containing 37.59% of an amino group-containing organopolysiloxane having a composition having a number average degree of polymerization of about 5000 is added dropwise to the bath solution. Stirring is continued for about 2 hours after the completion of the dropwise addition. Temperature 47℃
The reaction was carried out for 1 hour while the solvent was evaporated and concentrated. Further, the mixture is heated to 80° C. and the reaction is continued for 1.5 hours under reduced pressure.

得られたポリマーは、前記ポリシロキサフf40重ト直
%、含弗素取合セグメントを60重針%含有するグラフ
ト共重合体であった。このグラフト共重合体42を酢酸
エチル12りに溶解し、ガラス板上にキャスティングし
て得たフィルムからの本グラフト共軍合体のガス透過性
能は、酸素透過係数o、 6 X 101(L−cm/
ar?、5txtynH9,m素。
The obtained polymer was a graft copolymer containing 40% by weight of the polysiloxaf F and 60% by weight of fluorine-containing interlocking segments. The gas permeation performance of this graft copolymer through a film obtained by dissolving this graft copolymer 42 in 12 ml of ethyl acetate and casting it on a glass plate is as follows: oxygen permeability coefficient o, 6 x 101 (L-cm /
ar? ,5txtynH9,m element.

窒素の分離係数αは4.8であった。The nitrogen separation coefficient α was 4.8.

実施例2 実施例1で得られたグラフト共重合体(ポリシロキザン
セグメント含肘4 (37,F 8%)ノ152をR−
11!lの1509に攪拌下で溶解する。
Example 2 The graft copolymer (polysiloxane segment-containing 4 (37, F 8%)) obtained in Example 1 was converted into R-
11! Dissolve under stirring in 1509 liters.

この溶液に実施例1で使用したと同様のアミノ含有オル
ガノポリシロキサン212をR−113の849に溶解
した溶液を滴下し、均一な混合溶液を得る。該混合溶液
を実施例1と同様に反応させ、ポリシロキサンセグメン
ト含V75−i址%のグラフト共重合体を得た。
A solution prepared by dissolving amino-containing organopolysiloxane 212 similar to that used in Example 1 in R-113 849 is added dropwise to this solution to obtain a uniform mixed solution. The mixed solution was reacted in the same manner as in Example 1 to obtain a graft copolymer containing V75-i polysiloxane segments.

該グラフト共重合体のガス透過性能惇酸素透過係数2 
X 1’ 0−8C0−8C/1ri−寛・tynH9
,分離係数Po2/PN2は2.5であった。
Gas permeability of the graft copolymer Oxygen permeability coefficient 2
X 1' 0-8C0-8C/1ri-hiro・tynH9
, the separation coefficient Po2/PN2 was 2.5.

実施例3 実施例2で得られたポリシロキサンセグメント含叶75
重量%のグラフト共重合体01o2を150OfのR−
113に溶解する、これをポリスルホン製の限外沖過膜
を用いて濾過圧力21(Li/ crl Gの加圧下で
、濾過する。濾過が完了したら膜を加圧p過器からはず
し、乾燥し、高シリコーン変性含フツ素ポリマーの複合
膜を得た。多孔質支持膜上に形成された薄膜の膜厚をb
l ktから計算すると、Q、7γであった。
Example 3 Polysiloxane segment content 75 obtained in Example 2
% by weight of graft copolymer 01o2 to 150Of R-
113 and filtered using a polysulfone ultrafiltration membrane under a filtration pressure of 21 (Li/crl G). When the filtration is completed, the membrane is removed from the pressurized filter and dried. , a composite film of highly silicone-modified fluorine-containing polymer was obtained.The film thickness of the thin film formed on the porous support film was
Calculated from l kt, Q was 7γ.

次に、実施例1で得られたポリシロキサンセグメント含
μ40重瞳%のグラフト共重合体12をR−113−5
a8fに溶解する。該溶液の数滴を水の表面上に拡張さ
せ、キャスティング薄膜を得た。該低シリコーン変性含
弗素ポリマーの水上に形成したキャスティング薄膜を先
の高シリコーン変性含弗素ポリマーの複合膜に2枚重ね
て捕集し、積層複合膜を得た。該積層複合膜のガス透過
性を減圧法により測定した。測定糸「来を下記表に示す
Next, the graft copolymer 12 containing the polysiloxane segment obtained in Example 1 and containing μ40 pupil % was added to R-113-5.
Dissolves in a8f. A few drops of the solution were spread on the surface of the water to obtain a cast film. Two cast thin films of the low silicone-modified fluorine-containing polymer formed on water were collected by stacking them on the composite film of the high-silicone modified fluorine-containing polymer to obtain a laminated composite film. The gas permeability of the laminated composite membrane was measured by a reduced pressure method. The measurement threads are shown in the table below.

実施例4 実施例2で得られたポリシロキサンセグメント含−iニ
ア5tfff1%のグラフト共重合体0.069を15
.0 OfのR−113に溶解する、該溶液を実施例5
と同様に限外濾過を行い複合HIA′f:得た。多孔質
支持膜上に形成された薄膜全軍鼠から計算すると04μ
であった。
Example 4 0.069 of the polysiloxane segment-containing 5tfff 1% graft copolymer obtained in Example 2 was
.. The solution was dissolved in R-113 of Example 5.
Ultrafiltration was performed in the same manner as above to obtain composite HIA'f. Calculated from the thin film formed on the porous support membrane: 04μ
Met.

次に実施例3と同様に低シリコーン変性含弗素ポリマー
を水上キャスティング法(てより積層し積層仲合膜を得
た。
Next, in the same manner as in Example 3, low silicone-modified fluorine-containing polymers were laminated by a water casting method (by hand) to obtain a laminated composite film.

ガス透過性の測定結果を表に示す。The measurement results of gas permeability are shown in the table.

比較例1 実施例2で得られたポリシロキサンセグメント含浸75
重q%のグラフト共重合体Q、07rを15009のR
−113に溶解する、これをポリスルフォン製の限外沢
過膜を用いて濾過圧力2 Kg / J Qの/III
圧下で沖過する。濾過が完了したら膜を加圧P1市器か
らはずし、乾燥し、高シリコーン変性含弗素ポリ!−の
複合)莫を得九該複合膜のガス透過性を測定した。測定
結果を比較例として表に示す。
Comparative Example 1 Polysiloxane segment impregnation 75 obtained in Example 2
Weight q% of graft copolymer Q, 07r to 15009R
-113 and filtered it using an ultrafiltration membrane made of polysulfone at a filtration pressure of 2 Kg/JQ/III
Passes offshore under pressure. Once filtration is complete, remove the membrane from the pressurized P1 container, dry it, and use high silicone-modified fluorine-containing polyester! The gas permeability of the composite membrane was measured. The measurement results are shown in the table as a comparative example.

比較例2 実施例1で得られたポリシロキサンセグメント含tit
404j量%のグラフト共重合体1fをB−113’、
58.82に溶解する。汗亥溶液の数滴を水の表面−H
に拡張させ、キャスティング薄膜を得た。そして該キャ
スティング薄膜をポリスルフォン製の限外濾過膜上に5
枚重ねて捕集し、低シリコーン変性含弗素ポリマーのみ
の複合膜を得た。
Comparative Example 2 Polysiloxane segment-containing tit obtained in Example 1
B-113', 404j amount % of graft copolymer 1f,
Dissolves in 58.82. Place a few drops of sweat solution on the surface of the water.
was expanded to obtain a casting thin film. Then, the casting thin film was placed on an ultrafiltration membrane made of polysulfone for 5 minutes.
They were collected in layers to obtain a composite membrane made only of low silicone-modified fluorine-containing polymer.

プjス透過性能を比較例とし表に示す。The table shows the optical transmission performance as a comparative example.

Claims (1)

【特許請求の範囲】 1、 多孔質支持膜の上に高シロキサン変成含弗素ポリ
マーから成る膜を積層し、更にその上に低シロキサン変
成含弗素ポリマーから成る膜を積層して成る酸素分離富
化膜。 2、 多孔質支持膜は、平均細孔径10久〜2000^
、多孔率10〜90%である請求の範囲(1)の膜。 3、 多孔質支持膜は、ポリスルホン、ポリアミド、ポ
リアクリロニトリル、ポリエチレン、ポリビニルアルコ
ール、ポリテトラフルオロエチレンである請求の範囲(
1)又は]2)の膜。 4、 高70ギサン変成含弗素ポリマーは、珪素の含有
Mが50〜99である請求の範囲(1)の膜。 5、高シロキサン変成含弗素ポリマーは、オルガノポリ
シロキサンセグメントと含弗素重合セグメントからなる
共重合体である請求の範囲(1)又は(4)の膜。 6、低シロキサン変成含弗素ポリマーは、珪素の含有量
が1〜50である請求の範囲(1)の糺7、低シロキサ
ン変成含弗素ポリマーは、含弗素重合セグメントとオル
ガノポリシロキサンセグメントからなる共重合体である
請求の範囲(1)又は(6)の膜。
[Claims] 1. Oxygen separation and enrichment comprising laminating a membrane made of a high-siloxane modified fluorine-containing polymer on a porous support membrane, and further laminating a membrane made of a low-siloxane modified fluorine-containing polymer thereon. film. 2. The porous support membrane has an average pore diameter of 10~2000^
, a porosity of 10 to 90%. 3. The porous support membrane is polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, polytetrafluoroethylene.
1) or ]2) membrane. 4. The film according to claim (1), wherein the high 70 Gisan modified fluorine-containing polymer has a silicon content M of 50 to 99. 5. The membrane according to claim (1) or (4), wherein the high siloxane modified fluorine-containing polymer is a copolymer consisting of an organopolysiloxane segment and a fluorine-containing polymerized segment. 6. The low-siloxane-modified fluorine-containing polymer has a silicon content of 1 to 50. 7. The low-siloxane-modified fluorine-containing polymer has a silicon content of 1 to 50. The membrane according to claim (1) or (6), which is a polymer.
JP57169696A 1982-09-30 1982-09-30 Oxygen separating and enriching membrane Pending JPS5962303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169696A JPS5962303A (en) 1982-09-30 1982-09-30 Oxygen separating and enriching membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169696A JPS5962303A (en) 1982-09-30 1982-09-30 Oxygen separating and enriching membrane

Publications (1)

Publication Number Publication Date
JPS5962303A true JPS5962303A (en) 1984-04-09

Family

ID=15891187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169696A Pending JPS5962303A (en) 1982-09-30 1982-09-30 Oxygen separating and enriching membrane

Country Status (1)

Country Link
JP (1) JPS5962303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane
JPS6182823A (en) * 1984-09-28 1986-04-26 Matsushita Electric Ind Co Ltd Gas-permeable composite membrane
JPS61149226A (en) * 1984-12-25 1986-07-07 Agency Of Ind Science & Technol Gas permselective composite membrane and preparation thereof
JPS62201242A (en) * 1986-02-28 1987-09-04 新興化学工業株式会社 Silicone-resin laminated board and manufacture thereof
JPS63155353A (en) * 1986-12-19 1988-06-28 Sony Corp Signal processor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane
JPH0413012B2 (en) * 1983-11-26 1992-03-06 Matsushita Electric Ind Co Ltd
JPS6182823A (en) * 1984-09-28 1986-04-26 Matsushita Electric Ind Co Ltd Gas-permeable composite membrane
JPH0427890B2 (en) * 1984-09-28 1992-05-13 Matsushita Electric Ind Co Ltd
JPS61149226A (en) * 1984-12-25 1986-07-07 Agency Of Ind Science & Technol Gas permselective composite membrane and preparation thereof
JPH0262294B2 (en) * 1984-12-25 1990-12-25 Kogyo Gijutsuin
JPS62201242A (en) * 1986-02-28 1987-09-04 新興化学工業株式会社 Silicone-resin laminated board and manufacture thereof
JPS63155353A (en) * 1986-12-19 1988-06-28 Sony Corp Signal processor

Similar Documents

Publication Publication Date Title
JPH0335971B2 (en)
CA2159446A1 (en) Composite carbon fluid separation membranes
EP0080617A1 (en) Use of permselective membranes for the separation of gas mixtures
JPS62723B2 (en)
GB2138702A (en) Composite membrane for gas separation
CA1294093C (en) Polyphosphazene fluid separation membranes
JPS5962303A (en) Oxygen separating and enriching membrane
EP1057521B1 (en) Membranes of (per)fluorinated amorphous polymers
JPS5924845B2 (en) Method for manufacturing gas selective permeability composite membrane
CA1255860A (en) Selectively permeable asymetric membrane of aromatic polyester
JPH0224574B2 (en)
JPS63264101A (en) Permselective membrane
JP2688882B2 (en) Method for producing composite membrane for gas separation
JPS5959214A (en) Gas separating composite membrane
JPH03221130A (en) Fluoropolymer-based separation membrane
JPS61129008A (en) Composite membrane for separating gas and its preparation
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPH0380925A (en) Gas permselective membrane
JPH0378128B2 (en)
JPS5959736A (en) Production of oxygen enriching membrane
JPS58223407A (en) Gas separation film
JPS5962310A (en) Production of selective separating membrane element for gas
JPS60190202A (en) Hollow composite membrane for gas separation and production thereof
JPS627421A (en) Permselective membrane
JP3299298B2 (en) Gas selective permeable composite membrane