JPS588517A - Preparation of composite film with selective permeability for gas - Google Patents

Preparation of composite film with selective permeability for gas

Info

Publication number
JPS588517A
JPS588517A JP10675781A JP10675781A JPS588517A JP S588517 A JPS588517 A JP S588517A JP 10675781 A JP10675781 A JP 10675781A JP 10675781 A JP10675781 A JP 10675781A JP S588517 A JPS588517 A JP S588517A
Authority
JP
Japan
Prior art keywords
gas
thin film
film
siloxane compound
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10675781A
Other languages
Japanese (ja)
Other versions
JPS5924845B2 (en
Inventor
Koichi Okita
晃一 沖田
Shingo Ishiguro
石黒 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10675781A priority Critical patent/JPS5924845B2/en
Publication of JPS588517A publication Critical patent/JPS588517A/en
Publication of JPS5924845B2 publication Critical patent/JPS5924845B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a composite film generating no cracks even if it is formed into an extremely thin film and excellent in gas separation capacity, by subjecting a thin film of a siloxane compound coated on a porous molecular film to plasma treatment by introducing a specific polymerizable gas. CONSTITUTION:On a porous support comprising an ethylene tetrafluoride resin excellent in heat resistance and strength, silicon rubber dissolved in an org. solvent is thinly coated and vulcanized and cured. After film formation, a plasma polymerized thin film is laminated on the surface thereof to enhance gas separation property and selectivity. Plasma treatment is carried out by using teitiary carbon or tertiary silicon as a polymerizable gas. By this method, the film thickness of the plasma polymerized thin film can be manipulated by changing a glow discharge time in the atmosphere of 2 Torr or less and the obtained composite film has excellent characteristics in selective permeability for a mixed gas.

Description

【発明の詳細な説明】 本発明はプラズマ重合によって得られた架橋を有するガ
ス選択透過性複合膜の製造方法に関するものである。近
年混合物質分離技術として、これまでの蒸留、晶析、抽
出、吸着、クロマトグラフィーなどの方法に変わって、
選択透過性膜を用いる方法がさかんに検討されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a crosslinked gas selectively permeable composite membrane obtained by plasma polymerization. In recent years, methods for separating mixed substances have replaced conventional methods such as distillation, crystallization, extraction, adsorption, and chromatography.
Methods using permselective membranes are being actively studied.

選択透過性膜は、省エネルギー、省資源を指向した分離
技術として開発の要求が高い5本発明も上記目的を効率
的に達成するため、ガス選択透過性複合膜を提供せんと
してなされたものである。
The permselective membrane is in high demand for development as a separation technology aimed at energy and resource saving.The present invention was also made to provide a gas selective permselective composite membrane in order to efficiently achieve the above objectives. .

膜分離技術としては、逆浸透法、限外濾過法、イオン交
換膜、さら・に比較的新しい技術として有機液体選択膜
、イオン選択膜、気体分離膜があるがなかでも気体分離
膜については、はとんど実用化されていない。気体分離
膜が工業的に遅れている理由としては、高いガス分離選
択性と透過性を有する素材が少ないため、一段での濃縮
では高濃度のものが得られず、多段方式にしなければな
らなくなり、大型になりすぎて実用に適さなくなってし
まうからである。このような背景の中で本発明者は、ガ
ス分離選択性、透過性、強度等の物性をすべて満足させ
る素材を開発する為、ガス分離選択性の秀れている素材
、透過性の秀れている素材、これらを支持する素材を各
々異なった製造方法を用いて、複合化することを試み本
発明を完成したものである。
Membrane separation technologies include reverse osmosis, ultrafiltration, ion exchange membranes, and relatively new technologies such as organic liquid selective membranes, ion selective membranes, and gas separation membranes. has hardly been put into practical use. The reason why gas separation membranes are lagging behind in industry is that there are few materials that have high gas separation selectivity and permeability, so it is not possible to obtain high concentrations with one-stage concentration, and a multi-stage method is required. This is because it becomes too large and is no longer suitable for practical use. Against this background, the inventor of the present invention sought to develop a material that satisfies all physical properties such as gas separation selectivity, permeability, and strength. The present invention was completed by attempting to combine the materials used to support the structure and the materials supporting them using different manufacturing methods.

即ち耐熱性と強度については既に市販されている多孔性
高分子素材の中から目的に合致したものを選択する。多
孔性のポリスルホン、ポリイミド等でも良いが、セルロ
ースエステル、塩化ビニル、ポリプロピレン、ポリカー
ボネート、ポリビニルアルコール等はあまり好ましくな
い。しかし耐熱性と強度の点からは四弗化エチレン樹脂
からなる多孔性支持体が最も好ましく、また耐薬品性も
同時に満足される利点がある。
That is, in terms of heat resistance and strength, a material that meets the purpose is selected from commercially available porous polymer materials. Porous polysulfone, polyimide, etc. may be used, but cellulose ester, vinyl chloride, polypropylene, polycarbonate, polyvinyl alcohol, etc. are not so preferred. However, from the point of view of heat resistance and strength, a porous support made of tetrafluoroethylene resin is most preferable, and also has the advantage of satisfying chemical resistance at the same time.

一方ガスの透過性については、シロキサン化合物が非常
に秀れていることが知られている。シロキサン化合物を
用いた場合でも、実用に供する為には、数10μあるい
はそれ以下にしなければならず、気体透過の際の圧力に
耐えうる強度の秀れた高分子量のものを均一に薄く積層
する必要がある。
On the other hand, siloxane compounds are known to have excellent gas permeability. Even when a siloxane compound is used, in order to put it into practical use, it must be several tens of microns or less, and high-molecular weight compounds with excellent strength that can withstand the pressure during gas permeation are laminated uniformly and thinly. There is a need.

本発明者は、シロキサン化合物のなかでも、シリコンゴ
ムのような高分子量の素材とそれを溶解するトリクレン
、キシレン、ベンゼン、トルエン等の有機溶剤と混合し
t1支持体に薄く塗布し、加硫、硬化させることによっ
てガス透過性のすぐれた積層膜ができることを見出した
。なお、有機溶剤は、シロキサン化合物を希釈し、加硫
、硬化以前に蒸発させてしまうため、その希釈濃度によ
って加硫硬化後のシロキサン化合物の膜厚を調整するこ
とができる。特にシロキサン化合物の′希釈濃度を50
重量係以下にすると;非常に薄く均一な膜が得られた。
Among siloxane compounds, the present inventor mixed a high molecular weight material such as silicone rubber with an organic solvent such as trichlene, xylene, benzene, toluene, etc. that dissolves it, applied the mixture thinly to a t1 support, and vulcanized it. It has been found that a laminated film with excellent gas permeability can be produced by curing. Note that since the organic solvent dilutes the siloxane compound and evaporates before vulcanization and curing, the film thickness of the siloxane compound after vulcanization and curing can be adjusted by adjusting the dilution concentration. In particular, the dilution concentration of the siloxane compound is 50%.
When the weight ratio was lowered, a very thin and uniform film was obtained.

シロキサン化合物を加硫、硬化した後、その表面に、プ
ラズマ重合薄膜を積層し、ガス分離選択性を向上させる
。ガス分離選択性の秀れてtする素材は、透過性が悪い
為膜厚を可及的に薄くする必要がある。プラズマ重合膜
は、2tor、r以下の雰囲気でグロー放電時の放電時
間を変化させる事で膜厚を操作する事が可能で、たとえ
ば0.1μ以下の厚みにすることもできる。また重合性
のガスの流量やグロー放電時の放電出力の増減によって
も膜厚は増減するが、これらの条件はこの分野の技術に
習熟している者にとって比較的容易′に最適化できる。
After vulcanizing and curing the siloxane compound, a plasma polymerized thin film is laminated on its surface to improve gas separation selectivity. Materials with excellent gas separation selectivity have poor permeability, so it is necessary to make the membrane thickness as thin as possible. The thickness of the plasma-polymerized film can be controlled by changing the discharge time during glow discharge in an atmosphere of 2 Torr and r or less, and can be made to have a thickness of 0.1 μm or less, for example. The film thickness also increases or decreases depending on the flow rate of the polymerizable gas or the increase or decrease in the discharge output during glow discharge, but these conditions can be optimized relatively easily by those who are familiar with the technology in this field.

またガスの流量や放電出力の増減によって、薄膜の形成
から粉萩体の形成、架橋密度の変化等も、容易に調整で
きる。
Further, by increasing/decreasing the gas flow rate and discharge output, the formation of a thin film, the formation of powder clover, and changes in crosslinking density can be easily adjusted.

重合性のガスとしては、極薄膜化しても亀裂を生じない
でガス分離選択性の秀れた膜の得られるものを選択する
必要がある。本発明者は、第三級炭素又は第三級型有機
ケイ素のプラズマ電合膜がこの要求性能を満足すること
を見出し、本発明を完成することができた。
As the polymerizable gas, it is necessary to select one that does not cause cracks even when made into an extremely thin film and provides a membrane with excellent gas separation selectivity. The present inventors discovered that a plasma-electrolyzed film of tertiary carbon or tertiary type organosilicon satisfies this required performance, and was able to complete the present invention.

以上詳述したように、かなり限定した条件のも5− とで製造された複合膜は、混合ガスの選択透過性におい
て極めて秀れた特性を有しており°、省エネルギー的な
ガス分離方法として工業に寄与するところ大である。
As detailed above, the composite membrane manufactured under very limited conditions has extremely excellent permselective properties for mixed gases, and has been used as an energy-saving gas separation method. It greatly contributes to industry.

以下には本発明を実施例によって説明する。The present invention will be explained below by way of examples.

実施例1 フロロボアFP−022(平均孔径0.22μ、住友電
工製四弗化エチレン樹脂多孔質膜)の表面に、ドクター
ナイフを用いてトルエンで希釈した常温加硫型シリコン
ゴム(KE8475T、信越化学部)を塗布した後、2
4時間常温加硫して積層薄膜を得た。
Example 1 A room-temperature vulcanizable silicone rubber (KE8475T, Shin-Etsu Chemical Co., Ltd.) diluted with toluene using a doctor knife was applied to the surface of Fluorobore FP-022 (average pore diameter 0.22μ, polytetrafluoroethylene resin porous membrane manufactured by Sumitomo Electric). After applying part), apply 2
Vulcanization was performed at room temperature for 4 hours to obtain a laminated thin film.

第1表にナイフの設定厚みゴムの濃度、膜厚、酸素の透
過速度POg%酸素の窒素に対する選択透過係数POi
 / PN *の関係を示す。
Table 1 shows the knife setting thickness, rubber concentration, film thickness, oxygen permeation rate POg%, selective permeability coefficient of oxygen to nitrogen POi
/ PN * shows the relationship.

6− シリコンゴムとして他の常温加硫型(KE4457゜信
越化学級)に変えたこと以外は実施例1と同条件で積層
膜を製造した。第2表にその結果を示す。
6- A laminated film was manufactured under the same conditions as in Example 1 except that the silicone rubber was changed to another room temperature vulcanization type (KE4457゜Shin-Etsu Chemical grade). Table 2 shows the results.

第  2  表 実施例8 第三表に示すような各種の加熱加硫型シリコンゴムをト
ルエンで20%重量濃度の過酸化物(トーレRC−2、
)−レ・シリコーン製)を混合し、8時間攪拌して溶解
した。この溶液をフロロボアFP−022の表面に、ド
クターナイフを用いて塗布し、120°Cで30分間加
硫しゴムの積層薄膜を得た第三表にはその特性を示す。
Table 2 Example 8 Various heat-vulcanized silicone rubbers as shown in Table 3 were mixed with toluene and peroxide (Toray RC-2,
)-Le Silicone) were mixed and stirred for 8 hours to dissolve. This solution was applied to the surface of Fluorobor FP-022 using a doctor knife and vulcanized at 120°C for 30 minutes to obtain a rubber laminated thin film.Table 3 shows its properties.

第  3  表 ※l トーレシリコーン製 ※2酸素の透過速度、単位はx”7m”・Sec −c
s+Hg9一 実施例4 実施例2の実験7の方法で製造したシリコンゴムの積層
薄膜をプラズマ反応装置の中央に七ット、し系内をOJ
 t o r rに排気した後、ビニルトリメチルシラ
ンの蒸気を流速5 tne/wm 、:導入し、高周波
18.56MH2,10Wの出力で25分間プラズマ重
合した。得られた複合膜のガス透過速度は、酸素ガスが
8.77 X 10 cm”7cm” ・Sec −c
rnHg 僧素ガス、は2.76X10m7α2・Se
c・α珈、となりガス選択透過性は3.18を示した。
Table 3 *l Manufactured by Toray Silicone *2 Oxygen permeation rate, unit: x"7m"・Sec -c
s+Hg9 - Example 4 A laminated thin film of silicone rubber produced by the method of Experiment 7 of Example 2 was placed in the center of a plasma reactor, and the system was heated with OJ.
After evacuating to a temperature of 100 m, vinyltrimethylsilane vapor was introduced at a flow rate of 5 tne/wm, and plasma polymerization was carried out at a high frequency of 18.56 MH2 and an output of 10 W for 25 minutes. The gas permeation rate of the obtained composite membrane was 8.77 x 10 cm"7 cm" Sec -c for oxygen gas.
rnHg Monrystalline gas, is 2.76X10m7α2・Se
c・α珈, and the gas selective permeability was 3.18.

実施例5 プラズマ反応装置に送入する重合ガスを、ビニルトリメ
チルシランからスチレンにしその流速を10me/−に
変更したこと以外は、実施例4と同条件で得た複合膜の
ガス透過速度を測定したところ、酸素ガスは’ 5.5
9 X 10 cm8/cm” ・Sec ・onHg
、窒素ガスは1.40X10 an”/crn” ・S
ec ・cmHgとなり、ガス選択透過性は8.99を
示した。
Example 5 The gas permeation rate of the composite membrane was measured under the same conditions as in Example 4, except that the polymerization gas fed into the plasma reactor was changed from vinyltrimethylsilane to styrene and the flow rate was changed to 10 me/-. As a result, the oxygen gas was '5.5
9 X 10 cm8/cm” ・Sec ・onHg
, nitrogen gas is 1.40X10 an"/crn" ・S
ec ·cmHg, and the gas selective permeability was 8.99.

10− 手続補正書(方式) 昭和56年12月7日 特許庁長官 島田春樹 殿 1、事件の表示 2、発明考案の名称 ガス選択透過性複合膜の製造方法 3、補正をする者 事件との関係    特許出願人 住所     大阪市東区北浜5丁目15番地名称(2
13)  住友電気工業株式会社代表者1社長亀井正夫 生代理人 住 所      大阪市此花区島屋1丁目1番8号住
友電気工業株式会社内 昭和56年11月24日 6、補正の対象 明細書 7゜補正の内容 タイプ印書により鮮明に記載した明細書を別紙の如く提
出します。
10- Procedural amendment (method) December 7, 1980 Haruki Shimada, Commissioner of the Japan Patent Office 1. Case description 2. Name of invention and device method for manufacturing a gas selectively permeable composite membrane 3. Person making the amendment Related Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (2
13) Sumitomo Electric Industries Co., Ltd. Representative 1 President Masao Kamei Birthplace Agent Address Sumitomo Electric Industries Co., Ltd. 1-1-8 Shimaya, Konohana-ku, Osaka November 24, 1986 6, Specification subject to amendment 7゜We will submit a clearly written specification with the contents of the amendment as attached.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔性高分子膜にシロキサン化合物を塗布する工
程、加硫、硬化させる工程、次いで2torr以下の雰
囲気でグロー放電下に重合性のガスを導入してプラズマ
重合薄膜を積層する工程とからなることを特徴とするガ
ス選択透過性複合膜の製造方法。
(1) A step of applying a siloxane compound to a porous polymer membrane, a step of vulcanizing and curing it, and a step of laminating a plasma polymerized thin film by introducing a polymerizable gas under glow discharge in an atmosphere of 2 torr or less. A method for producing a gas selectively permeable composite membrane, characterized in that:
(2)シロキサン化合物とそれを溶解する有機溶剤混合
溶液であって、その1度が50重量係以下に希釈した状
態で多孔性高分子膜に塗布することを特徴とする特許請
求の範囲第一項の製造方法。
(2) A mixed solution of a siloxane compound and an organic solvent for dissolving it, which is applied to a porous polymer membrane in a diluted state of 50% by weight or less. Manufacturing method of section.
(3)重合性ガスが、第三級炭素を含む化合物又は第三
級型有機ケイ素化合物から選ばれたもので、2torr
以下の雰囲気に導入してプラズマ重合薄膜を積層するこ
とを特徴とする特許請求の範囲第一項の製造方法。
(3) The polymerizable gas is selected from compounds containing tertiary carbon or tertiary organosilicon compounds, and
The manufacturing method according to claim 1, characterized in that the plasma polymerized thin film is laminated by introducing the atmosphere into the following atmosphere.
(4)多孔性高分子膜が、耐熱性、耐薬品性の四弗化エ
チレン樹脂からなり繊維と結節とからなる多孔性構造を
有し、これにシロキサン化合物を塗布する工程からなる
ことを特徴とする特許請求の範・囲第−項の製造方法。
(4) The porous polymer membrane is made of heat-resistant and chemical-resistant tetrafluoroethylene resin and has a porous structure consisting of fibers and nodules, and is characterized by a step of applying a siloxane compound to this porous structure. The manufacturing method set forth in claim 1.
JP10675781A 1981-07-08 1981-07-08 Method for manufacturing gas selective permeability composite membrane Expired JPS5924845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10675781A JPS5924845B2 (en) 1981-07-08 1981-07-08 Method for manufacturing gas selective permeability composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10675781A JPS5924845B2 (en) 1981-07-08 1981-07-08 Method for manufacturing gas selective permeability composite membrane

Publications (2)

Publication Number Publication Date
JPS588517A true JPS588517A (en) 1983-01-18
JPS5924845B2 JPS5924845B2 (en) 1984-06-12

Family

ID=14441780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10675781A Expired JPS5924845B2 (en) 1981-07-08 1981-07-08 Method for manufacturing gas selective permeability composite membrane

Country Status (1)

Country Link
JP (1) JPS5924845B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814906A (en) * 1981-07-15 1983-01-28 Kuraray Co Ltd Permeable membrane
JPS5955309A (en) * 1982-09-24 1984-03-30 Shin Etsu Chem Co Ltd Composite molding for separating gas
JPS5969105A (en) * 1982-10-12 1984-04-19 Shin Etsu Chem Co Ltd Composite molding for gas separation
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPS6094106A (en) * 1983-10-27 1985-05-27 Nitto Electric Ind Co Ltd Manufacture of compound membrane
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPH0197992A (en) * 1987-10-09 1989-04-17 Matsushita Electric Ind Co Ltd Controller for electronic musical instrument
JPH0197994A (en) * 1987-10-09 1989-04-17 Matsushita Electric Ind Co Ltd Controller for electronic musical instrument
JPH01304933A (en) * 1988-06-01 1989-12-08 Toray Ind Inc Polyolefin porous film and electrolysis separator
WO1997031034A1 (en) * 1996-02-21 1997-08-28 Commonwealth Scientific And Industrial Research Organisation Method for reducing crazing in a plastics material
KR100418269B1 (en) * 2000-12-07 2004-02-11 주식회사제4기한국 Hollow fiber surface modificating method by using plasma in atmosphere
CN106351026A (en) * 2016-08-26 2017-01-25 陈雄 Silicon rubber membrane and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026543U (en) * 1983-07-29 1985-02-22 株式会社大林組 Jack-based vertical maintenance machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135681B2 (en) * 1981-07-15 1989-07-26 Kuraray Co
JPS5814906A (en) * 1981-07-15 1983-01-28 Kuraray Co Ltd Permeable membrane
JPS5955309A (en) * 1982-09-24 1984-03-30 Shin Etsu Chem Co Ltd Composite molding for separating gas
JPS5969105A (en) * 1982-10-12 1984-04-19 Shin Etsu Chem Co Ltd Composite molding for gas separation
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPH0323208B2 (en) * 1983-06-07 1991-03-28 Nitto Denko Corp
JPS6094106A (en) * 1983-10-27 1985-05-27 Nitto Electric Ind Co Ltd Manufacture of compound membrane
JPH0317533B2 (en) * 1983-10-27 1991-03-08 Nitto Denko Corp
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPH0197994A (en) * 1987-10-09 1989-04-17 Matsushita Electric Ind Co Ltd Controller for electronic musical instrument
JPH0197992A (en) * 1987-10-09 1989-04-17 Matsushita Electric Ind Co Ltd Controller for electronic musical instrument
JPH01304933A (en) * 1988-06-01 1989-12-08 Toray Ind Inc Polyolefin porous film and electrolysis separator
WO1997031034A1 (en) * 1996-02-21 1997-08-28 Commonwealth Scientific And Industrial Research Organisation Method for reducing crazing in a plastics material
GB2326165A (en) * 1996-02-21 1998-12-16 Commonwealth Scientific And Industrial Research Organization Method for reducing crazing in a plastics material
GB2326165B (en) * 1996-02-21 2000-08-09 Commw Scient Ind Res Org Method for reducing crazing in a plastics material
KR100418269B1 (en) * 2000-12-07 2004-02-11 주식회사제4기한국 Hollow fiber surface modificating method by using plasma in atmosphere
CN106351026A (en) * 2016-08-26 2017-01-25 陈雄 Silicon rubber membrane and preparation method thereof

Also Published As

Publication number Publication date
JPS5924845B2 (en) 1984-06-12

Similar Documents

Publication Publication Date Title
Ong et al. Recent membrane development for pervaporation processes
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JPS58180205A (en) Composite membrane having selective permeability to gas and its production
Ruaan et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma
JPS62136212A (en) Preparation of permselective composite membrane
JPS586207A (en) Production of gas permselective composite membrane
EP0216633A2 (en) Composite membrane comprising porous hollow fibers and process for producing the same
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
JPH038808B2 (en)
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPH0677673B2 (en) Selective gas permeable flat membrane
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPS59127603A (en) Gas permselective membrane and preparation thereof
JPS62210008A (en) Production of liquid separation membrane exhibiting permselectivity to ethanol
JP2004154613A (en) Manufacturing method of functional porous membrane
JPS62286503A (en) Porous hollow yarn composite membrane and its production
JPS61149210A (en) Preparation of gas permselective composite membrane
JPS5955309A (en) Composite molding for separating gas
JPH0310368B2 (en)
JPS5969105A (en) Composite molding for gas separation
JPS59162904A (en) Hydrogen selective permeation composite membrane and preparation thereof
JPS62129105A (en) Selective separation process of alcohol
JPH0479690B2 (en)