JPH0310368B2 - - Google Patents

Info

Publication number
JPH0310368B2
JPH0310368B2 JP59141482A JP14148284A JPH0310368B2 JP H0310368 B2 JPH0310368 B2 JP H0310368B2 JP 59141482 A JP59141482 A JP 59141482A JP 14148284 A JP14148284 A JP 14148284A JP H0310368 B2 JPH0310368 B2 JP H0310368B2
Authority
JP
Japan
Prior art keywords
hydrogen
composite membrane
polymer
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141482A
Other languages
Japanese (ja)
Other versions
JPS6121718A (en
Inventor
Shigeru Asako
Koichi Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59141482A priority Critical patent/JPS6121718A/en
Publication of JPS6121718A publication Critical patent/JPS6121718A/en
Publication of JPH0310368B2 publication Critical patent/JPH0310368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は耐熱性、耐薬品性、機械的特性に優れ
た水素選択透過性複合膜に関し、更に詳しくは、
高分子支持体表面にプラズマ重合薄膜を堆積させ
てなる水素選択透過性複合膜に関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention relates to a hydrogen selectively permeable composite membrane having excellent heat resistance, chemical resistance, and mechanical properties, and more specifically,
The present invention relates to a hydrogen selectively permeable composite membrane formed by depositing a plasma polymerized thin film on the surface of a polymer support.

(従来の技術) 近年、省エネルギーの見地から高分子膜を用い
たガス分離精製技術の開発が盛んに進められてい
る。その中で水素選択透過性膜への期待は大き
い。例えば、大型工業技術研究「C1化学」は、
水素と一酸化炭素、メタン等の分離、精製が1つ
の開発目標である。また水素は将来のエネルギー
源として注目を集めており、水の電気分解や水性
ガスで得られる水素の分離・精製が重要が重要な
課題となつている。
(Prior Art) In recent years, gas separation and purification technology using polymer membranes has been actively developed from the viewpoint of energy conservation. Among these, expectations are high for hydrogen selectively permeable membranes. For example, large-scale industrial technology research “C1 Chemistry”
One development goal is the separation and purification of hydrogen, carbon monoxide, methane, etc. Hydrogen is also attracting attention as a future energy source, and the separation and purification of hydrogen obtained from water electrolysis and water gas has become an important issue.

水素選択透過性膜は、水素に対する高い選択透
過性と高透過性を有することはもちろん、優れた
耐熱性、耐薬品性、機械的特性を合わせもつこと
が有用である。ここでいう高い選択透過性とは、
水素の透過速度をQH2、他のガス、例えば一酸化
炭素の透過速度をQCOとした時、α=QH2/QCOで定義 する分離係数が大きいということである。また高
透過性とはQH2の絶対値が大きいことを意味す
る。
It is useful for the selectively permeable hydrogen membrane to not only have high selective permselectivity and high permeability for hydrogen, but also to have excellent heat resistance, chemical resistance, and mechanical properties. High selective permeability here means
When the permeation rate of hydrogen is Q H2 and the permeation rate of other gases such as carbon monoxide is Q CO , the separation coefficient defined by α=Q H2 /Q CO is large. Furthermore, high transparency means that the absolute value of Q H2 is large.

これらの要求特性を満たす水素選択透過性膜の
開発は、種々の製膜方法が検討されているが、そ
の中で注目すべきはプラズマ重合を利用した製膜
法である。
Various membrane forming methods are being considered for the development of hydrogen selectively permeable membranes that meet these required characteristics, and among them, a membrane forming method using plasma polymerization is noteworthy.

プラズマ重合は、減圧下で操作が行なわれるた
め、製膜中の塵埃混入の問題がなく、また湿式製
膜に見られる溶剤の使用や加熱手段を必要とせ
ず、支持体表面に極めて薄いピンホールレスの膜
を作ることが可能である。プラズマ重合の水素選
択透過性膜への応用は、例えば、文献J.of
APPI.Polym.Sci.1505項16巻(1972)に、主とし
てシアノ基を含む化合物を用いた研究が報告され
ている。しかしこれら化合物から得られる重合膜
は、剛直で脆く、機械的特性に欠点を有し、更に
これら化合物が猛毒であることから取扱いが困難
である。また特開昭第57−30528号は、多孔質体
上に2種類のプラズマ重合薄膜を層状に形成させ
た例を呈示している。ここでは第1層にオルガノ
シランを用いた重合膜を形成し、続いて飽和炭化
水素、不飽和炭化水素、芳香族炭化水素あるいは
これらの誘導体をプラズマ重合させて第2層を積
層している。第1層のオルガノシラン重合体は、
透過性と機械的特性に優れているが、選択透過性
が不十分であり、一方第2層の重合膜は、選択透
過性が高いものの、機械的強度が十分でなく透過
性も低いと述べている。この様に一種のプラズマ
重合膜では、全ての必要特性を満すことができ
ず、2種類のプラズマ重合膜を積層するという頻
雑な操作を行なつている。
Plasma polymerization is operated under reduced pressure, so there is no problem with dust contamination during film formation, and there is no need for the use of solvents or heating methods that are found in wet film formation, and there is no need for extremely thin pinholes on the surface of the support. It is possible to create a film that is free of oxidation. The application of plasma polymerization to hydrogen permselective membranes is described, for example, in the literature J.of
APPI.Polym.Sci.1505, Volume 16 (1972) reports research mainly using compounds containing cyano groups. However, polymer films obtained from these compounds are rigid and brittle, have defects in mechanical properties, and are difficult to handle because these compounds are highly toxic. Further, JP-A No. 57-30528 presents an example in which two types of plasma polymerized thin films are formed in layers on a porous body. Here, a polymer film using organosilane is formed as the first layer, and then a second layer is laminated by plasma polymerizing saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, or derivatives thereof. The organosilane polymer of the first layer is
Although it has excellent permeability and mechanical properties, it has insufficient permselectivity, while the second layer polymer membrane has high permselectivity, but has insufficient mechanical strength and low permeability. ing. As described above, one type of plasma polymerized membrane cannot satisfy all the required characteristics, and a frequent operation of laminating two types of plasma polymerized membranes is performed.

(発明の目的) 本発明の目的は、取扱い容易な1種類の有機シ
ラン化合物を用い、簡単なプラズマ重合操作で、
極めて高度な水素選択透過性と透過性を合せ有
し、かつ耐熱性、耐薬品性、機械的特性に優れた
水素選択透過性複合膜を提供することにある。
(Objective of the Invention) The object of the present invention is to use one type of organic silane compound that is easy to handle, and to perform a simple plasma polymerization operation.
The object of the present invention is to provide a hydrogen selective permeability composite membrane that has extremely high hydrogen selective permeability and permeability, and has excellent heat resistance, chemical resistance, and mechanical properties.

(発明の構成) (手段) 本発明による水素選択透過性複合膜は高分子支
持体表面にエチニールトリメチルシランを用いて
プラズマ重合膜を堆積させてなる複合膜である。
この時高分子支持体は、無孔性材料あるいは多孔
性材料いずれでもよく、無孔性材料あるいは0.1μ
以下の平均孔径を有する多孔性材料の場合、プラ
ズマ重合膜はその表面に直接堆積され、0.1μを越
える平均孔径をもつ多孔性材料の場合は、その表
面孔を閉塞するよう高分子材料が積層された複合
構造となし、その上にプラズマ重合膜を堆積させ
る。
(Structure of the Invention) (Means) The hydrogen permselective composite membrane according to the present invention is a composite membrane formed by depositing a plasma polymerized membrane using ethynyltrimethylsilane on the surface of a polymer support.
At this time, the polymer support may be either a nonporous material or a porous material, and may be a nonporous material or a 0.1μ
For porous materials with an average pore size of: A plasma-polymerized film is then deposited onto the composite structure.

エチニールトリメチルシランを用いたプラズマ
重合の操作手順を以下に詳述する。
The operating procedure for plasma polymerization using ethynyltrimethylsilane is detailed below.

(1) プラズマ重合装置の反応器内に高分子支持体
をセツトする。
(1) Set the polymer support inside the reactor of the plasma polymerization device.

(2) 反応器内を真空ポンプにより少なくとも0.01
トール以下に排気する。
(2) The inside of the reactor is vacuum pumped to at least 0.01
Exhaust below toll.

(3) 排気を続けながらエチニールトリメチルシラ
ンのモノマー蒸気を流量計を通して、反応器内
に供給する。この時ヘリウム、アルゴン等の不
活性ガス、あるいは窒素ガスをキヤリアガスと
して使用してもよい。またガス供給後の反応器
内の圧力は5トール以下、好ましくは1トール
以下になる様、全ガス流量(モノマー蒸気とキ
ヤリアガスの合計流量)を設定する。圧力が高
いと放電は不安定な状態となり、反応に必要な
エネルギーが不足する。
(3) While continuing to evacuation, feed ethynyltrimethylsilane monomer vapor into the reactor through a flow meter. At this time, an inert gas such as helium or argon, or nitrogen gas may be used as a carrier gas. Further, the total gas flow rate (total flow rate of monomer vapor and carrier gas) is set so that the pressure inside the reactor after gas supply is 5 torr or less, preferably 1 torr or less. If the pressure is high, the discharge becomes unstable and the energy required for the reaction is insufficient.

(4) 電力を印加し、グロー放電を行なう。電力
は、装置因子(電極構造、反応器の容積など)
や他の操作条件(圧力、モノマー流量など)で
最適な値は変るが、過小に与えると重合体は低
分子量化し、十分な特性が発現せず、過大に与
えると高分子支持体の劣化をひき起すので、一
般に10wattsから100wattsの間で操作される。
(4) Apply power and perform glow discharge. Power depends on equipment factors (electrode structure, reactor volume, etc.)
The optimum value changes depending on the operating conditions (pressure, monomer flow rate, etc.), but if too little is applied, the polymer will have a low molecular weight and sufficient properties will not be expressed, while if too much is applied, the polymer support will deteriorate. generally operated between 10watts and 100watts.

(5) 所定時間続けて行ない、高分子支持体上に必
要厚さのプラズマ重合薄膜が堆積された後、操
作を完了する。プラズマ重合薄膜の厚さは、
0.01μ以上1.0μ以下が好ましい。0.01μより薄い
と水素選択透過機能が十分に発現されない。ま
た1.0μより厚いと透過性が不十分になると共
に、プラズマ重合膜特有の高度架橋構造による
内部応力から微小な欠陥を誘発し易い。プラズ
マ重合膜の特徴については、次の(作用)の項
で詳述する。
(5) The operation is continued for a predetermined period of time to complete the operation after a plasma-polymerized thin film of the required thickness is deposited on the polymeric support. The thickness of the plasma polymerized thin film is
It is preferably 0.01μ or more and 1.0μ or less. If it is thinner than 0.01μ, the hydrogen selective permeation function will not be fully expressed. Moreover, if the thickness is more than 1.0 μm, the permeability becomes insufficient and minute defects are likely to be induced due to internal stress due to the highly crosslinked structure peculiar to plasma polymerized membranes. The characteristics of the plasma polymerized film will be explained in detail in the next (function) section.

次にこのエチニールトリメチルシランプラズマ
重合膜を担持する高分子支持体について説明す
る。高分子支持体は無孔性材料でもよいが透過性
のより高い膜を得るには多孔性材料あるいは多孔
性材料に高分子薄膜が積層された複合膜が望まし
い。また多孔性材料に直接プラズマ重合薄膜を堆
積させる場合、その平均孔径は0.1μ以下であるこ
とが好ましい。これは、0.1μを越える孔を閉塞す
る程厚く堆積することは、先に述べた理由により
重合膜中に微小欠陥が生じ、水素選択透過性が低
下するからである。
Next, the polymer support supporting this ethynyltrimethylsilane plasma polymerized film will be explained. The polymer support may be a non-porous material, but in order to obtain a membrane with higher permeability, a porous material or a composite membrane in which a thin polymer film is laminated on a porous material is desirable. Furthermore, when depositing a plasma-polymerized thin film directly onto a porous material, the average pore diameter is preferably 0.1 μm or less. This is because if the polymer is deposited so thickly that it blocks pores exceeding 0.1 μm, micro defects will occur in the polymer membrane for the reasons mentioned above, and the selective hydrogen permeability will decrease.

従つて、0.1μを越える平均孔径を有する多孔性
材料を支持体として用いる場合には、その表面に
ガス透過性の優れた高分子薄膜を積層した複合膜
にプラズマ重合薄膜を堆積させた構造とすること
が望ましい。
Therefore, when using a porous material with an average pore diameter of more than 0.1μ as a support, a structure in which a plasma-polymerized thin film is deposited on a composite film in which a thin polymer film with excellent gas permeability is laminated on the surface of the porous material is used. It is desirable to do so.

高分子支持体は、水素選択透過性膜の用途を考
慮して種々の重合体が利用できるが、機械的特性
や耐熱性、耐薬品性の良いことが有用であるか
ら、ポリスルホン、ポリフエニレンオキサイド、
ポリ芳香族エステルやポリイミドなどが望まし
い。しかるに、四弗化エチレン樹脂はこれら諸特
性の最も優れた高分子材料であり、しかもその多
孔化技術も進んでいることから、多孔性高分子支
持体として好適に利用できる。
Various polymers can be used as the polymer support depending on the purpose of the hydrogen permselective membrane, but polysulfone, polyphenylene, etc. are useful because they have good mechanical properties, heat resistance, and chemical resistance. oxide,
Polyaromatic esters and polyimides are preferable. However, tetrafluoroethylene resin is a polymer material that has the best properties as described above, and the technology for making it porous has been advanced, so it can be suitably used as a porous polymer support.

0.1μを越える平均孔径を有する多孔性材料を用
いる場合、表面層の孔を閉塞するために積層する
薄膜の材料としては、上記の特性の他にガス透過
性の優れた、あるいは薄膜形成能の優れた高分子
材料が望ましく、ポリジメチルシロキサン、ポリ
フエニルシロキサン、ポリビニルシロキサン、ポ
リジメチルシロキサン−カーボネートブロツク共
重合体等のシロキサン重合体または共重合体、更
にポリフエニレンオキサイド、ポリ芳香族エステ
ル等の樹脂が代表的なものとして挙げられる。こ
れらの薄膜を多孔性材料表面に形成する方法とし
ていくつかの技術が知られている。たとえば、高
分子溶液中に多孔性材料を浸漬塗布した後、乾
燥・硬化して高分子薄膜を形成する方法、また高
分子溶液を水などの液面上に展開し、多孔性材料
上に転写する方法、あるいはロールコーター、リ
バースロールコーター等により多孔性材料上にコ
ーテイングする方法などがあげられ、これらのい
ずれの技術を適用してもよい。この様にして得た
高分子支持体上に実質的な水素選択透過機能を発
揮するエチニールトリメチルシランプラズマ重合
体の極薄膜を堆積させる。
When using a porous material with an average pore diameter exceeding 0.1μ, the material for the thin film to be laminated to close the pores in the surface layer should not only have the above properties but also have excellent gas permeability or thin film forming ability. High-quality polymeric materials are desirable, such as siloxane polymers or copolymers such as polydimethylsiloxane, polyphenylsiloxane, polyvinylsiloxane, polydimethylsiloxane-carbonate block copolymers, as well as polyphenylene oxide, polyaromatic esters, etc. Resin is a typical example. Several techniques are known for forming these thin films on the surface of porous materials. For example, a method in which a porous material is dip coated in a polymer solution and then dried and cured to form a thin polymer film, or a method in which a polymer solution is spread on the surface of a liquid such as water and transferred onto a porous material. A method of coating a porous material with a roll coater, a reverse roll coater, etc. can be mentioned, and any of these techniques may be applied. An ultrathin film of ethynyltrimethylsilane plasma polymer that exhibits a substantial selective hydrogen permeation function is deposited on the polymer support thus obtained.

(作用) 本発明における水素選択透過性複合膜の実質的
水素選択透過機能は、エチニールトリメチルシラ
ンのプラズマ重合薄膜で成される。
(Function) The substantial selective hydrogen permeation function of the hydrogen selectively permeable composite membrane in the present invention is achieved by the plasma polymerized thin film of ethynyltrimethylsilane.

プラズマ重合は、モノマーが減圧系内の電場の
作用により、ラジカルイオンあるいは励起種と活
性化し、逐次結合して高分子量化する特異な重合
方式である。その重合体は非晶性で、分子構造に
枝分れ構造や架橋構造が富み、一般に耐熱性、耐
薬品性に優れているが、また膨張方向の内部応力
が発生し易く、厚く堆積させるとクラツク等の欠
陥が生じやすいという欠点もある。しかるに種々
の有機化合物の中で珪素を含む化合物は、一般に
内部応力の小さい可撓性に優れたプラズマ重合膜
を形成する傾向にある。本発明者は、有機シラン
化合物のプラズマ重合膜を水素選択透過性膜に応
用すべく鋭意検討を重ねた結果、エチニールトリ
メチルシランがとりわけ高い水素選択透過性と透
過性を持ち、かつ優れた機械的特性、耐熱性を合
わせ有することを見い出し、本発明を完成させ
た。
Plasma polymerization is a unique polymerization method in which monomers are activated with radical ions or excited species by the action of an electric field in a reduced pressure system, and are sequentially combined to increase the molecular weight. The polymer is amorphous, has a rich branched and cross-linked molecular structure, and generally has excellent heat resistance and chemical resistance, but it also tends to generate internal stress in the direction of expansion, and when deposited thickly, Another drawback is that defects such as cracks are likely to occur. However, among various organic compounds, compounds containing silicon generally tend to form plasma polymerized films with low internal stress and excellent flexibility. As a result of extensive studies to apply plasma polymerized membranes of organic silane compounds to hydrogen selectively permeable membranes, the present inventor found that ethynyltrimethylsilane has particularly high hydrogen selective perms and permeability, and is an excellent mechanical material. The present invention was completed based on the discovery that this material has both physical properties and heat resistance.

分子内に酸素や窒素を含むアルコキシシランや
シロキサン化合物、シラザン化合物によるプラズ
マ重合膜は、透過性に優れるが、選択透過性は十
分でない。またビニル基やアリル基等の二重結合
を含むシラン化合物は、二重結合数の増加に従
い、そのプラズマ重合膜は、分岐・架橋の一層進
んだ構造となり、水素選択透過性膜も上昇する傾
向にあるが、一方透過性は減少し、膜質も可撓性
が失われる。
Plasma polymerized membranes made of alkoxysilanes, siloxane compounds, and silazane compounds containing oxygen or nitrogen in their molecules have excellent permeability, but do not have sufficient selective permselectivity. In addition, for silane compounds containing double bonds such as vinyl groups and allyl groups, as the number of double bonds increases, the plasma polymerized membrane has a structure with more advanced branching and crosslinking, and the hydrogen selective permeability of the membrane also tends to increase. However, on the other hand, the permeability decreases and the membrane quality also loses its flexibility.

これに対し三重結合を有するエチニールトリメ
チルシランは高い選択透過性と優れた透過性を合
わせ有し、かつ可撓性に富むプラズマ重合膜を与
えることを見い出した。これは三重結合のエチニ
ール基が極めて反応性に富み、高度な分岐・架橋
構造をとる剛直な部分を形成する一方、反応性の
低いメチル基部分は比較的屈曲性に富んだ部分を
成し、全体としてバランスのとれた優れた水素選
択透過性膜を与えるためと考える。またエチニー
ルトリメチルシランは沸点も50℃から52℃と比較
的低く、反応器へのモノマー蒸気供給も容易かつ
安定に行なうことができる。また、他の三重結合
を含むシラン化合物は、高沸点であつたり、分子
内に酸素や窒素を含むなどで優れた水素選択透過
性膜を作り難い。
On the other hand, we have found that ethynyltrimethylsilane, which has a triple bond, has both high permselectivity and excellent permeability, and can provide a plasma polymerized film that is highly flexible. This is because the ethynyl group in the triple bond is extremely reactive and forms a rigid part with a highly branched and cross-linked structure, while the methyl group part with low reactivity forms a part with relatively high flexibility. The reason is considered to be to provide a membrane with excellent selective hydrogen permeability that is well-balanced as a whole. Furthermore, ethynyltrimethylsilane has a relatively low boiling point of 50°C to 52°C, and monomer vapor can be easily and stably supplied to the reactor. In addition, other silane compounds containing triple bonds have high boiling points or contain oxygen or nitrogen in their molecules, making it difficult to form membranes with excellent hydrogen permselectivity.

エチニールトリメチルシランプラズマ重合膜の
優れた機械的特性−可撓性に富む−は、これを担
持する高分子支持体の孔部分や、ある程度の欠陥
部分を閉塞し品質の安定した水素選択透過性複合
膜を与えることになる。また耐熱性に優れ、前述
の高分子支持体に堆積することで、例えば100℃
においてもαが20〜50と高い水素選択透過性を示
す複合膜が得られることになる。
The excellent mechanical properties of the ethynyltrimethylsilane plasma polymerized membrane - its high flexibility - are due to its ability to block the pores and certain defects of the polymer support supporting it, resulting in stable hydrogen selective permeability. This will give a composite membrane. It also has excellent heat resistance, and by depositing it on the aforementioned polymer support, it can be heated up to 100°C.
A composite membrane exhibiting high hydrogen selective permeability with α of 20 to 50 can be obtained.

次に実施例を示し、本発明を具体的に説明す
る。
Next, examples will be shown to specifically explain the present invention.

なお、実施例で示した水素透過速度および分離
係数は、ASTN方式(圧力法)に基づき、透過
成分をガスクロマトグラフにより分離、検出し、
定量を行なうことによつて求めた。
In addition, the hydrogen permeation rate and separation coefficient shown in the examples are based on the ASTN method (pressure method), and the permeated components are separated and detected using a gas chromatograph.
It was determined by quantitative determination.

また、プラズマ重合体薄膜の膜厚は、重合によ
る高分子支持体の重量増加と重合体の比重を測定
し、そこから計算で求めた。
The thickness of the plasma polymer thin film was determined by measuring the weight increase of the polymer support due to polymerization and the specific gravity of the polymer, and calculating from there.

実施例 1 フエニル基を含むシリコーンゴム(トーレ・シ
リコーン社製、SE−955U)をトルエンに溶解
し、加硫剤を添加して15重量%溶液を調製した。
Example 1 A silicone rubber containing a phenyl group (manufactured by Toray Silicone, SE-955U) was dissolved in toluene, and a vulcanizing agent was added to prepare a 15% by weight solution.

この溶液をドクターナイフを用いて、平均
0.22μの孔径を有する四弗化エチレン樹脂多孔質
膜(住友電気工業社製、フロロポアFP−022)上
にコーテイングした後、170℃で10分間一次加硫
を行ない、次いで200℃で4時間二次加硫を行な
つて架橋硬化させ、厚さ8μのシリコーン層を積
層させた。
Use a doctor knife to measure this solution.
After coating on a polytetrafluoroethylene resin porous membrane (manufactured by Sumitomo Electric Industries, Ltd., Fluoropore FP-022) having a pore size of 0.22μ, primary vulcanization was performed at 170°C for 10 minutes, and then secondary vulcanization at 200°C for 4 hours. Subsequent vulcanization was performed to cure crosslinking, and a silicone layer with a thickness of 8 μm was laminated.

得られた複合膜につき100℃の測定温度でガス
透過性を測定したところ次の特性を示した。
The gas permeability of the resulting composite membrane was measured at a measurement temperature of 100°C and showed the following characteristics.

H2透過速度;QH2=6.2×10-5cm3/cm2・sec・cmHg Co透過速度;QCO=2.3×10-5cm3/cm2・sec・cmHg 分離係数;α=QH2/QCO=2.7 この複合膜を平行平板電極を内部に有するプラ
ズマ反応器内に置き系内圧力を0.3トールに維持
しながら、エチニールトリメチルシランを流速5
c.c./minで系内に導入し、13.56MHzの高周波電
源から40Wの出力で30分間グロー放電し、エチニ
ールトリメチルシランプラズマ重合膜を複合膜上
に堆積させた。
H 2 permeation rate; Q H2 = 6.2×10 -5 cm 3 /cm 2・sec・cmHg Co permeation rate; Q CO =2.3×10 −5 cm 3 /cm 2・sec・cmHg Separation coefficient; α=Q H2 /Q CO =2.7 This composite membrane was placed in a plasma reactor with parallel plate electrodes inside, and ethynyltrimethylsilane was applied at a flow rate of 5 while maintaining the system pressure at 0.3 Torr.
It was introduced into the system at a rate of cc/min, and glow discharged for 30 minutes at an output of 40 W from a high frequency power source of 13.56 MHz, thereby depositing an ethynyltrimethylsilane plasma polymerized film on the composite film.

得られた三層構造複合膜のガス透過性を同じく
100℃で測定した結果は以下の通りであつた。
The gas permeability of the resulting three-layer composite membrane was
The results measured at 100°C were as follows.

QH2=4.7×10-5cm3/cm2・sec・cmHg QCO=1.1×10-6cm3/cm2・sec・cmHg α=QH2/QCO=42.7 実施例 2 芳香族ポリエステル(ユニチカ社製、U−100)
をジクロルメタンに溶解し、1重量%溶液を調整
した。
Q H2 =4.7×10 -5 cm 3 /cm 2・sec・cmHg Q CO =1.1×10 −6 cm 3 /cm 2・sec・cmHg α=Q H2 /Q CO =42.7 Example 2 Aromatic polyester ( Manufactured by Unitika, U-100)
was dissolved in dichloromethane to prepare a 1% by weight solution.

この溶液を平滑かつ清浄なガラス板上にドクタ
ーナイフを用いてキヤステイングを行ない、乾燥
後水中でガラス板よりはく離せしめ、約1μ厚さ
の薄膜を得た。この薄膜2枚を実施例1で用いた
と同じ四弗化エチレン樹脂多孔質膜(FP−022)
上に積層し、加熱して一体化した。
This solution was casted onto a smooth and clean glass plate using a doctor knife, and after drying, it was peeled off from the glass plate in water to obtain a thin film approximately 1 μ thick. These two thin films were made of the same tetrafluoroethylene resin porous film (FP-022) used in Example 1.
It was laminated on top and heated to integrate.

得られた複合膜の100℃でのガス透過性は以下
の通りであつた。
The gas permeability of the obtained composite membrane at 100°C was as follows.

QH2=2.4×10-5cm3/cm2・sec・cmHg QCO=1.4×10-6cm3/cm2・sec・cmHg α=QH2/QCO=17.1 この複合膜上に実施例1と同様な操作にてAr2
c.c./min、エチニールトリメチルシラン6c.c./
minの混合ガスを流しながら、出力30W、時間20
分間のグロー放電を行ない、プラズマ重合膜を堆
積した。
Q H2 =2.4×10 -5 cm 3 /cm 2・sec・cmHg Q CO =1.4×10 −6 cm 3 /cm 2・sec・cmHg α=Q H2 /Q CO =17.1 Example Ar2 by the same operation as 1.
cc/min, ethynyltrimethylsilane 6c.c./
Output 30W, time 20 while flowing min mixed gas
A glow discharge was performed for 1 minute to deposit a plasma polymerized film.

得られた三層構造複合膜のガス透過性は100℃
にて以下の通りであつた。
The gas permeability of the resulting three-layer composite membrane is 100℃
It was as follows.

QH2=1.8×10-5cm3/cm2・sec・cm/Hg QCO=3.7×10-7cm3/cm2.sec・cmHg α=QH2/QCO=48.6 実施例 3 四弗化エチレン樹脂フアインパウダー(ダイキ
ン工業社製、F104)100重量部に液体潤滑剤(シ
エル化学社製、DOSB)27重量部を混和し、これ
をラム押出機により50mm巾、5mm厚さの板状成形
物とした後、ロール圧延で厚さ0.1mmのフイルム
とした。このフイルムをトリクロルエチレン中に
浸漬し、液体潤滑剤を抽出除去した後、355〜370
℃の温度雰囲気中で焼成し、ついで徐冷して、厚
さ0.1mm、結晶化度72%の無孔質四弗化エチレン
樹脂フイルムを得た。
Q H2 =1.8×10 -5 cm 3 /cm 2・sec・cm/Hg Q CO =3.7×10 −7 cm 3 /cm 2 . sec・cmHg α=Q H2 /Q CO =48.6 Example 3 27 parts by weight of liquid lubricant (DOSB, manufactured by Ciel Chemical Co., Ltd.) was added to 100 parts by weight of tetrafluoroethylene resin fine powder (F104, manufactured by Daikin Industries, Ltd.). The mixture was mixed and formed into a plate-like product with a width of 50 mm and a thickness of 5 mm using a ram extruder, and then rolled into a film with a thickness of 0.1 mm. After immersing this film in trichlorethylene and extracting and removing the liquid lubricant,
C. and then slowly cooled to obtain a non-porous tetrafluoroethylene resin film having a thickness of 0.1 mm and a crystallinity of 72%.

このフイルムを初めに温度20℃、延伸倍率1.5
倍で延伸し、次いで温度175℃、延伸倍率4.0倍の
二段延伸を行なうことにより、厚さ0.06mm、気孔
率29%、平均孔径約0.06μmの多孔質四弗化エチ
レン樹脂フイルムを得た。
This film was first stretched at a temperature of 20℃ and a stretching ratio of 1.5.
A porous tetrafluoroethylene resin film having a thickness of 0.06 mm, a porosity of 29%, and an average pore diameter of approximately 0.06 μm was obtained by stretching at a temperature of 175° C. and a stretching ratio of 4.0 times. .

この微多孔質膜上に実施例1と同様な操作によ
つて、N22c.c./min、エチニールトリメチルシラ
ン6c.c./minの混合ガスを流しながら、出力
20W、時間40分間のグロー放電を行ない、プラズ
マ重合膜を堆積した。
By the same operation as in Example 1, while flowing a mixed gas of N 2 2 c.c./min and ethynyltrimethylsilane 6 c.c./min,
Glow discharge was performed at 20W for 40 minutes to deposit a plasma polymerized film.

得られた二層構造複合膜のガス透過性は100℃
にて以下の通りであつた。
The gas permeability of the resulting two-layer composite membrane is 100℃
It was as follows.

QH2=5.2×10-5cm3/cm2・sec・cmHg QCO=2.4×10-6cm3/cm2・sec・cmHg α=QH2/QCO=21.7 (発明の効果) 本発明による水素選択透過性複合膜は高分子支
持体上にエチニールトリメチルシランのプラズマ
重合膜が堆積されてなり、エチニールトリメチル
シランプラズマ重合膜が高い水素選択透過性なら
びに透過性、および優れた耐熱性、機械特性、耐
薬品性を発現することから、適切な高分子支持体
と複合化することにより優れた水素選択透過性複
合膜を得ることができる。
Q H2 =5.2×10 -5 cm 3 /cm 2・sec・cmHg Q CO =2.4×10 −6 cm 3 /cm 2・sec・cmHg α=Q H2 /Q CO =21.7 (Effect of the invention) The present invention Hydrogen selectively permeable composite membrane is made by depositing an ethynyltrimethylsilane plasma-polymerized membrane on a polymeric support. , mechanical properties, and chemical resistance, it is possible to obtain an excellent hydrogen selective permeability composite membrane by combining it with an appropriate polymeric support.

Claims (1)

【特許請求の範囲】 1 エチニールトリメチルシランが多孔性の四弗
化エチレン樹脂よりなる高分子支持体表面にグロ
ー放電によりプラズマ重合され水素の透過速度を
QH2、一酸化炭素の透過速度をQCOと表わした時、
α=QH2/QCOで定義する水素の選択性αが測定温度 100℃において20〜50であることを特徴とする水
素選択透過性複合膜。 2 高分子支持体が0.1μ以下の平均孔径をもつ四
弗化エチレン樹脂よりなる多孔性材料であること
を特徴とする特許請求の範囲第1項の水素選択透
過性複合膜。 3 高分子支持体が0.1μを越える平均孔径をもつ
四弗化エチレン樹脂よりなる多孔性材料であり、
その表面に該孔を閉塞する高分子材料が積層され
ていることを特徴とする特許請求の範囲第1項の
水素選択透過性複合膜。
[Claims] 1. Ethynyltrimethylsilane is plasma polymerized on the surface of a polymer support made of porous tetrafluoroethylene resin by glow discharge to increase the hydrogen permeation rate.
Q H2 , when the permeation rate of carbon monoxide is expressed as Q CO ,
A hydrogen selectively permeable composite membrane characterized in that the hydrogen selectivity α defined by α=Q H2 /Q CO is 20 to 50 at a measurement temperature of 100°C. 2. The hydrogen selectively permeable composite membrane according to claim 1, wherein the polymer support is a porous material made of tetrafluoroethylene resin having an average pore diameter of 0.1 μm or less. 3. The polymer support is a porous material made of tetrafluoroethylene resin with an average pore size exceeding 0.1μ,
2. The selectively permeable hydrogen composite membrane according to claim 1, wherein a polymeric material that closes the pores is laminated on its surface.
JP59141482A 1984-07-10 1984-07-10 Hydrogen permselective composite membrane and preparation thereof Granted JPS6121718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141482A JPS6121718A (en) 1984-07-10 1984-07-10 Hydrogen permselective composite membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141482A JPS6121718A (en) 1984-07-10 1984-07-10 Hydrogen permselective composite membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6121718A JPS6121718A (en) 1986-01-30
JPH0310368B2 true JPH0310368B2 (en) 1991-02-13

Family

ID=15292924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141482A Granted JPS6121718A (en) 1984-07-10 1984-07-10 Hydrogen permselective composite membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6121718A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811359B2 (en) * 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895541A (en) * 1981-11-30 1983-06-07 Mitsubishi Chem Ind Ltd Gas separating membrane
JPS58180205A (en) * 1982-04-16 1983-10-21 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and its production
JPS59225704A (en) * 1983-06-03 1984-12-18 Sumitomo Electric Ind Ltd Gas permselective composite membrane and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895541A (en) * 1981-11-30 1983-06-07 Mitsubishi Chem Ind Ltd Gas separating membrane
JPS58180205A (en) * 1982-04-16 1983-10-21 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and its production
JPS59225704A (en) * 1983-06-03 1984-12-18 Sumitomo Electric Ind Ltd Gas permselective composite membrane and preparation thereof

Also Published As

Publication number Publication date
JPS6121718A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS62136212A (en) Preparation of permselective composite membrane
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
JPH0310368B2 (en)
JPH0262294B2 (en)
JPH02290230A (en) Composite polymer membrane for separating gas mixture and manufacture thereof
JPS586207A (en) Production of gas permselective composite membrane
JPH038808B2 (en)
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPS6366252B2 (en)
JPS6260933B2 (en)
JPS61149210A (en) Preparation of gas permselective composite membrane
JPH0453575B2 (en)
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
JPH0479690B2 (en)
JPS59162904A (en) Hydrogen selective permeation composite membrane and preparation thereof
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane
JPS6334772B2 (en)
JPS6336286B2 (en)
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPS5892430A (en) Preparation of composite membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term