JPS5924843B2 - Method for producing gas selectively permeable composite membrane - Google Patents

Method for producing gas selectively permeable composite membrane

Info

Publication number
JPS5924843B2
JPS5924843B2 JP10605681A JP10605681A JPS5924843B2 JP S5924843 B2 JPS5924843 B2 JP S5924843B2 JP 10605681 A JP10605681 A JP 10605681A JP 10605681 A JP10605681 A JP 10605681A JP S5924843 B2 JPS5924843 B2 JP S5924843B2
Authority
JP
Japan
Prior art keywords
siloxane compound
gas
composite membrane
selectively permeable
permeable composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10605681A
Other languages
Japanese (ja)
Other versions
JPS586207A (en
Inventor
晃一 沖田
信吾 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Original Assignee
KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBUNSHI OYO GIJUTSU KENKYU KUMIAI filed Critical KOBUNSHI OYO GIJUTSU KENKYU KUMIAI
Priority to JP10605681A priority Critical patent/JPS5924843B2/en
Publication of JPS586207A publication Critical patent/JPS586207A/en
Publication of JPS5924843B2 publication Critical patent/JPS5924843B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は薄いシロキサン化合物を多孔性高分子膜に被覆
し、更に好ましくはその上にプラズマ重合によつて得ら
れた架橋構造からなる超薄膜を積層したガス選択透過性
複合膜の製造方法に関するものである。
Detailed Description of the Invention The present invention provides a gas-selective permeability film in which a porous polymer film is coated with a thin siloxane compound, and more preferably an ultra-thin film having a crosslinked structure obtained by plasma polymerization is laminated thereon. The present invention relates to a method for manufacturing a composite membrane.

近年流体混合物の分離、精製を蒸留・深冷などの相変化
をともなうエネルギー多消費プロセスから相変化をとも
なわない選択透過性膜で行なうことが積極的に検討され
ている。
In recent years, active consideration has been given to separating and purifying fluid mixtures from energy-intensive processes that involve phase changes, such as distillation and deep cooling, to selectively permeable membranes that do not involve phase changes.

本発明もこれらの目的を効率的に行なわんとしてなされ
たものである。流体混合物の膜分離、精製プロセスとし
て大規模に工業化されているのは海水の淡水化である。
The present invention has also been made to efficiently accomplish these objectives. Seawater desalination is a membrane separation and purification process for fluid mixtures that has been industrialized on a large scale.

ガスの膜分離が実用化されていない大きな理由は、特定
成分のみを大量に透過し他の成分をほとんど透過させな
いという優秀な膜がまだ開発されていないため、高純度
の気体をうるためにカースケートを組んだ多重方式を必
要とし、そのため装置が大型になること、またガスの透
過性が小さいため、大量のガスを処理し難いことの二点
がある。特に選択透過性を大きくするとガス透過性が悪
るくなり、この関係を急蔽に改善することができなかつ
たためと思われる.。そこで本発明暑は一つの素材で選
択透過性、透過性、強度、耐熱性の全てを満足させると
いう従来の方法と別に強度、耐熱性の良い素材、ガス透
過性の良い素材、ガス選択透過性の良い素材とそれぞれ
に機能を分担させ、これらの素材を適当に組合わせるこ
とによつて、上記の目的を達成せんと試み種々検討した
結果本発明を完成するに至つつた。
The main reason why gas membrane separation has not been put into practical use is that excellent membranes that allow only a large amount of specific components to pass through while leaving almost no other components permeable have not yet been developed. There are two problems: it requires a multiplex system using skates, which makes the device large, and it has low gas permeability, making it difficult to process large amounts of gas. This seems to be because gas permeability worsens when the selective permeability is increased, and this relationship could not be improved rapidly. . Therefore, the present invention uses a material with good strength and heat resistance, a material with good gas permeability, a material with good gas permeability, and a material with good gas permeability. The present invention has been completed as a result of various studies in an attempt to achieve the above object by assigning functions to each material and appropriately combining these materials.

即ち強度と耐熱性については市販されている多孔性高分
子素材の中から目的に合致したものを選択する。多孔性
のポリスルホン、ポリイミドポリ弗化ビニリデン等でも
良いがセルロースエステル、塩化ビニル、ポリプロピレ
ン等はあまり好ましくはない。しかし耐熱性と強度の点
からは四弗化エチレン樹脂からなる多孔性高分子膜が最
も好ましく、また耐薬品性も同時に満足される。ガス透
過性については各種高分子材料を検討したところいわゆ
るゴム状材料が最も大きな値を示すこと、なかでもシリ
コンゴムと略称されるシロキサン化合物がジメチルシロ
キサン、メチルビニルシロキサン、メチルフエニルシロ
キサン、及びその他の変性化合物を含めて特に秀れてい
ることを確認した、シロキサン化合物はガス透過性のみ
ならず耐熱性、耐薬品性においても秀れた特性を有して
いる。このシロキサン化合物を上記多孔性高分子膜に被
覆する時、シリコンゴムの希薄溶液を直接塗布すると多
孔性の空間に吸い取られ、その結果多孔性空間の内奥部
で濃度分布を生じ、乾燥した後にはかなりの欠陥部分が
残存してしまう。
That is, in terms of strength and heat resistance, a material that meets the purpose is selected from commercially available porous polymer materials. Porous polysulfone, polyimide polyvinylidene fluoride, etc. may be used, but cellulose ester, vinyl chloride, polypropylene, etc. are not so preferred. However, from the viewpoint of heat resistance and strength, a porous polymer membrane made of tetrafluoroethylene resin is most preferable, and it also satisfies chemical resistance. Regarding gas permeability, we examined various polymeric materials and found that so-called rubber-like materials showed the highest values, and among them, siloxane compounds, abbreviated as silicone rubber, are dimethylsiloxane, methylvinylsiloxane, methylphenylsiloxane, and others. Siloxane compounds, including modified compounds, have been confirmed to be particularly excellent, and have excellent properties not only in gas permeability but also in heat resistance and chemical resistance. When coating this porous polymer membrane with this siloxane compound, if a dilute solution of silicone rubber is applied directly, it will be absorbed into the porous spaces, resulting in a concentration distribution deep inside the porous spaces, and after drying, A considerable number of defects remain.

一方シリコンゴムの粘稠な溶液を塗布すると、毛細管に
よる吸引は少なくなるものの、どうしても厚い膜しか得
られないことになる。この様なジレンマの中で本発明者
は多孔性高分子膜とシロキサン化合物の複合体を二度以
上のプロセスにわけて実施することで、毛細管による吸
引を少なくし、かつ希薄溶液で薄膜無孔層をうることに
成功した。シロキサン化合物としてはまずシリコンオイ
ルと呼ばれる液状物を多孔性高分子膜の多孔性空間の全
てに含浸し、次いで10t0rr以下の非重合性ガスの
プラズマ雰囲気に一定時間処理することで、多孔性高分
子膜の片側表面層のシロキサン化合物だけが架橋固化し
てくる。一方多孔性空間の内奥のシロキサン化合物は周
液状のままで存在しているので直ちにあるいは高分子量
のシロキサン化合物を塗布し加硫した後ででも溶媒で抽
出除去することが出来る。ガス透過性の上からは抽出し
た方が全体のシロキサン化合物膜の厚みを少なくする上
で好ましい。多孔性支持体にプラズマ架橋されたシロキ
サン化合物が固着した後、高分子量のシロキサン化合物
を更にその表面に薄く塗布する。この塗布の際には高分
子量シロキサン化合物の粘度をたとえば102〜104
CPと低下させてももはや多孔性高分子膜に吸引されて
しまうことはなく、逆にプラズマ架橋したシロキサン化
合物とのなじみが良くなり無孔性の均一薄膜をうること
ができる。この溶液には適量の加硫剤たとえば過酸化物
を加えておくことが望ましく、乾燥後にたとえば加熱に
よる加硫を行ない、機械的強度を強固なものにする。塗
布厚みや溶液濃度を調整することにより1μから100
μまでの任意のシロキサン厚みを得ることができるが好
ましくは5μ〜10μの範囲に設定した時に均一な塗膜
が得られた。ジメチルシロキサンに代表されるシロキサ
ン化合物のガス透過性は他の有機高分子と違つた特異性
を示す。たとえば一般の高分子はヘリウムガスを水素ガ
スよりもよく透過させるのに対しシロキサン化合物では
逆になる。更にシロキサン化合物は水素ガスよりもメタ
ン、エタン、エチレン、ブタン、アセチレン等の方が大
きなガス透過性を示し、一般の高分子とは逆の傾向とな
る。このため水素ガス、メタン、一酸化炭素、エタン、
ブタン等の混合ガスから優先的に炭化水素成分を濃縮す
るという目的にはシロキサン化合物からなる複合膜力叶
分に機能することとなる。またCOS,H2SCO2等
の酸性ガスも優先的に透過していく。一方酸素、窒素、
メタン、一酸化炭素等の混合ガスの分離にはシロキサン
化合物複合膜だけでは周不十分であり、ガスの選択透過
性を向上させねばならない。このためには重合性ガスを
10t0rr以下の雰囲気でプラズマ放電させるとプラ
ズマ重合膜がシロキサン化合物の上に極薄膜として積層
してくる。ここで用いる重合性ガスは二重結合を含む通
常のオレフイン系モノマーは勿論、ベンゼン、ナフタリ
ン等の非重合性の共役結合をもつ化合物、あるいは二重
結合を全く含まない化合物プロピオンニトリル、エタン
等も利用できる。しかるに種々の重合性ガスを検討する
中で第三級炭素C−CH−Cの構成要素又は第三級型ケ
イ素C−Si−Cの構成要素を含む化合物から選ばれた
ものが特に好ましいことが判つた。ここで第三級炭素と
はC−CH−Cの中心炭素を表わし重合性ガスとしては
プロピレン、4−メチルベンゼン−1、スチレン、およ
びスチレン誘導体、イソプレン、酢酸ビニール、アクリ
ル酸とメタアクリル酸およびそのエステル等があげられ
る。一方第三級型ケイ素とはC−Si−Cの中心ケイ素
を表わし、トリメチルシリル基を含む化合物があげられ
る。重合性ガスは一種類のみならず二種類以上を選出し
ても良く、一度選出してしまうと10t0rr以下の減
圧下に高周波出力、プラズマ重合時間、電極構造などの
因子を変えて2μ以下の超薄膜、より好ましくは0.1
μ程度の厚みにも積層することができる。この時一種類
の重合性ガスで重合した後他の重合性ガスで更にその表
面を積層することの他に2種類以上の混合ガスで重合し
積層することもあり、これらの条件はこの分野の技術に
習熟している者にとつて比較的容易に最適化できる。以
下には本発明を実施例により説明する。実施例 1 フロロボアFP−022(平均孔径0.22μ.住友電
工製四弗化エチレン樹脂多孔質膜)をトリクレンとシリ
コンオイル(KF−9610,000CS.信越化学製
)の混合液に浸漬したのちトリクレンを乾燥したところ
、シリコンオイルがフロロボアの多孔性空間を完全に充
満した。
On the other hand, if a viscous solution of silicone rubber is applied, the capillary suction will be reduced, but only a thick film will be obtained. In response to this dilemma, the inventor of the present invention developed a method to reduce the amount of suction caused by capillary tubes and create a thin film with no pores using a dilute solution by conducting the composite of a porous polymer membrane and a siloxane compound in two or more processes. I succeeded in gaining layers. The siloxane compound is first impregnated into all the porous spaces of a porous polymer membrane with a liquid substance called silicone oil, and then treated in a plasma atmosphere of non-polymerizable gas of 10 tons or less for a certain period of time. Only the siloxane compound on the surface layer on one side of the membrane becomes crosslinked and solidified. On the other hand, since the siloxane compound deep within the porous space exists in a liquid state, it can be extracted and removed with a solvent immediately or even after coating and vulcanizing a high molecular weight siloxane compound. In terms of gas permeability, it is preferable to extract from above in order to reduce the thickness of the entire siloxane compound film. After the plasma-crosslinked siloxane compound is fixed to the porous support, a thin layer of a high molecular weight siloxane compound is further applied to the surface of the porous support. At the time of this application, the viscosity of the high molecular weight siloxane compound is set to 102 to 104, for example.
Even if the CP is lowered, it will no longer be attracted to the porous polymer membrane, and on the contrary, it will become more compatible with the plasma-crosslinked siloxane compound, making it possible to obtain a non-porous, uniform thin film. It is desirable to add an appropriate amount of a vulcanizing agent, such as a peroxide, to this solution, and after drying, vulcanization is performed, for example, by heating, to strengthen the mechanical strength. 1μ to 100μ by adjusting the coating thickness and solution concentration.
Although any siloxane thickness up to .mu. can be obtained, uniform coatings were obtained preferably when the thickness was set in the range of 5.mu. to 10.mu.. The gas permeability of siloxane compounds, typified by dimethylsiloxane, exhibits a specificity different from that of other organic polymers. For example, while common polymers allow helium gas to pass through them better than hydrogen gas, the opposite is true for siloxane compounds. Furthermore, siloxane compounds exhibit greater gas permeability for methane, ethane, ethylene, butane, acetylene, etc. than for hydrogen gas, which is the opposite tendency for general polymers. For this reason, hydrogen gas, methane, carbon monoxide, ethane,
For the purpose of preferentially concentrating hydrocarbon components from a mixed gas such as butane, the composite membrane consisting of a siloxane compound functions as a function. In addition, acidic gases such as COS and H2SCO2 also permeate preferentially. On the other hand, oxygen, nitrogen,
A siloxane compound composite membrane alone is insufficient for separating mixed gases such as methane and carbon monoxide, and the permselectivity of the gas must be improved. For this purpose, when a polymerizable gas is plasma discharged in an atmosphere of 10 t0rr or less, a plasma polymerized film is laminated as an extremely thin film on the siloxane compound. The polymerizable gases used here include not only ordinary olefinic monomers containing double bonds, but also compounds with non-polymerizable conjugated bonds such as benzene and naphthalene, and compounds that do not contain any double bonds such as propionitrile and ethane. Available. However, when considering various polymerizable gases, it was found that those selected from compounds containing a component of tertiary carbon C-CH-C or a component of tertiary type silicon C-Si-C are particularly preferred. I understand. Here, tertiary carbon refers to the central carbon of C-CH-C, and polymerizable gases include propylene, 4-methylbenzene-1, styrene, and styrene derivatives, isoprene, vinyl acetate, acrylic acid, methacrylic acid, and Examples include esters. On the other hand, tertiary silicon refers to the central silicon of C-Si-C, and includes compounds containing a trimethylsilyl group. Not only one type of polymerizable gas but also two or more types of polymerizable gases may be selected. Once selected, polymerizable gases of less than 2μ can be produced by changing factors such as high frequency output, plasma polymerization time, and electrode structure under a reduced pressure of 10t0rr or less. Thin film, more preferably 0.1
It can be laminated to a thickness of about μ. At this time, in addition to polymerizing with one type of polymerizable gas and then layering the surface with another polymerizable gas, there are also cases where the surface is polymerized and laminated with a mixed gas of two or more types, and these conditions are the same in this field. Relatively easy to optimize for those skilled in the art. The present invention will be explained below using examples. Example 1 Fluorobor FP-022 (average pore diameter 0.22μ, polytetrafluoroethylene resin porous membrane manufactured by Sumitomo Electric Industries) was immersed in a mixed solution of trichlene and silicone oil (KF-9610,000CS, manufactured by Shin-Etsu Chemical), and then treated with trichlene. When dried, silicone oil completely filled the porous spaces of Fluorobore.

支持用ガラス板に密着させたのち、減圧できるペルシャ
ー型反応装置の中央にセツトする。アルゴンガスを導入
しながら系内を0.2t0rrに排気し13,56z.
100Wを30分間印加した。一方シリコンゴム(LS
63u.トーレ・シリコーン製)に過酸化物(トーレR
C−2)を1.5重量%添加したものに、キシレンを8
0重量%加え攪拌機で8時間撹拌した均一溶液を得る。
この溶液を上記プラズマ処理したフロロボアの表面に1
00μ厚みに塗布した後、120℃10分間加硫する。
最後にこの膜の未架橋シリコンオイルをフレオンにより
ソツクスレ一抽出して積層膜を得た。
After it was brought into close contact with a supporting glass plate, it was set in the center of a Persian type reactor that could be depressurized. The system was evacuated to 0.2t0rr while introducing argon gas, and the temperature was 13,56z.
100W was applied for 30 minutes. On the other hand, silicone rubber (LS
63u. (manufactured by Toray Silicone) and peroxide (Toray R
8% xylene was added to 1.5% by weight of C-2).
A homogeneous solution was obtained by adding 0% by weight and stirring for 8 hours using a stirrer.
Apply this solution to the surface of the plasma-treated Fluorobore for 1 hour.
After coating to a thickness of 0.00 μm, vulcanization was performed at 120° C. for 10 minutes.
Finally, the uncrosslinked silicone oil of this membrane was extracted with Freon to obtain a laminated membrane.

この積層のガス透過速度を〜/Cd・Sec・?H7の
単位で表示すると02は1.10×10−3.N2は5
.85×10−4H2が1.25X10−3.C0が5
.20×10−4CH4が1.72×10−3.C02
が6.8X10−3.C2H6が4×10−3.C0S
が1.6X10−2を示した。実施例 2実施例1と同
様の方法で製造した積層膜を、ペルシャー型プラズマ反
応装置の中央にセツトする。
The gas permeation rate of this stack is ~/Cd・Sec・? When expressed in H7 units, 02 is 1.10×10-3. N2 is 5
.. 85×10-4H2 becomes 1.25×10-3. C0 is 5
.. 20×10-4 CH4 is 1.72×10-3. C02
is 6.8X10-3. C2H6 is 4×10-3. C0S
showed 1.6X10-2. Example 2 A laminated film produced in the same manner as in Example 1 was set in the center of a Persian plasma reactor.

Claims (1)

【特許請求の範囲】 1 多孔性高分子膜の該多孔性空間に液状のシロキサン
化合物を充填し、非重合性ガスプラズマにより表面層の
シロキサン化合物を架橋し、次いで高分子量シロキサン
化合物を塗布、加硫することを特徴とするガス選択透過
性複合膜の製造方法。 2 液状および高分子量のシロキサン化合物がポリジメ
チルシロキサン又はその変性誘導体であることを特徴と
する特許請求の範囲第1項のガス選択透過性複合膜の製
造方法。 3 多孔性高分子膜の該多孔性空間に液状のシロキサン
化合物を充填し、非重合性ガスプラズマにより表面層の
シロキサン化合物を架橋し、次いで高分子量シロキサン
化合物を塗布、加硫した後、重合性ガスプラズマにより
プラズマ重合することを特徴とするガス選択透過性複合
膜の製造方法。 4 液状および高分子量のシロキサン化合物がポリジメ
チルシロキサン又はその変性誘導体であることを特徴と
する特許請求の範囲第3項のガス選択透過性複合膜の製
造方法。 5 重合性ガスとして第三級炭素▲数式、化学式、表等
があります▼又は第三級型有機ケイ素▲数式、化学式、
表等があります▼の構成要素を含有する化合物から選ば
れたことを特徴とする特許請求の範囲第3項のガス選択
透過性複合膜の製造方法。 6 多孔性高分子膜の該多孔性空間に液状のシロキサン
化合物を充填し、非重合性ガスプラズマにより表面層の
シロキサン化合物を架橋し、次いで高分子量シロキサン
化合物を塗布、加硫し、更に必要によつては重合性ガス
のプラズマ重合をした後に液状のシロキサン未架橋成分
を抽出によつて除去することを特徴とするガス選択透過
性複合膜の製造方法。 7 液状および高分子量のシロキサン化合物がポリジメ
チルシロキサン又はその変性誘導体であることを特徴と
する特許請求の範囲第6項のガス選択透過性複合膜の製
造方法。
[Claims] 1. A liquid siloxane compound is filled into the porous space of a porous polymer membrane, the siloxane compound in the surface layer is crosslinked by non-polymerizable gas plasma, and then a high molecular weight siloxane compound is applied and processed. A method for producing a gas selectively permeable composite membrane characterized by sulfurization. 2. The method for producing a gas selectively permeable composite membrane according to claim 1, wherein the liquid and high molecular weight siloxane compound is polydimethylsiloxane or a modified derivative thereof. 3 Fill the porous spaces of the porous polymer membrane with a liquid siloxane compound, crosslink the siloxane compound in the surface layer with non-polymerizable gas plasma, then apply and vulcanize a high molecular weight siloxane compound, and then apply a polymerizable siloxane compound. A method for producing a gas selectively permeable composite membrane characterized by plasma polymerization using gas plasma. 4. The method for producing a gas selectively permeable composite membrane according to claim 3, wherein the liquid and high molecular weight siloxane compound is polydimethylsiloxane or a modified derivative thereof. 5 Tertiary carbon as a polymerizable gas ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or tertiary organosilicon ▲ Numerical formulas, chemical formulas,
The method for producing a gas selectively permeable composite membrane according to claim 3, characterized in that the compound is selected from compounds containing the constituent elements shown in the table, etc. 6 Fill the porous spaces of the porous polymer membrane with a liquid siloxane compound, crosslink the siloxane compound in the surface layer with non-polymerizable gas plasma, then apply and vulcanize a high molecular weight siloxane compound, and further apply as necessary. A method for producing a gas selectively permeable composite membrane, which comprises plasma polymerizing a polymerizable gas and then removing uncrosslinked liquid siloxane components by extraction. 7. The method for producing a gas selectively permeable composite membrane according to claim 6, wherein the liquid and high molecular weight siloxane compound is polydimethylsiloxane or a modified derivative thereof.
JP10605681A 1981-07-06 1981-07-06 Method for producing gas selectively permeable composite membrane Expired JPS5924843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10605681A JPS5924843B2 (en) 1981-07-06 1981-07-06 Method for producing gas selectively permeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605681A JPS5924843B2 (en) 1981-07-06 1981-07-06 Method for producing gas selectively permeable composite membrane

Publications (2)

Publication Number Publication Date
JPS586207A JPS586207A (en) 1983-01-13
JPS5924843B2 true JPS5924843B2 (en) 1984-06-12

Family

ID=14423953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605681A Expired JPS5924843B2 (en) 1981-07-06 1981-07-06 Method for producing gas selectively permeable composite membrane

Country Status (1)

Country Link
JP (1) JPS5924843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176336U (en) * 1986-04-26 1987-11-09
JPH0270775U (en) * 1988-11-16 1990-05-29

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955309A (en) * 1982-09-24 1984-03-30 Shin Etsu Chem Co Ltd Composite molding for separating gas
JPS5969105A (en) * 1982-10-12 1984-04-19 Shin Etsu Chem Co Ltd Composite molding for gas separation
JPS6075320A (en) * 1983-10-03 1985-04-27 Agency Of Ind Science & Technol Permeselective composite membrane for gas and its preparation
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPS61149226A (en) * 1984-12-25 1986-07-07 Agency Of Ind Science & Technol Gas permselective composite membrane and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176336U (en) * 1986-04-26 1987-11-09
JPH0270775U (en) * 1988-11-16 1990-05-29

Also Published As

Publication number Publication date
JPS586207A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US4230463A (en) Multicomponent membranes for gas separations
JPS58180205A (en) Composite membrane having selective permeability to gas and its production
JPS61209027A (en) Gas permselective membrane
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
CN113856492A (en) Polyamide reverse osmosis membrane with porous support layer doped with molecular sieve
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS5924843B2 (en) Method for producing gas selectively permeable composite membrane
Volkov et al. Membranes based on poly [(1-trimethylsilyl)-1-propyne] for liquid-liquid separation
JPS62136212A (en) Preparation of permselective composite membrane
NO347039B1 (en) A method for producing a gas separation article and use thereof
Kai et al. Development of crosslinked plasma-graft filling polymer membranes for the reverse osmosis of organic liquid mixtures
JPH119974A (en) Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
CN112691552A (en) Method for preparing high-performance organic gas separation membrane
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS61149210A (en) Preparation of gas permselective composite membrane
JPH038808B2 (en)
JPH0479690B2 (en)
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPS59127603A (en) Gas permselective membrane and preparation thereof
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
JPH0310368B2 (en)
JPH0677673B2 (en) Selective gas permeable flat membrane
JPH034925A (en) Separation membrane and its preparation