JPS6025507A - Gas permselective composite membrane and preparation thereof - Google Patents

Gas permselective composite membrane and preparation thereof

Info

Publication number
JPS6025507A
JPS6025507A JP13285883A JP13285883A JPS6025507A JP S6025507 A JPS6025507 A JP S6025507A JP 13285883 A JP13285883 A JP 13285883A JP 13285883 A JP13285883 A JP 13285883A JP S6025507 A JPS6025507 A JP S6025507A
Authority
JP
Japan
Prior art keywords
polymer
membrane
gas
composite membrane
polymer support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13285883A
Other languages
Japanese (ja)
Other versions
JPS6366252B2 (en
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13285883A priority Critical patent/JPS6025507A/en
Publication of JPS6025507A publication Critical patent/JPS6025507A/en
Publication of JPS6366252B2 publication Critical patent/JPS6366252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To prepare a composite membrane having gas permselectivity, by forming an organosilane polymer membrane containing a phenyl group to the surface of a high-molecular support by plasma polymerization under glow discharge. CONSTITUTION:A high-molecular support is set to a plasma polymerization apparatus so as to be placed on an electrode 9 or between electrodes 8, 9 and a reaction vessel 7 is evacuated by a vacuum pump 6. A silane compound containing a phenyl group is supplied into the reaction vessel while the flow amount thereof is regulated by a mass flow meter 2 and power is applied to initiate glow discharge. After a necessary plasma polymerization membrane is accumulated on the high-molecular support, polymerization is completed. The membrane is grown without excessively decomposing the phenyl group because silicon is present in the silane compound containing the phenyl group and a polymer having a large number of phenyl groups in the side chain thereof is formed and a membrane excellent in gas permselectivity is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ガス選択透過性複合膜およびその製造方法に
関し、更に詳しくは、i%分子支持体表面にフエニ” 
基t 含むオルガノシラン化合物がプラズマ重合により
堆積されたガス選択透過性複合膜およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a gas selectively permeable composite membrane and a method for producing the same, and more particularly, the present invention relates to a gas selectively permeable composite membrane and a method for producing the same, and more particularly, the present invention relates to a gas selectively permeable composite membrane and a method for producing the same.
The present invention relates to a gas-selective permselective composite membrane in which an organosilane compound containing a group t is deposited by plasma polymerization, and a method for producing the same.

〔発明の背景) 近年ガス混合物の分離・精製をガス選択透過性繰で行う
ことが積極的に検討されている。即ち空気より酸素を】
巽択的に透過させて酸素冨化空気を得、医療あるいけ燃
焼システムに利用する試み、あるいは石炭、天然ガス、
オイVサンド等を原料に、水蒸気改質や熱分解等の処理
を施すことにより得られる合成ガス、又は製鉄所等にお
けるコークス炉の廃ガスから水素を選択的に透過させ、
−酸化炭素、メタン等のガスと分離・精製し、これらガ
スを出発原料としてメタノール、エタノール等の基礎化
学品を製造する試み、更には天然ガスからの選択透過に
よるヘリウム回収の試み等がある。これら用途に期待さ
れるガス選択透過性膜に必要な特性は、ガス選択性とガ
ス透過性がいずれも大きく、かつ耐熱性、耐薬品性、高
強度を有することである。
[Background of the Invention] In recent years, separation and purification of gas mixtures using gas selective permeability cycles has been actively studied. In other words, oxygen rather than air]
Attempts are being made to obtain oxygen-enriched air by selectively permeating it and using it for medical purposes and combustion systems, as well as coal, natural gas,
Hydrogen is selectively permeated from synthesis gas obtained by steam reforming, thermal decomposition, etc. using oil V sand as a raw material, or from waste gas from coke ovens at steel plants, etc.
- Attempts have been made to separate and purify gases such as carbon oxide and methane and use these gases as starting materials to produce basic chemicals such as methanol and ethanol, and there have also been attempts to recover helium from natural gas by selective permeation. The characteristics required for gas selectively permeable membranes expected for these applications are high gas selectivity and gas permeability, as well as heat resistance, chemical resistance, and high strength.

ガス選択性とは、特定ガスと他のガスの応過速度の比で
表わされ、ガス選択性が大きいとは、ガδ分離能が優れ
ていることに他ならない。ガス透諷性は、ガス迫過速度
で1表わされ、ガス透過性が大きいとは、膜中を透過す
るガス量が多いことを意味する。更に分離対象ガス混合
物の温度、種類、ガス圧力を考慮すると、ガス選択透過
性膜は耐熱性、耐薬品性、高強度が必要となる。
Gas selectivity is expressed as the ratio of reaction rates between a specific gas and other gases, and a high gas selectivity means nothing else but an excellent gas δ separation ability. Gas permeability is expressed by the gas permeation rate, and a high gas permeability means that a large amount of gas permeates through the membrane. Furthermore, in consideration of the temperature, type, and gas pressure of the gas mixture to be separated, the gas selectively permeable membrane must have heat resistance, chemical resistance, and high strength.

ところが、市販されている高分子重合体または共重合体
の単一素材でこれら要求特性の全てを満たすことは不可
能である。従って、これら要求特性を満す材料を得るた
めに現在まで種々の方法が検討されてきた。その例とし
て、相分離を利用し、表面の活性スキン層の厚みを極力
薄(した非対称膜を用いる方法、あるいは活性スキン層
に相当する超薄膜を独立に製造して他の多孔性支持体・
\複合化しようとする方法などがある。しかしながら、
いずれも上記要求特性全てを十分に満たした膜を得ルこ
とには成功していない。
However, it is impossible to satisfy all of these required properties with a single commercially available polymer or copolymer material. Therefore, various methods have been studied to date to obtain materials that satisfy these required characteristics. For example, a method using an asymmetric membrane with an active skin layer on the surface as thin as possible by utilizing phase separation, or a method in which an ultra-thin membrane corresponding to the active skin layer is independently manufactured and used on other porous supports.
\There are ways to try to combine them. however,
None of these methods has succeeded in obtaining a film that fully satisfies all of the above-mentioned required characteristics.

不発明は、従来の膜に比べて上記要求特性を十分に満た
した高い性能を有するガス選択透過性膜およびその製造
方法を提供するものである。
The present invention provides a gas-selective permselective membrane having high performance that fully satisfies the above-mentioned required characteristics compared to conventional membranes, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

本発明のガス選択透過性膜は、フィルム状またはチュー
ブ状高分子支持体とその支持体表面にグロー放電により
プラズマ重合されたフェニル基を含むオルガノシラン重
合体薄膜より成ることを特徴とする。この複合膜におい
ては、プラズマ重合体薄膜が実質的なガス選択透過機能
を有する部分であり、高分子支持体は主に複合膜に機械
的強度を与えているにすぎない。
The gas selectively permeable membrane of the present invention is characterized by comprising a film-like or tubular polymer support and an organosilane polymer thin film containing phenyl groups that are plasma-polymerized by glow discharge on the surface of the support. In this composite membrane, the plasma polymer thin film is the part that has a substantial gas selective permeation function, and the polymer support mainly only provides mechanical strength to the composite membrane.

高分子支持体は、有孔部分の全くない均質膜でもよいが
、ガス透過性のより高い膜を得るには多孔質膜または多
孔質膜の表面孔を閉塞する様に高分子薄膜が積層された
形の複合膜の方が望ましい。
The polymer support may be a homogeneous membrane with no porous parts, but to obtain a membrane with higher gas permeability, a porous membrane or thin polymer membranes are laminated to close the surface pores of the porous membrane. A composite membrane with a similar shape is preferable.

多孔質膜を用いる場合、直接プラズマ重合薄膜を堆積す
る時には、その平均孔径が0.1μ以下であることが望
ましい。この理由は、多孔質支持体表面に堆積されるプ
ラズマ重合薄膜の強度に専ら依存している。後で詳述す
る様に、0.1μを越える孔を閉塞する程厚く堆積する
と内部応力によりクラックなどの欠陥部分が生じ、ガス
選択透過性膜としての機能が低下する。従って、0.1
μを越える平均孔径を有する多孔質膜を支持体として用
いる場合には、その表面にガス透過性の優れた高分子薄
膜を積層した薄膜にプラズマ重合簿膜を堆積させた構造
とすることが望!しい。
When using a porous membrane, it is desirable that the average pore diameter is 0.1 micron or less when directly depositing a plasma polymerized thin film. The reason for this depends exclusively on the strength of the plasma polymerized thin film deposited on the surface of the porous support. As will be described in detail later, if the film is deposited so thickly that it blocks pores exceeding 0.1 μm, defects such as cracks will occur due to internal stress, and the function as a gas selectively permeable membrane will deteriorate. Therefore, 0.1
When using a porous membrane with an average pore diameter exceeding μ as a support, it is desirable to have a structure in which a plasma polymerized membrane is deposited on a thin membrane laminated with a thin polymer membrane with excellent gas permeability on its surface. ! Yes.

高分子支持体は、 ガス選択透過性膜の用途を考慮して
種々の重合体が利用できるが、耐薬品性の優れているこ
とがまず必要である。また、機械特性や耐熱性が良いこ
とも有利であるから、ポリスルホンやポリイミドなどが
望ましい。しかるに、四弗化エチレン樹脂はこれら緒特
性の最も優れた高分子材料であり、しかもその多孔化技
術も進ん、でいることから、多孔性高分子支持体として
も好、4に利用できる。
Various polymers can be used as the polymer support depending on the use of the gas selectively permeable membrane, but it is first required to have excellent chemical resistance. Furthermore, since good mechanical properties and heat resistance are also advantageous, polysulfone, polyimide, etc. are preferable. However, tetrafluoroethylene resin is a polymer material with the most excellent properties in these respects, and the technology for making it porous has been advanced, so it can be used favorably as a porous polymer support.

0.1μを越える平均孔径を有する多孔質膜を用いる場
合、表面層の孔を閉塞するために積層する′薄膜の材料
としては、上記の特性の他にガス透過性の優れた、ある
いは薄膜形成能の−れた高分子材料が望ましく、ポリジ
メチルシロキサン、ポリフェニルシロキサン、ポリビニ
ルシロキサン、ポリジメチルシロキサン−カーボネート
ブロック共重合体等のシロキサン重合体または共重合体
、あるいはポリフェニレンオキサイド、ポリスルホン、
ポリイミド、ポリ芳香族エステル等の樹脂が代表的なも
のとして挙げられる。これらの薄膜を多孔質膜表面に形
成する方法およびこの薄膜を多孔質膜に積層する方法と
していくつかの技術が知られている。たとえは、高分子
溶液を水などの液面上に展開し、゛多孔質膜上に転写す
る方法、あるいはロールコータ−、リバースロールコー
タ−等ニヨり多孔質膜上にコーティングする方法などが
あげられ、これらのいずれの技術を適用してもよい。
When using a porous membrane with an average pore diameter exceeding 0.1μ, the material for the thin film to be laminated to close the pores in the surface layer should be a material with excellent gas permeability or thin film formation in addition to the above properties. Highly functional polymeric materials are desirable, such as siloxane polymers or copolymers such as polydimethylsiloxane, polyphenylsiloxane, polyvinylsiloxane, polydimethylsiloxane-carbonate block copolymers, or polyphenylene oxide, polysulfone,
Representative examples include resins such as polyimide and polyaromatic ester. Several techniques are known for forming these thin films on the surface of porous membranes and for laminating these thin films on porous membranes. Examples include a method in which a polymer solution is spread on the surface of a liquid such as water and transferred onto a porous membrane, or a method in which a polymer solution is coated on a porous membrane using a roll coater, reverse roll coater, etc. Any of these techniques may be applied.

この採にして得た高分子支持体上に実質的なガス湯沢透
過機能を発揮するプラズマ重合体の極薄膜用 、−jを堆積させる。
On the polymer support obtained in this way, -j, an ultra-thin film of a plasma polymer that exhibits a substantial gas permeation function, is deposited.

〕、゛。],゛.

マーを蒸気の状態で系内に導入し、電場を作用させてプ
ラズマ状態とすると、重合性有機モノマーは活性化され
てラジカルあるいはイオンとなり、゛逐次結合して高分
子量化していく方法である。有機上ツマ−の大多数はこ
の方法で重合が可能である。そしてその特徴は、均質で
ピンホールのない極薄のコーティングが得られること、
重合体の分子構造の枝分れ構造や架橋構造が富むことで
ある。
In this method, when the polymer is introduced in the form of vapor into the system and an electric field is applied to create a plasma state, the polymerizable organic monomer is activated and becomes radicals or ions, which sequentially combine to increase the molecular weight. The vast majority of organic polymers can be polymerized in this manner. Its features include the ability to obtain a homogeneous, pinhole-free, ultra-thin coating;
This means that the molecular structure of the polymer is rich in branched structures and crosslinked structures.

種々の有機上ツマ−の中でシラン化合物は良質なプラズ
マ重合体を形成する傾向にある。゛本発明者らは、各種
オルガノシラン化合物のプラズマ重合j換について詳細
に検討した結果、フェニル基を含むシラン化合物が、優
れたガス選択透過性を示Tことを見い出し、不発明を完
成させた。
Among the various organic polymers, silane compounds tend to form good quality plasma polymers.゛As a result of detailed studies on plasma polymerization conversion of various organosilane compounds, the present inventors discovered that silane compounds containing phenyl groups exhibit excellent gas selective permeability, and completed the invention. .

一般にフェニル基を含むポリマは、ガス選択性が大きく
、耐熱性に優れているという特徴を有する。
Polymers containing phenyl groups are generally characterized by high gas selectivity and excellent heat resistance.

しかるにけい素を含まない芳香族化合物からプラズマ重
合を行うと、フェニル基の開裂を伴って反応が進むため
生成するプラズマ重合ポリマーは、フェニル基をあまり
含まない構造となる。一方フミ1れるプラズマ重合膜は
、その架橋構造と相まって:、11 ’−q、ス選択透過性に優れた膜となる。
However, when an aromatic compound that does not contain silicon is subjected to plasma polymerization, the reaction proceeds with the cleavage of phenyl groups, so the resulting plasma-polymerized polymer has a structure that does not contain much phenyl groups. On the other hand, the plasma-polymerized membrane with a 11'-1 ratio, combined with its crosslinked structure, becomes a membrane with excellent selective permselectivity.

!1.i、−:、、フェニル基を含むシラン化合物の具
体例とし、て+1嘲 フェニルシラン、メチルフェニルシラン、ジメチルフェ
ニルシラン、フェニルトリメチルシラン、クロロフェニ
ルシラン、ジメチルフェニルビニルシラン等を挙げるこ
とができる。沸点が200℃を越えるシラン化合物は、
反応容器への均一な供給が困難になるため好ましくない
! 1. Specific examples of the silane compound containing a phenyl group include phenylsilane, methylphenylsilane, dimethylphenylsilane, phenyltrimethylsilane, chlorophenylsilane, and dimethylphenylvinylsilane. Silane compounds whose boiling point exceeds 200℃ are
This is not preferable because it makes it difficult to supply uniformly to the reaction vessel.

次にこれらフェニル基を含むシラン化合物を用いたプラ
ズマ重合の実施方法について説明する。
Next, a method for conducting plasma polymerization using these phenyl group-containing silane compounds will be described.

(1)プラズマ重合装置に高分子支持体をセットする。(1) Set the polymer support in a plasma polymerization apparatus.

第1図に本実施例で用いた重合装置の概略図を示す。高
分子支持体は電極9上または電極8と9の間に置かれる
FIG. 1 shows a schematic diagram of the polymerization apparatus used in this example. A polymeric support is placed on electrode 9 or between electrodes 8 and 9.

(2)反応容器7内を真空ポンプ6により0.o1to
rr以下に減圧する。
(2) The inside of the reaction vessel 7 is vacuum pumped to 0. o1to
Reduce the pressure to below rr.

(3)減圧状態で、マスフローメーター2により流量を
調整しながらフェニル基を含むシラン化合物を反応容器
内に供給する。この時、ヘリウム、アルゴン等の不活性
ガスをキャリヤガスとして用いてもよい。また、反応容
器内の圧力は5torr以下、好ましくはl 【orr
以下に保つ。
(3) Under reduced pressure, the silane compound containing a phenyl group is supplied into the reaction vessel while adjusting the flow rate using the mass flow meter 2. At this time, an inert gas such as helium or argon may be used as a carrier gas. Further, the pressure inside the reaction vessel is 5 torr or less, preferably l [orr
Keep below.

は、装置や他の操作条件で最適値は異なるが、過大に与
えることは、高分子支持体の劣化を引き起こすので避け
ることが必要である。
Although the optimum value differs depending on the equipment and other operating conditions, it is necessary to avoid giving too much as this will cause deterioration of the polymer support.

(5) グロー放電を所定時間続けて行ない、高分子支
持体上に必要なプラズマ重合薄膜が堆積された後、重合
を終了する。プラズマ重合薄膜の厚さは0.01μ以上
、0.5μ以下が好ましい。0゜01μより薄ければ、
ガス選択透過機能が十分に発現されない。一方、0.5
μより厚ければ、ガス透過性の面から不利になるし、ま
たその高密度な架橋構造からクラックなどの欠陥も生じ
やすくなる。
(5) Glow discharge is continued for a predetermined period of time, and after the necessary plasma polymerized thin film is deposited on the polymer support, the polymerization is terminated. The thickness of the plasma polymerized thin film is preferably 0.01μ or more and 0.5μ or less. If it is thinner than 0゜01μ,
Gas selective permeation function is not fully expressed. On the other hand, 0.5
If it is thicker than μ, it is disadvantageous in terms of gas permeability, and defects such as cracks are likely to occur due to its high-density crosslinked structure.

次に実施例を示し、不発明を具体的に説明する。Next, examples will be shown to specifically explain the invention.

なお、実施例で示したガス透過速度および選択性は、A
STM方式(圧力法)に基づき、透過成分をガスクロマ
トグラフにより分離、検出し、定量を行うことによって
めた。なお測定温度は30−(、そこから計算でめた。
Note that the gas permeation rate and selectivity shown in the examples are as follows:
Based on the STM method (pressure method), the permeated components were separated and detected using a gas chromatograph, and determined by quantitative determination. The measured temperature was calculated from 30-(.

実施例1 −した。Example 1 -I did.

この溶液をドクターナイフを用いて平均孔径0゜22μ
を有する四弗化エチレン樹脂多孔質膜(住友電気工業社
製、フロロポアFP−022)上にコーティングした後
、170℃で10分−次加硫を行い、次いで200 ’
Cで4時間二次加硫を行って加橋硬化させ、厚さ7μの
シリコーン薄膜を形成させた。
Using a doctor knife, remove this solution with an average pore size of 0°22μ.
After coating on a polytetrafluoroethylene resin porous membrane (Fluoropore FP-022, manufactured by Sumitomo Electric Industries, Ltd.) having
Secondary vulcanization was performed at C for 4 hours to cure and form a silicone thin film with a thickness of 7 μm.

得られた複合構造支持体のガス選択透過性は次の通りで
あった。
The gas selective permeability of the obtained composite structure support was as follows.

酸素透過速度QO2=2.4X10 i佃]ec−(z
Hg窒素透過速度’−QN2=1.2X10 G1L/
al−sec−caAJg水禦透過M度QH2=6.0
×10 c4/d−sec−cxHg−酸化炭素透過速
度QCO−2,4X 10−” cMal・* e c
 −cmHg酸素/窒素選択性 ctO3/N2−2.
0水素/−酸化炭素選択性αH2/co = 2.5こ
の支持体を第1図に示すプラズマ重合装置のIン。
Oxygen permeation rate QO2 = 2.4X10 i]ec-(z
Hg nitrogen permeation rate'-QN2=1.2X10 G1L/
al-sec-caAJg Water permeability M degree QH2=6.0
×10 c4/d-sec-cxHg-carbon oxide permeation rate QCO-2,4X 10-” cMal・* e c
-cmHg oxygen/nitrogen selectivity ctO3/N2-2.
0 hydrogen/-carbon oxide selectivity αH2/co = 2.5 This support was installed in the plasma polymerization apparatus shown in FIG.

)卑下の通りとなり、ガス透過性はあまり減少すること
なく、ガス選択性が大巾に向上された複合膜となってい
ることがわかった。
) It was found that the composite membrane had a significantly improved gas selectivity without much decrease in gas permeability.

Q02 = 3.4 x 1O−6ai/cIl−se
c ・craHgQN2 = 5.8 X 1O−7c
d/c+fl−sec ・(3HgQH2= 2.3 
X 1O−5d/cll−sec ・(zHgQCO−
5,9×1O−7ci/a11!eC1cllIHg“
02/N2 = 5.9 H2100−39,0 実施例2 四弗化エチレン樹脂ファインパウダー(ダイキン工業社
製、F2O3)100重量部に液体潤滑剤(シェル化学
社製、DO8B)27重量部を混和し、これをラム押出
機により中5 Q mm、厚さ5mmの板状成形物とし
た後、ロール圧延で厚さ0、15 mmのフィルムとし
た。このフィルムをトリクロルエチレン中に浸漬し、液
体潤滑剤を抽出除去した後、355〜370℃の温度雰
囲気中で化エチレン樹脂フィルムを得た。
Q02 = 3.4 x 1O-6ai/cIl-se
c ・craHgQN2 = 5.8 X 1O-7c
d/c+fl-sec ・(3HgQH2= 2.3
X 1O-5d/cll-sec ・(zHgQCO-
5,9×1O-7ci/a11! eC1clllIHg“
02/N2 = 5.9 H2100-39,0 Example 2 27 parts by weight of liquid lubricant (DO8B, manufactured by Shell Chemical Co., Ltd.) was mixed with 100 parts by weight of tetrafluoroethylene resin fine powder (manufactured by Daikin Industries, Ltd., F2O3). This was formed into a plate-shaped product with a medium size of 5 Q mm and a thickness of 5 mm using a ram extruder, and then rolled into a film with a thickness of 0.15 mm. This film was immersed in trichlorethylene to extract and remove the liquid lubricant, and then an ethylene chloride resin film was obtained in an atmosphere at a temperature of 355 to 370°C.

この多孔質膜をプラズマ装置の電極9上に置き、装置内
を6,01 torrに減圧した後、フェニルシランを
7.、g/1ntnで導入し、プラズマ重合させ、多孔
質膜上に重合体薄膜を形成させた。反応条件は、操作圧
力0.15 torr 、電力40W1反応時間30分
であった。この時、重合体薄膜の厚さは0.32μであ
った。
This porous membrane was placed on the electrode 9 of a plasma device, and after reducing the pressure inside the device to 6.01 torr, phenylsilane was added to 7.0 torr. , g/1 ntn was introduced and plasma polymerized to form a polymer thin film on the porous membrane. The reaction conditions were an operating pressure of 0.15 torr, power of 40 W, and reaction time of 30 minutes. At this time, the thickness of the polymer thin film was 0.32μ.

得られた二層構造複合膜のガス選択透過性は以下に示す
通りであった。
The gas selective permeability of the obtained two-layer composite membrane was as shown below.

QO2= 5.6 X 1O−6ad/cl −sec
 ・cm)(gQN2 = 1.8 X 1O−61d
−sec −cmHgQH2= 3.4 x 10 d
/d −sec −cmHgQCO= 2.6 x 1
O−6cat/cl −aec −c+nlHgα02
/N2= 3.1 αH2/Go = 13.1 〔発明の効果〕 本発明のガス選択透過性複合膜は、機械的強度に優れた
高分子支持体上にガス選択性の大きいフェニル基含有シ
ラン化合物からのプラズマ重合膜が堆積された複合膜構
造となっているため、ガス゛選択透過性が優れているは
かりでなく、耐熱性、耐薬品性、高強度を有する複合膜
となっている。
QO2 = 5.6 x 1O-6ad/cl -sec
・cm) (gQN2 = 1.8 X 1O-61d
-sec -cmHgQH2= 3.4 x 10 d
/d-sec-cmHgQCO=2.6 x 1
O-6cat/cl -aec -c+nlHgα02
/N2 = 3.1 αH2/Go = 13.1 [Effects of the Invention] The gas selectively permeable composite membrane of the present invention comprises a phenyl group-containing silane with high gas selectivity on a polymer support with excellent mechanical strength. Since it has a composite membrane structure in which a plasma polymerized membrane is deposited from a compound, it is a composite membrane that not only has excellent gas permselectivity but also has heat resistance, chemical resistance, and high strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例で用いたプラズマ重合装置の模式図で
ある。 1・・・七/マー供給口、2・・・マスフローメーター
、3・・・フロントグラス、4・・・ガスケット、5・
・・真空、ゲージ、6・・・真空ポンプ、7・・・反応
容器、8.9・・・電極、10・・・マツチングネット
ワーク、11・・・ジェネレーター。 特許出願人 工業技術院畏 川 1)裕部手続補正書(
方式) 昭和58年//月、、)−日 特許庁長官 若杉和夫 殿 1、 事件の表示 昭和58年特許願第132858号 2、 発明の名称 ガス選択透過性複合膜およびその製造方法3、 補正を
する者 事件との関係 特許出願人 住所 i景読+A山i′力(捕−丁目3番1号昭和58
年IO月25日 図面を別紙の如く補正します0
FIG. 1 is a schematic diagram of a plasma polymerization apparatus used in Examples. 1...7/mar supply port, 2...mass flow meter, 3...front glass, 4...gasket, 5...
...Vacuum, gauge, 6. Vacuum pump, 7. Reaction vessel, 8.9. Electrode, 10. Matching network, 11. Generator. Patent Applicant: Agency of Industrial Science and Technology, Igawa 1) Yube Procedural Amendment (
Method) 1986//Month, ) - Kazuo Wakasugi, Commissioner of the Japanese Patent Office1, Case description Patent Application No. 132858 of 19822, Title of the invention Gas selectively permeable composite membrane and its manufacturing method 3, Amendment Relationship with the case of a person who does
IO month 25th, I will correct the drawing as shown in the attached sheet0

Claims (8)

【特許請求の範囲】[Claims] (1) フェニル基を含むオルガノシラン化合物がグロ
ー放電によりプラズマ重合され、高分子支持体表面に堆
積されて“いることを特徴とするガス選択透過性複合膜
(1) A gas selectively permeable composite membrane characterized in that an organosilane compound containing a phenyl group is plasma-polymerized by glow discharge and deposited on the surface of a polymer support.
(2)オルガノシラン化合物がフェニルシラン、メチル
フェニルシラン、ジメチルフェニルシラン、フェニルト
リメチルシラン、クロロフェニルシラン、ジメチルフェ
ニルビニルシランの中から選ばれた化合物であることを
特徴とする特許請求の範囲第1項記載の複合膜
(2) Claim 1, characterized in that the organosilane compound is a compound selected from phenylsilane, methylphenylsilane, dimethylphenylsilane, phenyltrimethylsilane, chlorophenylsilane, and dimethylphenylvinylsilane. composite membrane of
(3)高分子支持体が0.1μ以下の平均孔径を持つ多
孔性材料であることを特徴とする特許請求の範囲第1項
記載の複合膜。
(3) The composite membrane according to claim 1, wherein the polymer support is a porous material having an average pore diameter of 0.1 μm or less.
(4)高分子支持体が0.1μを越える平均孔径を持つ
多孔性材料であり、その表面に鎖孔を閉塞する高分子材
料が積層されていることを特徴とする特許請求の範囲第
1項記載の複合膜。
(4) Claim 1, characterized in that the polymer support is a porous material with an average pore diameter exceeding 0.1μ, and a polymer material that closes chain pores is laminated on the surface of the polymer support. Composite membrane as described in section.
(5)多孔性高分子支持体が四弗化エチレン樹n旨より
なることを特徴とする特許請求の範囲第3項または第4
項記載の複合膜。
(5) Claim 3 or 4, characterized in that the porous polymer support is made of tetrafluoroethylene resin.
Composite membrane as described in section.
(6) フェニル基を含むオルガノシラン七ツマー蒸気
として5torr以下の雰囲気1こ1(給しグロー放電
下にプラズマ重合させて高分子支持体表面に堆積させる
ことを特徴とするガス選択透過性複合膜の製造方法。
(6) A gas-selective permeable composite membrane characterized in that an organosilane containing a phenyl group is vaporized in an atmosphere of 5 torr or less, plasma-polymerized under glow discharge, and deposited on the surface of a polymer support. manufacturing method.
(7)オルガノシラン化合物がフェニルシラン、メチル
フェニルシラン、ジメチルフェニルシランフェニルトリ
メチルシラン、クロロフェニルシラン、ジメチルフェニ
ルビニルシランの中力)らJadzれた化合物であるこ
とを特徴とする特許請求の範囲第6項記載の製造方法。
(7) Claim 6, characterized in that the organosilane compound is a jadz compound of phenylsilane, methylphenylsilane, dimethylphenylsilane, phenyltrimethylsilane, chlorophenylsilane, and dimethylphenylvinylsilane. Manufacturing method described.
(8)高分子支持体が0.1μ以下の平均孔径を持つ多
孔性材料であり、その表面に直接プラズマ重合を行うこ
とを特徴とする特許請求の範囲第6項記載の製造方法。 (91 0.1μを起える平均孔径を持つ多孔性高分子
膜に高分子溶液を塗布した後、溶媒を乾燥し、また要す
れば硬化架橋して高分子薄PIA′f積層させた高分子
支持体を用いることを特徴とする特許請求の範囲第6項
記載の製造方法。 α0)多孔性高分子支持体が四弗化エチレン樹脂よりな
ることを特徴とする特許請求の範囲第8項または第9項
記載の製造方法。
(8) The manufacturing method according to claim 6, wherein the polymer support is a porous material having an average pore diameter of 0.1 μm or less, and plasma polymerization is directly performed on the surface of the polymer support. (91) After applying a polymer solution to a porous polymer membrane with an average pore size of 0.1μ, the solvent is dried, and if necessary, the polymer is cured and crosslinked to form a thin PIA′f layered polymer. The manufacturing method according to claim 6, characterized in that a support is used. Claim 8, characterized in that α0) the porous polymer support is made of tetrafluoroethylene resin, or The manufacturing method according to item 9.
JP13285883A 1983-07-22 1983-07-22 Gas permselective composite membrane and preparation thereof Granted JPS6025507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13285883A JPS6025507A (en) 1983-07-22 1983-07-22 Gas permselective composite membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13285883A JPS6025507A (en) 1983-07-22 1983-07-22 Gas permselective composite membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6025507A true JPS6025507A (en) 1985-02-08
JPS6366252B2 JPS6366252B2 (en) 1988-12-20

Family

ID=15091171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13285883A Granted JPS6025507A (en) 1983-07-22 1983-07-22 Gas permselective composite membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6025507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101316A (en) * 1985-10-29 1987-05-11 Nippon Steel Corp Pickling device for metal strip
US4824444A (en) * 1986-04-11 1989-04-25 Applied Membrane Technology, Inc. Gas permselective composite membrane prepared by plasma polymerization coating techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122906A (en) * 1981-01-22 1982-07-31 Toray Ind Inc Selective permeable film
JPS59169502A (en) * 1983-03-14 1984-09-25 Ebara Corp Method for preventing seizure of membrane falling type concentration boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122906A (en) * 1981-01-22 1982-07-31 Toray Ind Inc Selective permeable film
JPS59169502A (en) * 1983-03-14 1984-09-25 Ebara Corp Method for preventing seizure of membrane falling type concentration boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101316A (en) * 1985-10-29 1987-05-11 Nippon Steel Corp Pickling device for metal strip
JPH0626730B2 (en) * 1985-10-29 1994-04-13 新日本製鐵株式会社 Metal strip pickling equipment
US4824444A (en) * 1986-04-11 1989-04-25 Applied Membrane Technology, Inc. Gas permselective composite membrane prepared by plasma polymerization coating techniques

Also Published As

Publication number Publication date
JPS6366252B2 (en) 1988-12-20

Similar Documents

Publication Publication Date Title
Kawakami et al. Modification of gas permeabilities of polymer membranes by plasma coating
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US4533369A (en) Gas-permselective composite membranes and process for the production thereof
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
JPS61204008A (en) Filter having excellent compaction resistance
JP3020120B2 (en) Method for separating hydrogen from gas mixtures using a semipermeable membrane based on polycarbonate derived from tetrahalobisphenol
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
Lin et al. Improvement of oxygen/nitrogen permselectivity of poly [1-(trimethylsilyl)-1-propyne] membrane by plasma polymerization
JPH038808B2 (en)
JPS586207A (en) Production of gas permselective composite membrane
JPH0262294B2 (en)
Stroeve et al. Gas transfer in supported Langmuir-Blodgett films of polymeric lipids
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPH0330416B2 (en)
JPS61149210A (en) Preparation of gas permselective composite membrane
JPS59162904A (en) Hydrogen selective permeation composite membrane and preparation thereof
JPS6260933B2 (en)
JPS60139316A (en) Preparation of gas separating laminated composite membrane
JPH0310368B2 (en)
JPS63185428A (en) Gas permselective composite membrane
JPS6260932B2 (en)
JPS6334772B2 (en)
JPS6336286B2 (en)