JPS5955309A - Composite molding for separating gas - Google Patents

Composite molding for separating gas

Info

Publication number
JPS5955309A
JPS5955309A JP16618282A JP16618282A JPS5955309A JP S5955309 A JPS5955309 A JP S5955309A JP 16618282 A JP16618282 A JP 16618282A JP 16618282 A JP16618282 A JP 16618282A JP S5955309 A JPS5955309 A JP S5955309A
Authority
JP
Japan
Prior art keywords
gas
plasma
film
oxygen
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16618282A
Other languages
Japanese (ja)
Inventor
Takateru Nakamura
中村 孝暉
Hirokazu Nomura
野村 洋和
Susumu Ueno
進 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16618282A priority Critical patent/JPS5955309A/en
Publication of JPS5955309A publication Critical patent/JPS5955309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide a composite molding for separating gas having high separating power for gas by providing a low temp. plasma polymer film of an org. compd. to the molding having a specific oxygen permeation characteristic. CONSTITUTION:A titled composite molding is produced by providing a low temp. plasma polymer film having 0.01-1mum film thickness consisting of an org. silicon compd. on a molding having >=1X10<-3>cm<2>.cm/cm<2>.sec.cmHg coefft. of oxygen permeation in a gas permeation section and has >=2.5 coefft. of sepn. For example, a silicone rubber sheet having 50mum thickness obtd. by a calendering method is set in a plasma generator, and after the inside of the generator is evacuated down to 10<-4>Torr, the vapor of trimethyl vinyl silane as an org. monomer is introduced into the generator and is adjusted and maintained to and at 0.2Torr while the vapor is kept flowed. High frequency electric powder of 13.56MHz and 150W is applied to the same in this state to generate the low temp. plasma of trimethyl vinyl silane, thereby forming a plasma polymer film on the silicone rubber sheet. The coefft. of permeation oxygen of the film is 3.0X10<-8> without the plasma treatment and 2.4X10<-8> with the treatment and the sepn. rate for nitrogen is increased from 2.0 to 3.1.

Description

【発明の詳細な説明】 本発明は良好な気体透過性を有すると共に気体の選択旧
す1ii1機能にすぐれた気体分離用複合成形体に関し
、とくには空気から酸素富化空気を得るのに好適とされ
る気体分離用複合成形体の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite molded article for gas separation that has good gas permeability and excellent gas selection functions, and is particularly suitable for obtaining oxygen-enriched air from air. The purpose of the present invention is to provide a composite molded article for gas separation.

最近、限外濾過膜、逆浸透膜、ガス透過膜等の高分子膜
を利用する分離技術の進歩発展VC,は著しいものがあ
り、そのいくつかは工業的規模で実用化されている。し
かしながら、現実に実用化されているものは海水の淡水
化、工場廃液の処理1食品(液状物)の濃縮等液−液分
離もしくに液−固分離であシ、気−気分離すなわち2種
以上の混合ガスから特定ガスの富化もしくは分離につい
てになお、研究段階にとどまっている。
Recently, there has been remarkable progress and development in separation technology using polymer membranes such as ultrafiltration membranes, reverse osmosis membranes, gas permeation membranes, etc., and some of them have been put into practical use on an industrial scale. However, the methods that are actually put into practical use include desalination of seawater, treatment of factory waste liquid, concentration of foods (liquid substances), liquid-liquid separation or liquid-solid separation, and gas-gas separation, i.e. Enrichment or separation of specific gases from a mixture of more than one species remains at the research stage.

このガス分離膜が実用化されていない海山としては1選
択透過性が小さいこと、すなわち特定の気体を選択門に
通し他の気体をほとんど通さないという模がないため、
高純度の気体を得るには膜分離を何度か繰り返す多段方
式を採用する必要があり、そのために装置が大きくなり
すぎることおよび透過流量が小さいため多量のガスを生
産できないことである。
As a seamount for which this gas separation membrane has not been put into practical use, the selective permeability is small, that is, there is no possibility that a specific gas will pass through the selective gate and almost no other gas will pass through.
In order to obtain high-purity gas, it is necessary to adopt a multi-stage method in which membrane separation is repeated several times, which makes the equipment too large and the permeation flow rate is small, making it impossible to produce a large amount of gas.

ガス分離膜の技術に関する問題点は、膜の分離能力を低
下させずに、如何にしてその単位面積当りの透過流量を
増大させる7)xということである。
The problem with gas separation membrane technology is how to increase the permeate flow rate per unit area of the membrane without reducing its separation capacity7)x.

また、分離膜の厚さと透過流量とは逆比例関係があり、
透過流量を増大させるには膜の厚さを減する必要がある
。しかし、薄膜化するとピンホール、ブラッグの発生あ
るいは厚みむら等が起り易く、均一なガス透過性を有す
る薄膜の製造が困難であるばかりでなく、ガス力離性も
徐々に低下するという問題があり、分離膜の薄膜化のみ
でu +r Xll係数2.5以上と百うすぐれた分1
lll能を達成することはできない。
In addition, there is an inversely proportional relationship between the thickness of the separation membrane and the permeation flow rate.
Increasing the permeate flow rate requires decreasing the membrane thickness. However, when the film is made thinner, pinholes, Bragg formations, and thickness unevenness tend to occur, making it difficult to manufacture a thin film with uniform gas permeability, and there is also the problem that gas force releasability gradually decreases. , just by making the separation membrane thinner, the u + r
ll ability cannot be achieved.

一方1選択透過性の点からみると最終用途として必ずし
も高純1隻のガスを必要としない分野も多々あり、例え
ば酸素の場合高炉送風用、燃焼補助用、廃液処理曝気用
、1笈療における呼2用等としてはいわゆる酸素富化空
気であればその目的が達成される。
On the other hand, from the point of view of selective permeability, there are many fields in which a high-purity gas is not necessarily required as a final use.For example, in the case of oxygen, it is used for blast furnace ventilation, combustion assistance, waste liquid treatment aeration, and single-gas treatment. If the air is so-called oxygen-enriched air for breath 2, etc., this purpose will be achieved.

しかして−酸素富化空気を得る従来の方法としては空気
分離装置(空気液化法)で高純度酸素を製造し、これを
空気と混合することで目的とする高い 酸素濃度痛素富化空気を得ていたが、この場合高純度酸
素は圧力容器に入っているため、取扱い上の危険性、混
合ガス濃度を一定とするための操作の煩雑性等の問題が
あシ、宵利な方法ではない。
However, the conventional method for obtaining oxygen-enriched air is to produce high-purity oxygen using an air separation device (air liquefaction method), and then mix it with air to obtain the desired oxygen-enriched air. However, in this case, the high-purity oxygen is contained in a pressure vessel, which poses problems such as handling risks and the complexity of operations to maintain a constant mixed gas concentration. do not have.

他方またオルガノポリシロキチン−ポリカーボネート共
重合体溶液を液状の流延支持体の表面に滴下することに
より極薄の膜を作シ、この膜をガスカ離膜として使用す
ることにより酸素富化空気を得る方法(特開昭54−4
0868号公報参照)も試みられている。この方法はガ
ス透過量を多くするために極薄の膜を使用するのである
が、支持体なしで厚さ0.I/Im程度の膜を安定して
作ることは非常に困難であるほか、このような極薄の膜
を装置に組み込む場合において、その取扱いが面倒であ
るという問題点があり、実用化されるに至っていない。
On the other hand, by dropping an organopolysilochitin-polycarbonate copolymer solution onto the surface of a liquid casting support, an ultra-thin membrane can be made, and this membrane can be used as a gas separation membrane to release oxygen-enriched air. Method of obtaining (Unexamined Japanese Patent Publication No. 54-4
0868) has also been attempted. This method uses an ultra-thin membrane to increase the amount of gas permeation, but it has a thickness of 0.5 mm without a support. It is extremely difficult to stably produce a film of about I/Im, and there are also problems in that it is troublesome to handle such an ultra-thin film when it is incorporated into a device. has not yet been reached.

本発明者らはこれらの問題点を解決するために鋭意研究
した結果1例えば製膜の再現性がよく。
The present inventors have conducted extensive research to solve these problems, and as a result 1, for example, the reproducibility of film formation is good.

取扱い上の操作が比較的簡単で69、ガスの分離能力が
晶く、かつ、単位面積当りの透過流量が多大であるガス
(気体〕分離用複合成形体を完成した。
We have completed a composite molded body for gas separation that is relatively easy to handle69, has a high gas separation ability, and has a large permeation flow rate per unit area.

丁なわら、本発明は有機高分子材料もしくは無機多孔質
材料で作られた、気体透過部における酸素透過係数が1
xlOclI−tTn/M・sec・cm Hg以上で
ある成形体に、葺成化合物の低1品プラズマ小合膜を設
けてなる分離係数2,5以上の気体分離用複合成形体に
関するものであシ、とくに空気から酸素富化空気を得る
のに好適とされる気体分離用複合成形体を提供するもの
である。
However, the present invention has an oxygen permeability coefficient of 1 in a gas permeable part made of an organic polymer material or an inorganic porous material.
xlOclI-tTn/M・sec・cm Hg or more This relates to a composite molded product for gas separation with a separation coefficient of 2.5 or more, which is obtained by providing a low-grade plasma composite film of a roofing compound on a molded product with a temperature of 2.5 or more. The object of the present invention is to provide a composite molded body for gas separation, which is particularly suitable for obtaining oxygen-enriched air from air.

本発明によればその気体分離用複合成形体例えばフィル
ム状態が分離係数2.5以上というすぐれた“性能を備
えたものであり、その基体フィルムが若干のビンホール
−ブラッグ等を有していてもその上に形成される低温プ
ラズマ重合膜によってカバーされるために、′)′f離
膜の薄膜化は容易となり、高いガス分離性能が達成され
る。
According to the present invention, the composite molded product for gas separation, such as a film state, has excellent "performance" with a separation coefficient of 2.5 or more, even if the base film has some bottle holes, Bragg, etc. Since it is covered by the low-temperature plasma polymerized film formed thereon, it is easy to make the separation film thinner, and high gas separation performance is achieved.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明に使用される成ノ1ネ体としては一般の有機高分
子材料刀鳥ら作られたフィルム−シート、中空体あるい
は中空糸、プラスチックスの焼結成形体、無1幾多孔賀
材料で作られた各種形状の成形体が色代されるが、これ
ら成形体に気体透過部におけるどは一素rRdjJ イ
糸敬が l  XI  Ocr/I  −tyn/cr
l  ・ sec  ・錆Hg以上であることが必要と
される。酸素透過係数がこれよりも小さいと単位面槓当
りの透過流V11が小さく rxす、工業同規模での分
離性能に劣るものとなる。
Formed bodies used in the present invention include film-sheets, hollow bodies or hollow fibers made of general organic polymer materials, sintered bodies of plastics, and non-porous porous materials. The molded bodies of various shapes are colored, and the gas permeable part of these molded bodies is
l.sec.Rust Hg or higher is required. If the oxygen permeability coefficient is smaller than this, the permeation flow V11 per unit surface area will be small rx, resulting in inferior separation performance on the same industrial scale.

十紀有醐簡分子材料としては、ポリエチレン。Yugo Toki's molecular material is polyethylene.

ホリブロビレン、ポリセルロースアセテート、ポリカー
ボネート、ポリエチレンテレフタレート。
Hollybrobylene, polycellulose acetate, polycarbonate, polyethylene terephthalate.

ポリビニルアルコール、ポリスチレン、ポリスルホン−
芳香族ポリエステル、ポリ塩化ビニル、ポリエレン系樹
脂、ふっ素糸樹脂、シリコーン系樹脂などが、また弾N
多孔質材料としては金1声、鉱物質の焼結体、磁器、陶
器、素焼、ニューセラミラグなどがそれぞJ1包含され
る。こす1.ら材料は対象とするガス分にWの種類、そ
の他の目的に応じて有利な材料が選択されなければなら
ないのであるが−例えば空気より酸素バ化草気を舟る目
FFJに対しては、よF)r4g累透過度のすぐれた材
料を使うのが有利であり、この?l+’μ点からげシリ
コーン系樹脂が好肩とされる。
Polyvinyl alcohol, polystyrene, polysulfone
Aromatic polyester, polyvinyl chloride, polyethylene resin, fluorine thread resin, silicone resin, etc.
Porous materials include gold, sintered minerals, porcelain, earthenware, unglazed ceramics, new ceramic rugs, and the like. Rub 1. Materials must be selected to be advantageous depending on the target gas content, type of W, and other purposes; for example, for FFJ, which carries more oxygen than air, F) r4g It is advantageous to use a material with excellent cumulative permeability, and this? l+'μ point Karage silicone resin is said to be a good choice.

このシリコーン系樹脂にはメチル糸ボリシaキサン、フ
ェニル糸ボリシσキチン、メチルフェニル系ポリシロキ
サン、ビニル系ポリシロキサン、さらに他のアルキルも
しくにハロゲン、シアノ基で置換されたアルキル基を有
するポリシロキサン、それらの混合体あるいはこれらと
他の有機化合物とのコポリマー例えばシリコーン−カー
ボネートコポリマー1,7リコーンーウレタンコボリマ
ー、シリコーン−アクリルコポリマーなどが、さらには
変性ポリシロキサン例えばアミノ&f性ポリシロキサン
、エボキリ糸変性ポリシロキサン、アグリル糸変性ポリ
シロキサン、ポリエーテル変性ポリシロキチン、フェノ
ール変性ポリシロキチンなどが包含される。
These silicone resins include methyl thread polyoxyaxane, phenyl thread polysiloxane, σ chitin, methylphenyl polysiloxane, vinyl polysiloxane, and other polysiloxanes having alkyl groups substituted with alkyl, halogen, or cyano groups. , mixtures thereof, or copolymers of these with other organic compounds, such as silicone-carbonate copolymers, 1,7 silicone-urethane copolymers, silicone-acrylic copolymers, and modified polysiloxanes, such as amino and f-based polysiloxanes, and epoxy threads. Modified polysiloxanes, agril-modified polysiloxanes, polyether-modified polysiloxanes, phenol-modified polysiloxanes, and the like are included.

これらシリコーン系樹脂の構造としては―錫杖。The structure of these silicone resins is tin cane.

分枝状、網状のいずれでもよく、必要vtc応じて硬化
剤の添7J1.I VCより架偏させることもできる。
It may be branched or net-like, and a curing agent may be added according to the required vtc 7J1. It is also possible to make it more biased than the IVC.

例えば熱硬化型ポリシロキサンには硬化用触媒あるいは
バーブキサイドのいずれを使用してもよく、また室ず晶
1便化型ポリνロギサンにに脱オキシム型。
For example, a curing catalyst or barboxide may be used for thermosetting polysiloxane, and oxime-free polysiloxane may be used for thermosetting polysiloxane.

脱酢酸型、脱アルコール型、脱アセトン型など各種のも
のが包含される。
It includes various types such as deacetic acid type, dealcoholized type, and deacetonized type.

T−i 1’l晶分子亭4料から前記した各棟の成形体
を得る方lリーとしてば、西宮の押出成形−圧縮成形、
カレンダー幌上、モールティング成形、キャスティング
成形等の方法によればよく、その成形方法に制限はない
。また無機多孔質材料の場合も、酸素透過係数が前記し
た値を満足する限り、従来公知の成形方法に阜じれはよ
く、板状体、シート状体、管状体等各種形状の成形体が
作られる。
The method of obtaining the above-mentioned molded bodies from T-i 1'l Crystal Molecule Tei 4 materials is Nishinomiya's extrusion molding-compression molding,
The molding method is not limited, and may be any method such as calendering, molding, or casting. Furthermore, in the case of inorganic porous materials, as long as the oxygen permeability coefficient satisfies the above-mentioned value, conventionally known molding methods can be used, and molded bodies of various shapes such as plate-like bodies, sheet-like bodies, and tubular bodies can be produced. It will be done.

本発明に刀1かわる気体分離用複合酸4形体は、上記し
た所定の酸素透過係数を有する成形体の表面に有機化合
物の低温プラズマ重合膜を設けてなるものであるが、こ
こに使用される有機化合物としては、荷槻けい素化合物
−有機フッ素化合物、炭化水素化合物、七の4tlJの
有機化合物がノ関宜選択使用される。具体的例示をあげ
れば次のとおシである。
The complex acid 4-form for gas separation, which is an alternative to the sword 1 of the present invention, is made by providing a low-temperature plasma polymerized film of an organic compound on the surface of a molded body having the above-mentioned predetermined oxygen permeability coefficient, and is used here. As the organic compound, Natsuki silicon compounds, organic fluorine compounds, hydrocarbon compounds, and 7-4tlJ organic compounds are selectively used. A specific example is as follows.

トリメチルグロr7ゾランー トリメチルメトキシシラ
ン、トリメチルエトキシシラン、ビニルジメチルグロロ
シラン、ビニルジメチルメトキシシラン、ビニルジメチ
ルエトキシシラン、エチニルジメチルメトキv+/ラン
、エチニルジメチルグロ口νラン、メチルグロロメチル
メトキシグロロシラン、トリエチルメトギシシランージ
メチルグロロメチルエ・トキシシラ。ン、ジメチルクa
oメチルグロロシラン、ジメチルフェニルメトキシシラ
ン。
Trimethylglor7zolan- Trimethylmethoxysilane, trimethylethoxysilane, vinyldimethylglorosilane, vinyldimethylmethoxysilane, vinyldimethylethoxysilane, ethynyldimethylmethoxyv+/ran, ethynyldimethylglorovran, methylgloromethylmethoxyglorosilane , triethylmethoxysilane-dimethylchloromethylethoxysilane. dimethylchloride a
o Methylglorosilane, dimethylphenylmethoxysilane.

2−グロロエチニルジメチルグロc1シラン、2一グロ
口エチルジメチルメトキシνラン、ジメチルジグロロシ
ランージメチルジメトキシシラン、ジメチルジェトキシ
シラン、ジメチルジェトキシシラン、ビニルメチルジグ
ロロシラン、ビニルメチルジメトキシシラン、2−クロ
ロエチルメチルジメトキシシラン、ビニルメチルジェト
キシシラン、グロ口メチルメチルジグロ口νラン、ジメ
トキシメチルフェニルシラン、グロ口メチルメチルジメ
トキシνラン、メチルトリメトキシシラン、メチルトリ
エトキシシラン、ビニルトリメトキシシラン、フェニル
トリメトキシシラン、クロロメチルトリメトキシシラン
、2−クロロエチルトリメトキシシラン、トリフロロブ
aビルトリグロaシラン、テトラビニルシラン、トリビ
ニルメチルシラン、ジビニルジメチルシラン、ビニルト
リメチルシラン、ジビニルテトラメチルジνロキサンー
ジグロ口メチルテトラメチルジシロキサン、ジェチニル
テトラメチルジシロキサン、テトラメチルジチルジシラ
ザン、オグタメチルシグロテトラシロキサン、ヘキサメ
チルシルフェニレン。
2-Gloroethynyldimethylgloclsilane, 2-Gloroethynyldimethylmethoxyvran, dimethyldiglorosilane-dimethyldimethoxysilane, dimethyljethoxysilane, dimethyljethoxysilane, vinylmethyldiglorosilane, vinylmethyldimethoxysilane, 2-Chloroethylmethyldimethoxysilane, vinylmethyljethoxysilane, methylmethyldimethoxysilane, dimethoxymethylphenylsilane, methylmethyldimethoxyvlan, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane , phenyltrimethoxysilane, chloromethyltrimethoxysilane, 2-chloroethyltrimethoxysilane, trifluorobiltrigloa silane, tetravinylsilane, trivinylmethylsilane, divinyldimethylsilane, vinyltrimethylsilane, divinyltetramethyldiνloxane-diglomethylsilane Tetramethyldisiloxane, jetynyltetramethyldisiloxane, tetramethyldityldisilazane, ogtamethylsiglotetrasiloxane, hexamethylsilphenylene.

モノクロロトリフルオロメタン、ジグ口口ジフルオ口メ
タン、モノグロ口ジフルオ口メタン、トリグロaトリフ
ルオロエタン、ジグ口口テトラフルオ口エタン、モノグ
ロ口ペンタフルオ口エタン。
Monochlorotrifluoromethane, jig difluoromethane, monoglo difluoromethane, trifluor a trifluoroethane, jig tetrafluoroethane, monoglo pentafluoroethane.

テトラフルオロエチレン、ヘキサフルオロプロピレン、
パーフルオaブaパン、テトラフルオロメタン% 1.
1−ジフルオロエチレン、トリフルオロメタン、フルオ
ロメタン、オグタフルオロシグロブタン、ジプルオロエ
タン、グロ口ジフルオ口エタン、ヘキサフルオロエタン
、クロロペンタフルオロエタン、ジブロモテトラフルオ
ロエタン。
Tetrafluoroethylene, hexafluoropropylene,
Perfluoro a bread, tetrafluoromethane% 1.
1-difluoroethylene, trifluoromethane, fluoromethane, ogutafluorosyglobutane, difluoroethane, gross difluoroethane, hexafluoroethane, chloropentafluoroethane, dibromotetrafluoroethane.

メタン、エタン、プロパン、ペンタン、ヘキサン、エチ
レン、プロピレン、ブテン、ヘプテン。
Methane, ethane, propane, pentane, hexane, ethylene, propylene, butene, heptene.

ブダジエン、プロパジエン−ヘキサトリエン、メチルプ
ロペン、ジメチルへキサジエン、ジグaヘキサン、シグ
ロペンテン、Vグロヘキセン、Vグロへキサジエン、ベ
ンゼン、トルエン、キシレン。
Butadiene, propadiene-hexatriene, methylpropene, dimethylhexadiene, di-a-hexane, cyglopentene, V-glohexene, V-glohexadiene, benzene, toluene, xylene.

ナフタレン−スチレン、メチルスチレン、ペンタメチル
ベンゼン、ヘキサメチルベンゼン、ジビニルベンゼン、
アリルベンゼン、ビニルナフタレン。
Naphthalene-styrene, methylstyrene, pentamethylbenzene, hexamethylbenzene, divinylbenzene,
Allylbenzene, vinylnaphthalene.

ブダノール、メチルアミン、ヘプタノン、グロロメチル
プロパン、バルロニトリル、グロロアセトニトリル、メ
タグリル酸、メタグリル酸メチルーアクリル酸、マレイ
ン酸、アリルアミン、アリルメチルアミン、アグリロニ
トリル、テトラシアノWfンニトリル、メタクリ口ニト
リル、ビニレンカーボネート、アクロレイン、アリルブ
ロマイド、グロロブロペン、塩化ビニルー塩化ビニリデ
ン、アリルアルコール、クロロベンゼンー トリクロロ
ベンゼン、ベンゾニトリル、トルイジン。
Budanol, methylamine, heptanone, gloromethylpropane, vallonitrile, gloroacetonitrile, methacrylic acid, methyl methacrylate-acrylic acid, maleic acid, allylamine, allylmethylamine, agrilonitrile, tetracyanonitrile, methacrylate nitrile, vinylene Carbonate, acrolein, allyl bromide, glolobropene, vinyl chloride-vinylidene chloride, allyl alcohol, chlorobenzene-trichlorobenzene, benzonitrile, toluidine.

ニトロトルエン+ N 、 N −i)) チア1z 
) 7L/(i)ン。
Nitrotoluene + N, N-i)) Thia 1z
) 7L/(i)n.

N−ニトロソジエチルアミン、アニリン、メチルアニリ
ン、フタル岐−フエノール、ベンズアルデヒド、Vグロ
ヘキセノール、ピリジン、ビニルピリジン、ビニルメチ
ルビリジン、ピコリン、フェロセン、ビニルフエロヤン
、チオフェン、ジヒドロフラン、N−ニトロソピペリジ
ン。
N-nitrosodiethylamine, aniline, methylaniline, phthalate-phenol, benzaldehyde, V-glohexenol, pyridine, vinylpyridine, vinylmethylpyridine, picoline, ferrocene, vinylferroyan, thiophene, dihydrofuran, N-nitrosopiperidine.

上記した各柿有機化合物に1柿に限られず、2種以上を
併用して差支えないが、酸素透過性がすぐれている点に
おいて有機けい素化合物特には分子内に不飽和結合を有
する有機けい素化合物を主体UF+に使用することが好
ましい。
Each persimmon organic compound mentioned above is not limited to one type of persimmon, and two or more types can be used in combination, but organic silicon compounds, especially organic silicon compounds having unsaturated bonds in the molecule, have excellent oxygen permeability. Preference is given to using the compound primarily UF+.

成形体の表面に低温プラズマ重合膜を設ける方法として
は、低温プラズマ発生装置内に成形体を装入し、この装
置内に有機化合物のガスを流通させながら装置内を10
トル以下の圧力に調整保持し、このガス圧力下に低温プ
ラズマを発生させ、該成J16品を低温プラズマにさら
す方法によればよいoなお1句4λへ化付物と共にヘリ
ウム、アルゴン寺の不活性ガス、空素、#を素、草気、
水素、水蒸気、二酸化炭素、−葭化炭、+e等の無機ガ
スを共存させてもよい。
A method for forming a low-temperature plasma polymerized film on the surface of a compact is to place the compact into a low-temperature plasma generator, and to flow the organic compound gas through the device for 10 minutes.
The method is to adjust and maintain the pressure to below Torr, generate low-temperature plasma under this gas pressure, and expose the product to the low-temperature plasma. active gas, air, #, grass,
Inorganic gases such as hydrogen, water vapor, carbon dioxide, -yoshikako, and +e may also coexist.

上記方法しこおいて、■機化合物のガスの装置内におけ
る圧力が商才ぎると、b見老体表面へのプラズマ重合膜
の形成が困帷となるので、この低温プラズマのガス圧力
i’[10)ル以下であることが好ましく、待にば5〜
0.005)ルの範囲であることが望廿しい。このガス
j上刃における低温プラズマにより、すぐれたガス分離
時性を有する重合膜がノ1そ吸さ」する。このようにし
て(F6成されるプラズマ重合膜の望ましい厚さは0.
01〜1μmである。
In the above method, if the pressure of the gas of the compound (1) in the apparatus is too high, it will be difficult to form a plasma polymerized film on the surface of the body (b), so the gas pressure of this low temperature plasma i'[ 10) It is preferable that it is less than 1, and if waiting 5~
0.005) is desirable. This low-temperature plasma in the gas upper blade absorbs a polymeric film having excellent gas separation properties. The desired thickness of the plasma polymerized film formed in this manner (F6) is 0.
01-1 μm.

なお、低7h^プラズマを発生させる条件としては。In addition, the conditions for generating low 7h^ plasma are as follows.

例えば?Q411(6C10KHz 〜100MHz−
1ow〜100KWの電力を印加すれdよく、内部′小
極、外部電極(年声極]のいずれの方式を使用してもよ
い。
for example? Q411 (6C10KHz ~100MHz-
A power of 1 OW to 100 KW may be applied, and either an internal electrode or an external electrode (electrode) may be used.

成形体を上記した諸条件のもとに発生させた低7h^プ
ラズマで処理し、その表面に有機化合物のプラズマ重合
膜を形IJVさせるのであるが、そのためのプラズマ処
理時間は印7JO竜力青によっても相違1−るが、一般
には数秒〜100号程度で充分である。
The molded body is treated with low 7h^ plasma generated under the above-mentioned conditions, and a plasma polymerized film of an organic compound is formed on the surface of the body. Generally speaking, a few seconds to about No. 100 is sufficient, although this may vary depending on the situation.

つぎに具体的実施例をあげるが、以下の各実施例におけ
る酸素透過係数および窒素透過係数の各個ぼ、JIS 
 Z  1707(減圧法)に準じた方式に基づいて測
定したもので、これはまず透過セル中に膜を挾持し、膜
の両側の空間を真空ポンプにより排坊した後、大気圧状
態で酸素もしくは窒素を導入し友とき、膜を通過した側
での単位時間における圧力斐化を測定して算出したもの
である。
Next, specific examples will be given. Each of the oxygen permeability coefficients and nitrogen permeability coefficients in each of the following examples, JIS
The measurement was conducted based on a method similar to Z 1707 (decompression method), in which the membrane was first held in a permeation cell, the space on both sides of the membrane was evacuated using a vacuum pump, and then oxygen or oxygen was added at atmospheric pressure. It was calculated by measuring the pressure change per unit time on the side where nitrogen was introduced and passed through the membrane.

実施例1 カレンダー成形法により得られた厚さ50ノlTLのシ
リコーンゴムリート(信越化学社製シリコーンゴムKE
−1517をプラズマ発生装置内にセットし、装置内を
I O”−4トルまで減圧したのち、Tfaモノマーと
してトリメチルビニルシランの蒸気をこの装置内に導入
し、流通下0,2トルに調整保持したのら、13.56
MHz  150wの高周波電力を12分間与えてトリ
メチルビニルシランの低温プラズマを発生させてOj1
記シート上にプラズマ重合膜を形成させた。
Example 1 Silicone rubber reit (silicone rubber KE manufactured by Shin-Etsu Chemical Co., Ltd.) with a thickness of 50 nol TL obtained by a calender molding method.
-1517 was set in a plasma generator, and the pressure inside the device was reduced to IO"-4 torr. Then, vapor of trimethylvinylsilane as a Tfa monomer was introduced into the device, and the pressure was adjusted and maintained at 0.2 torr under circulation. Nora, 13.56
A low-temperature plasma of trimethylvinylsilane was generated by applying high-frequency power of MHz 150W for 12 minutes.
A plasma polymerized film was formed on the sheet.

このものの酸素透過係数、窒素透過係数および分離率(
酸素透過係数/窒素透過係数)を測定したところ、下記
第1表のとおシであった。
Oxygen permeability coefficient, nitrogen permeability coefficient and separation rate (
When the oxygen permeability coefficient/nitrogen permeability coefficient) was measured, the results were as shown in Table 1 below.

なお、比較例としてプラズマ重合処理を行なわなかった
ものについて同表に併記した。
In addition, as a comparative example, samples that were not subjected to plasma polymerization treatment are also listed in the same table.

第   1   表 (注)  c4−tyn/ ctlr・sea・cm 
Hg実施例2 実施例1において、トリメチルビニルシランのロロシラ
ンおよびジメチルジメトキシシランを使用したほかは実
施例1と同様に行い、シリコーンゴムシート上にプラズ
マ重合膜を形成させた。これらの物性を測定したところ
、下記の第2表のとおりであった。
Table 1 (Note) c4-tyn/ctlr・sea・cm
Hg Example 2 A plasma polymerized film was formed on a silicone rubber sheet in the same manner as in Example 1 except that rollosilane of trimethylvinylsilane and dimethyldimethoxysilane were used. When these physical properties were measured, they were as shown in Table 2 below.

第   2   表 実施例3 t/ QコーンKE45RTV(信越化学商品名)のl
071fft%)ルエン溶液をポリエチレン板上にキャ
スティングし硬化させたところ、35μmのシリコーン
ゴムシートが得られた。
Table 2 Example 3 t/l of Q cone KE45RTV (Shin-Etsu Chemical brand name)
When the luene solution (071 fft%) was cast on a polyethylene plate and cured, a 35 μm silicone rubber sheet was obtained.

このシートを実施例1における装置内にセットし、装置
内を10 トルにまで減圧したのら、トリビニルメチル
シランの蒸気をこの装置内に導入し、流通下0.3トル
に調整保持したのら、11OKHz500Wの高周波電
力を3分間与えてトリビニルメチルシランの低温プラズ
マを発生させ前記シート上に処理を行ってプラズマ重合
膜を形成させた。このものの物性を測定したところ、下
記の第3表のとおりであった。
This sheet was set in the apparatus of Example 1, and the pressure inside the apparatus was reduced to 10 Torr. Then, trivinylmethylsilane vapor was introduced into the apparatus, and the pressure was adjusted and maintained at 0.3 Torr while circulating. Then, high-frequency power of 11 kHz and 500 W was applied for 3 minutes to generate low-temperature plasma of trivinylmethylsilane, and the sheet was processed to form a plasma polymerized film. The physical properties of this product were measured and were as shown in Table 3 below.

第 3 表 実施例4 1gのポリカーポートフィルを12000のトルエンお
よびs o aaのジメチルホルムアミドに溶解させた
溶液を調整し、これを水面上に滴下することにより極薄
膜を形成させた。この極薄膜を1紙上にすくいとり、室
温で1日ついで80℃で3時間乾燥した。
Table 3 Example 4 A solution was prepared by dissolving 1 g of polycarport fill in 12,000 g of toluene and SO AA of dimethylformamide, and the solution was dropped onto the water surface to form an extremely thin film. This ultra-thin film was scooped onto a piece of paper and dried at room temperature for one day and then at 80° C. for 3 hours.

上記のようにして得たポリカーボネート極薄膜を実施例
1における装置内において実施例1と同様のプラズマ重
合処理を行ってプラズマ重合膜を形成させた。
The ultrathin polycarbonate film obtained as described above was subjected to the same plasma polymerization treatment as in Example 1 in the apparatus of Example 1 to form a plasma polymerized film.

このものの物性を測定し次ところ、下記の第4辰のとお
りであった。なお、前記ポリカーボネート極薄膜を重量
法により測定したところ膜厚は0.98μmであった。
The physical properties of this product were measured and found to be as shown in the fourth column below. In addition, when the ultra-thin polycarbonate film was measured by a gravimetric method, the film thickness was 0.98 μm.

第  4  表 実施例 5 無機多孔質材料として孔径200Xの多孔質ガラス板(
コーニンダグラス社製)を実施例】における装置内にセ
ットし、装置内を10”−’トルにまで減圧したのちト
リビニルメチルシランの蒸気をこの装置内に導入して流
通下0.3トルに調整保持した。この状態で110KH
z500Wの高周波電力を40分間与えてトリビニルメ
チルシランの低温プラズマを発生させ、前記多孔質ガラ
ス板上にプラズマを発生させ、前記多孔質ガラス板上に
プラズマ重合膜を形成させた。このものの物性を測定し
たところ、下記第5表に示すとおりであった。
Table 4 Example 5 A porous glass plate with a pore diameter of 200X was used as an inorganic porous material (
(manufactured by Cornyn Douglas Corporation) was set in the apparatus in [Example], the pressure inside the apparatus was reduced to 10''-' Torr, and trivinylmethylsilane vapor was introduced into the apparatus and the pressure was reduced to 0.3 Torr under circulation. Adjusted and held at 110KH in this state.
A low-temperature plasma of trivinylmethylsilane was generated by applying high frequency power of 500 W for 40 minutes to generate plasma on the porous glass plate to form a plasma polymerized film on the porous glass plate. The physical properties of this product were measured and were as shown in Table 5 below.

Claims (1)

【特許請求の範囲】 1、有機高分子材料もしくに無機多孔質材料で作られた
、気体透過部における酸素透過係数が8 1 X 10  crl−cm/−・sec  ・mH
g以上である成形体に、有機化合物の低温プラズマ重合
膜を設けてなる分離係数2.5以上の気体分離用複合成
形体。 2、低温プラズマ重合膜の膜厚が0.01〜1μmであ
る特許請求の範囲第1項記載の気体分離用複合成形体。 3、有機化合物が有機けい素化合物である特許請求の範
囲第1項記載の気体分離用複合成形体。 4、有機化合物が分子内に不飽和結合を有する有賊の気
体分離用複合成形体。 5、空気から酸素富化空気を得るのに使用する特許請求
の範囲第1項記載の気体分離用複合酸フレ体。
[Claims] 1. The oxygen permeability coefficient in the gas permeable part made of an organic polymer material or an inorganic porous material is 8 1 × 10 crl-cm/-・sec ・mH
A composite molded article for gas separation having a separation coefficient of 2.5 or more, which is obtained by providing a low-temperature plasma polymerized membrane of an organic compound on a molded article having a separation coefficient of 2.5 or more. 2. The composite molded article for gas separation according to claim 1, wherein the low temperature plasma polymerized membrane has a thickness of 0.01 to 1 μm. 3. The composite molded article for gas separation according to claim 1, wherein the organic compound is an organosilicon compound. 4. A composite molded body for gas separation in which an organic compound has an unsaturated bond in its molecule. 5. The composite acid fluoride for gas separation according to claim 1, which is used to obtain oxygen-enriched air from air.
JP16618282A 1982-09-24 1982-09-24 Composite molding for separating gas Pending JPS5955309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16618282A JPS5955309A (en) 1982-09-24 1982-09-24 Composite molding for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16618282A JPS5955309A (en) 1982-09-24 1982-09-24 Composite molding for separating gas

Publications (1)

Publication Number Publication Date
JPS5955309A true JPS5955309A (en) 1984-03-30

Family

ID=15826591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16618282A Pending JPS5955309A (en) 1982-09-24 1982-09-24 Composite molding for separating gas

Country Status (1)

Country Link
JP (1) JPS5955309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219206A (en) * 1985-07-18 1987-01-28 Dainippon Ink & Chem Inc Preparation of high molecular film having high separation performance
JPH06277471A (en) * 1992-10-13 1994-10-04 Deutsche Carbone Ag Preparation of synthetic plasma film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658518A (en) * 1979-10-17 1981-05-21 Toyota Central Res & Dev Lab Inc Fine-tubelike gas separating member
JPS5781805A (en) * 1980-11-11 1982-05-22 Sumitomo Electric Ind Ltd Gas selective permeable composite membrane and its production
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5794304A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Gas separating membrane made of polysulfone hollow fiber and its manufacture
JPS586208A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS588517A (en) * 1981-07-08 1983-01-18 Sumitomo Electric Ind Ltd Preparation of composite film with selective permeability for gas
JPS58180205A (en) * 1982-04-16 1983-10-21 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658518A (en) * 1979-10-17 1981-05-21 Toyota Central Res & Dev Lab Inc Fine-tubelike gas separating member
JPS5781805A (en) * 1980-11-11 1982-05-22 Sumitomo Electric Ind Ltd Gas selective permeable composite membrane and its production
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5794304A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Gas separating membrane made of polysulfone hollow fiber and its manufacture
JPS586208A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS588517A (en) * 1981-07-08 1983-01-18 Sumitomo Electric Ind Ltd Preparation of composite film with selective permeability for gas
JPS58180205A (en) * 1982-04-16 1983-10-21 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219206A (en) * 1985-07-18 1987-01-28 Dainippon Ink & Chem Inc Preparation of high molecular film having high separation performance
JPH06277471A (en) * 1992-10-13 1994-10-04 Deutsche Carbone Ag Preparation of synthetic plasma film

Similar Documents

Publication Publication Date Title
Xie et al. Preparation of thermo-responsive gating membranes with controllable response temperature
Nagai et al. Effects of aging on the gas permeability and solubility in poly (1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JPH06100720A (en) Microporous film of superpermeable polypropylene and its production
JPH0551331B2 (en)
Yoshikawa et al. Selective separation of water–alcohol binary mixture through poly (maleimide‐co‐acrylonitrile) membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS5955309A (en) Composite molding for separating gas
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
Aminabhavi et al. Molecular transport of oxygen and nitrogen through polymer films
JPS586207A (en) Production of gas permselective composite membrane
JPS61125424A (en) Separating membrane of mixed gas
JPS5969105A (en) Composite molding for gas separation
JPH0525531B2 (en)
JPS60122026A (en) Compound molded body for gas separation
JPH038808B2 (en)
KR20000067454A (en) Separation membranes using crosslinked polymers with siloxane main chains
JPS62116776A (en) Production of thin film
JPS59127603A (en) Gas permselective membrane and preparation thereof
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS61141914A (en) Gas separation membrane
JPH0446172B2 (en)
JPS60255111A (en) Oxygen permselective composite membrane and its production
El-Gendi et al. Investigations of rubbery copolyimides for the preparation of asymmetric pervaporation membranes