JPS63185428A - Gas permselective composite membrane - Google Patents

Gas permselective composite membrane

Info

Publication number
JPS63185428A
JPS63185428A JP1750387A JP1750387A JPS63185428A JP S63185428 A JPS63185428 A JP S63185428A JP 1750387 A JP1750387 A JP 1750387A JP 1750387 A JP1750387 A JP 1750387A JP S63185428 A JPS63185428 A JP S63185428A
Authority
JP
Japan
Prior art keywords
membrane
gas
amorphous diamond
composite membrane
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1750387A
Other languages
Japanese (ja)
Inventor
Yasuyo Matsumoto
松本 安世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1750387A priority Critical patent/JPS63185428A/en
Publication of JPS63185428A publication Critical patent/JPS63185428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve the gas permselectivity of the title membrane and to enhance its permeability, heat resistance, chemical resistance, etc., by coating a thin amorphous diamond film on the surface of a polymeric membrane to form the gas permselective composite membrane. CONSTITUTION:The gas permselective membrane is composed of the polymeric membrane 3 consisting of a porous layer 1 and a dense layer 2 and the amorphous diamond layer 4 formed on the layer 2. The polymeric membrane is formed with the polymer having excellent resistance to heat and chemicals such as polyphenylene oxide and polyether sulfone. The polymeric membrane 3 has an asymmetrical-pore diameter membrane structure, and the thin film 4 of amorphous diamond having high gas selectivity is formed on the surface of the dense layer 2 by utilizing the asymmetry. The heat resistance, resistance to chemicals (especially to acids, alkalis, and org. solvents), mechanical strength, etc., of the obtained gas permselective composite membrane are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガス選択透過性複合膜に関するものであり、更
に詳しくはガス透過性および選択透過性に優れかつ耐熱
性、耐薬品性および機械的強度の優れたガス選択透過性
膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas selectively permeable composite membrane. This invention relates to an excellent gas selectively permeable membrane.

従来の技術 従来、混合物の分離・精製は深冷、蒸留、吸着等のエネ
ルギー消費型プロセスを利用した方法により行なわれて
きたが、近年の省エネルギー傾向に伴い省エネルギー型
プロセス、例えば選択透過性膜を利用した方法が採用さ
れるようになってきた。しかしながら、膜分離プロセス
が工業的規模で利用されているのは、海水の淡水化や工
場排水処理等の液体分離に関するものがほとんどであり
、ガス分離に関しては石油化学プラントへの採用が見ら
れる程度である。
Conventional technology Conventionally, separation and purification of mixtures has been carried out using energy-consuming processes such as deep cooling, distillation, and adsorption. The methods used are now being adopted. However, membrane separation processes are mostly used on an industrial scale for liquid separation such as seawater desalination and industrial wastewater treatment, and for gas separation, they are only used in petrochemical plants. It is.

このように、ガス分離膜の実用化が遅れている理由とし
ては、ガス選択透過性が小さいこと、すなわち、ある特
定のガスのみを高効率で選択的に透過させる膜が、ない
ため、高純度のガスを得ようとすると膜分離操作を何回
も繰り返す多段方式を必要とし、従って装置が大型にな
ることと、ガス透過性が低いためガス分離膜による処理
ガス量が小さいことの二点が挙げられる。
The reason why the practical application of gas separation membranes has been delayed is that gas-selective permeability is low. In order to obtain this type of gas, a multi-stage method is required in which the membrane separation operation is repeated many times, resulting in a large equipment, and the gas permeability is low, so the amount of gas processed by the gas separation membrane is small. Can be mentioned.

上述のような状況において、これまで開発されているガ
ス分離膜は市販の高分子重合体または共重合体から成り
、選択透過性、耐熱性、耐薬品性および機械的強度等の
特性に関しては、それらのすべてを満足するような高分
子重合体を用いたガス分離膜は未だ開発されていない。
Under the above circumstances, the gas separation membranes that have been developed so far are made of commercially available polymers or copolymers, and have poor characteristics such as permselectivity, heat resistance, chemical resistance, and mechanical strength. A gas separation membrane using a high molecular weight polymer that satisfies all of these requirements has not yet been developed.

発明が解決しようとする問題点 以上述べたように、ガス分離膜に関しては、その実用化
は大きく遅れている。特に、従来のガス分離膜において
は特定ガスに対する選択透過性が小さいため高純度のガ
スを得るには多段プロセス用の大型装置が必要となる。
Problems to be Solved by the Invention As mentioned above, the practical application of gas separation membranes is far behind. In particular, since conventional gas separation membranes have low selective permeability for specific gases, large-scale equipment for multi-stage processes is required to obtain high-purity gases.

このような問題点を避けるため、選択透過性の大きなガ
ス分離膜として市販の高分子重合体および共重合体が種
々検討されてきたが、市販の重合体の場合上記目的に対
し使用できるものは限られている。
In order to avoid such problems, various commercially available polymers and copolymers have been investigated as gas separation membranes with high permselectivity, but there are only commercially available polymers that can be used for the above purpose. limited.

更に、このようなガス分離膜を、例えば化学プラント副
生ガス等の処理に適用する場合、耐熱性、耐薬品性等の
特性も兼ね備えている必要があり、このようなガス分離
膜用ガス選択透過性膜を得ることは極めて困難であった
Furthermore, when such gas separation membranes are applied to the treatment of chemical plant by-product gas, etc., they must also have properties such as heat resistance and chemical resistance. It has been extremely difficult to obtain permeable membranes.

すなわち、本発明の目的はガス選択透過性が大きく、か
つ透過性、耐熱性、耐薬品性および機械的強度等の特性
に優れたガス分離膜用選択透過性膜を提供することにあ
る。
That is, an object of the present invention is to provide a permselective membrane for gas separation membranes that has high gas selective permeability and excellent properties such as permeability, heat resistance, chemical resistance, and mechanical strength.

問題点を解決するための手段 本発明者等は、従来の選択透過性膜における上記の諸問
題を解決すべく種々検討、研究を重ねた結果、透過膜本
体としてガス透過性に優れた素材を選択し、これに非晶
質ダイヤモンドの薄膜を被服して複合膜とすることによ
り本発明を完成した。
Means for Solving the Problems The present inventors have conducted various studies and studies to solve the above-mentioned problems with conventional permselective membranes, and as a result, they have developed a material with excellent gas permeability for the permeable membrane body. The present invention was completed by coating this with a thin film of amorphous diamond to form a composite film.

すなわち、本発明のガス選択性透過複合膜は、高分子膜
体と、該高分子膜体上に被覆した非晶質ダイヤモンド薄
膜とを備えることを特徴としている。
That is, the gas-selective permeable composite membrane of the present invention is characterized by comprising a polymer membrane and an amorphous diamond thin film coated on the polymer membrane.

本発明に使用する高分子膜体は、ポリフェニレンオキサ
イド、ポリエーテルスルホン、ポリエーテルイミドおよ
びポリフッ化ビニリデン等の耐熱性、耐薬品性にすぐれ
た高分子重合体からなる。
The polymer membrane used in the present invention is made of a polymer having excellent heat resistance and chemical resistance, such as polyphenylene oxide, polyether sulfone, polyetherimide, and polyvinylidene fluoride.

また、上記高分子重合膜体は非対称孔径膜構造を有し、
その非対称性を利用して、緻密層側の表面にガス選択性
の大きな非晶質ダイヤモンド薄膜を形成する。− 更に、本発明において用いられる非晶質ダイヤモンド薄
膜は、メタン、エタン、アセチレン等の炭化水素ガスに
水素ガスを混合したもので、炭化水素を10容量%以下
、好ましくは1〜2容量%含む原料ガスを真空容器中に
導入し、圧力を10−2〜10−’Torrに調節し、
交流または直流グロー放電により、上記混合ガスを分解
し、高分子膜上にプラズマ気相合成したものであり、本
質的にアモルファスであり、マトリックス中にダイヤモ
ンドと類似した結晶が分散している組織であると考えら
れている。
Further, the polymer membrane body has an asymmetric pore membrane structure,
Taking advantage of this asymmetry, an amorphous diamond thin film with high gas selectivity is formed on the surface of the dense layer. - Furthermore, the amorphous diamond thin film used in the present invention is a mixture of hydrocarbon gas such as methane, ethane, or acetylene with hydrogen gas, and contains 10% by volume or less of hydrocarbons, preferably 1 to 2% by volume. Introducing the raw material gas into a vacuum container and adjusting the pressure to 10-2 to 10-' Torr,
The above mixed gas is decomposed by alternating current or direct current glow discharge, and plasma vapor phase synthesis is performed on a polymer film.It is essentially amorphous and has a structure in which crystals similar to diamond are dispersed in the matrix. It is thought that there is.

更に、低温プラズマ中で反応を行うこと、すなわち高分
子膜体の温度上昇を防ぐため高分子膜体と接している基
板の温度を77°にの液体窒素温度に冷却し、この結果
、高分子膜自体の温度を100℃以下に制御することに
よって良好な非晶質ダイヤモンド薄膜を形成することが
できる。
Furthermore, in order to carry out the reaction in low-temperature plasma, that is, to prevent the temperature of the polymer film from rising, the temperature of the substrate in contact with the polymer film was cooled to the liquid nitrogen temperature of 77°, and as a result, A good amorphous diamond thin film can be formed by controlling the temperature of the film itself to 100° C. or less.

このような非晶質ダイヤモンド薄膜の厚さは、5μm以
下好ましくは0.1〜1μmの範囲内であることが好ま
しい。
The thickness of such an amorphous diamond thin film is preferably 5 μm or less, preferably within the range of 0.1 to 1 μm.

崖亙 かくして、本発明のガス選択透過性複合膜は、高分子重
合体膜体、好ましくは非対称孔径構造を有する高分子重
合体膜体と該高分子膜体の緻密層側の表面上に被覆した
非晶質ダイヤモンド薄膜とを備えることを特徴としてい
る。
Thus, the gas selectively permeable composite membrane of the present invention comprises a polymer membrane, preferably a polymer membrane having an asymmetric pore size structure, and a coating on the surface of the dense layer side of the polymer membrane. It is characterized by comprising an amorphous diamond thin film.

このような非対称孔径構造を有する高分子重合体膜体を
使用することにより、高分子重合体膜体本来のガス透過
性を維持することができる。更にその高分子重合体膜体
の緻密層側の表面に小孔径の非晶質ダイヤモンド薄膜を
積層することにより、ガス選択透過性の大きなガス分離
膜を得ることができる。
By using a polymer membrane having such an asymmetric pore size structure, the gas permeability inherent to the polymer membrane can be maintained. Furthermore, by laminating an amorphous diamond thin film with a small pore diameter on the surface of the dense layer side of the polymer membrane, a gas separation membrane with high gas selective permeability can be obtained.

更にこのような非晶質ダイヤモンド薄膜を積層したこと
により、耐熱性、耐薬品性(特に酸、アルカリまたは育
成溶剤に対して安定)、耐熱性および機械的強度を向上
させることができる。
Furthermore, by laminating such amorphous diamond thin films, heat resistance, chemical resistance (particularly stable against acids, alkalis, or growth solvents), heat resistance, and mechanical strength can be improved.

またこのような非晶質ダイヤモンド薄膜の膜厚は、薄膜
欠陥のない程度の膜厚を必要とし、かつ割れや剥離が起
こらない程度の薄さも必要であることから5μm以下、
好ましくは0.1〜1μmの範囲であることが望ましい
In addition, the thickness of such an amorphous diamond thin film is 5 μm or less, because it needs to be thick enough to have no film defects and also thin enough to prevent cracking or peeling.
Preferably, it is in the range of 0.1 to 1 μm.

更に、本発明のガス選択透過膜に用いる非晶質ダイヤモ
ンド薄膜の形成方法としては、一般に低圧力合成が適し
、また高分子膜体上に積層するため気相合成においては
低温プラズマ中で行う必要がある。このような条件下で
本発明に用いる非晶質ダイヤモンドを合成するにはプラ
ズマ重合法が適している。
Furthermore, as a method for forming the amorphous diamond thin film used in the gas selectively permeable membrane of the present invention, low-pressure synthesis is generally suitable, and since it is laminated on a polymer membrane, vapor phase synthesis must be performed in low-temperature plasma. There is. Plasma polymerization is suitable for synthesizing the amorphous diamond used in the present invention under such conditions.

実施例 以下、実施例により本発明の方法を更に具体的に説明す
るが、本発明の技術的範囲は以下の実施例により何部制
限されるものではない。
EXAMPLES Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the technical scope of the present invention is not limited in any way by the following Examples.

添付の第1図は、本発明の1態様に従うガス選択透過性
膜の断面概略模式図である。すなわち、このガス選択透
過性膜は、多孔性層1および緻密層2からなる高分子重
合膜体3と、その緻密層2の表面に形成された非晶質ダ
イヤモンド層4とから構成される。以下の実施例1およ
び2では、第1図に示したガス選択透過性膜の作製例を
説明する。
FIG. 1 of the accompanying drawings is a schematic cross-sectional view of a gas selectively permeable membrane according to one embodiment of the present invention. That is, this gas selectively permeable membrane is composed of a polymer film body 3 consisting of a porous layer 1 and a dense layer 2, and an amorphous diamond layer 4 formed on the surface of the dense layer 2. In Examples 1 and 2 below, an example of manufacturing the gas selectively permeable membrane shown in FIG. 1 will be described.

実施例1 ポリエーテルスルホンを溶媒に溶解してドープ液とし、
これを平滑なガラス板上にドクターナイフで厚さ150
μmに流延し、ガラス板ごと蒸留水に浸漬し、ポリエー
テルスルホンの膜体が凝固、剥離した後、2時間水洗し
、通風乾燥して、厚さ150μmの非対称孔径の高分子
重合膜体1を得た。
Example 1 Polyether sulfone was dissolved in a solvent to prepare a dope solution,
Spread this onto a smooth glass plate with a doctor knife to a thickness of 150 mm.
The glass plate was cast to a diameter of 150 μm, immersed in distilled water together with the glass plate, the polyether sulfone membrane solidified and peeled off, washed with water for 2 hours, and dried with ventilation to form a polymer membrane with asymmetric pore diameter of 150 μm thick. I got 1.

この高分子重合膜体1を容量型真空装置の基板ホルダー
に取りつけた。メタンと水素の混合ガス(メタン:水素
=1:100)を真空装置内に導入し、容器内の圧力を
5X10−3Torrに維持した。これに周波数13.
56MHz、出力100Wの高周波を15分間印加し、
プラズマを発生させ、この状態でポリエーテルスルホン
膜体上に0.3μmの厚さのダイヤモンド薄膜4を形成
させた。この薄膜をX線回折法により分析して非晶質ダ
イヤモンド薄膜であることを確言忍した。
This polymer film body 1 was attached to a substrate holder of a capacitive vacuum device. A mixed gas of methane and hydrogen (methane:hydrogen=1:100) was introduced into the vacuum apparatus, and the pressure inside the container was maintained at 5×10 −3 Torr. This has a frequency of 13.
A high frequency of 56 MHz and an output of 100 W was applied for 15 minutes,
Plasma was generated, and in this state a diamond thin film 4 with a thickness of 0.3 μm was formed on the polyethersulfone film body. This thin film was analyzed by X-ray diffraction and confirmed to be an amorphous diamond thin film.

得られたガス選択透過性分離膜を用いて空気を分離透過
してガス透過性を評価したところ、酸素透過係数PO2
、分散係数α02/112  (酸素透過速度/窒素透
過速度)は下記のようになった。
When the obtained gas selective permeability separation membrane was used to separate and permeate air to evaluate gas permeability, the oxygen permeability coefficient PO2
, the dispersion coefficient α02/112 (oxygen permeation rate/nitrogen permeation rate) was as follows.

・PO4−5,0X10−目(c++f−cm/an(
−sec  −cmHg)・α0□/M2=10.5 比較として上記と同様に作製し、ただし非晶質ダイヤモ
ンド薄膜を被覆しなかったポリエーテルスルホン膜体く
厚さ150μm〉単体を作製し、上記係数PO□および
α02/112を測定し、次の結果を得た。
・PO4-5,0X10-th (c++f-cm/an(
-sec -cmHg)・α0□/M2=10.5 For comparison, a single polyethersulfone film (150 μm thick) was prepared in the same manner as above, but without coating with the amorphous diamond thin film, and The coefficients PO□ and α02/112 were measured and the following results were obtained.

°PO2= 1. lXl0−”(cat °Cm/c
i −sec  −cmHg)・α02/N2 ”” 
6.3 従って、非晶質ダイヤモンド薄膜を積層することにより
酸素の透過性をほとんど低下することなく、大巾に酸素
選択透過性を向上させることが可能である。
°PO2=1. lXl0-”(cat °Cm/c
i-sec-cmHg)・α02/N2 ””
6.3 Therefore, by stacking amorphous diamond thin films, it is possible to greatly improve the selective oxygen permeability without substantially reducing the oxygen permeability.

実施例2 ポリエーテルスルホンの代わりにポリフッ化ヒニリデン
を用い、厚さ100μmの非対称孔径の高分子重合膜体
1を作製し、これに実施例1と同様に処理を行ない非晶
質ダイヤモンド薄膜を積層して、ガス選択透過性複合膜
を作製した。
Example 2 Using polyhynylidene fluoride instead of polyether sulfone, a polymer membrane 1 with an asymmetric pore diameter of 100 μm in thickness was prepared, and treated in the same manner as in Example 1, an amorphous diamond thin film was laminated thereon. A gas-selective permselective composite membrane was prepared.

得られた複合膜の酸素透過係数および分散係数Po2、
α02/JI2を測定したところ下記のような結果を得
た。
The oxygen permeability coefficient and dispersion coefficient Po2 of the obtained composite membrane,
When α02/JI2 was measured, the following results were obtained.

・PO4−8,2Xl0−”(cffl ・cm/cr
d −sec  −cmHg)′α02/N2 ” 9
.0 比較としてポリフッ化ビニリデンフィルム(厚さ100
μm)単体の高分子膜体を作製し、これについて上記係
数を測定して次の結果を得た。
・PO4-8,2Xl0-”(cffl ・cm/cr
d -sec -cmHg)'α02/N2 ” 9
.. 0 For comparison, polyvinylidene fluoride film (thickness 100
μm) A single polymer membrane was prepared, and the above coefficients were measured for it, and the following results were obtained.

・PO4−1,2X10−g(c++t−cm/c++
f−sec  IcmHg)・α02/M2 = 3.
1 これらの結果より、非晶質ダイヤモンド薄膜を積層する
ことにより、酸素の選択透過性が向上することが確言忍
された。
・PO4-1,2X10-g (c++t-cm/c++
f-sec IcmHg)・α02/M2 = 3.
1 From these results, it was confirmed that the selective permeability of oxygen was improved by stacking amorphous diamond thin films.

発明の効果 以上詳細に説明したように、非対称孔径膜構造を有する
高分子膜に非晶質ダイヤモンド薄膜を積層することによ
り、ガス選択透過性に優れ、かつ耐熱性、耐薬品性およ
び機械的強度の改善されたガス選択透過性複合膜を得る
ことができた。
Effects of the Invention As explained in detail above, by laminating an amorphous diamond thin film on a polymer membrane with an asymmetric pore membrane structure, it has excellent gas selective permeability, as well as heat resistance, chemical resistance, and mechanical strength. A composite membrane with improved gas selective permeability could be obtained.

更に上記ガス選択透過性複合膜を使用することにより、
上記のような優れた特性を有するガス分離膜を得ること
ができた。また、上記複合膜はガス分離・を省エネルギ
ー的に実施するために多大の効果を奏するため、ガス事
業等に有効である。
Furthermore, by using the above gas selective permeability composite membrane,
A gas separation membrane having the above-mentioned excellent properties could be obtained. Further, the above composite membrane has a great effect in performing gas separation in an energy-saving manner, and is therefore effective in gas business and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガス選択透過性複合膜を示す断面の概
略模式図である。 (主な参照番号) 1・・高分子重合膜体、 2・・多孔性層、    3・・緻密層、4・・非晶質
ダイヤモンド層
FIG. 1 is a schematic cross-sectional view showing the gas selectively permeable composite membrane of the present invention. (Main reference numbers) 1. Polymer film, 2. Porous layer, 3. Dense layer, 4. Amorphous diamond layer.

Claims (6)

【特許請求の範囲】[Claims] (1)高分子膜体と、該高分子膜体の表面上に被覆され
た非晶質ダイヤモンド薄膜とを備えることを特徴とする
ガス選択透過性複合膜。
(1) A gas selectively permeable composite membrane comprising a polymer membrane and an amorphous diamond thin film coated on the surface of the polymer membrane.
(2)前記高分子膜体が厚さ方向に非対称孔径をなす多
孔を有することを特徴とする特許請求の範囲第1項に記
載のガス選択透過性複合膜。
(2) The gas selectively permeable composite membrane according to claim 1, wherein the polymer membrane has pores with asymmetric pore diameters in the thickness direction.
(3)前記高分子膜体が、ポリフェニレンオキサイド、
ポリエーテルスルホン、ポリエーテルイミドおよびポリ
フッ化ビニリデンから成る群より選ばれた1種であるこ
とを特徴とする特許請求の範囲第1〜2項のいずれか1
項に記載のガス選択透過性複合膜。
(3) The polymer film body is polyphenylene oxide,
Any one of claims 1 to 2, characterized in that it is one selected from the group consisting of polyether sulfone, polyetherimide, and polyvinylidene fluoride.
The gas selectively permeable composite membrane described in .
(4)前記非晶質ダイヤモンド薄膜が炭化水素ガスをプ
ラズマ重合することにより形成された薄膜であることを
特徴とする特許請求の範囲第1〜3項のいずれか1項に
記載のガス選択透過性複合膜。
(4) The gas selective permeation according to any one of claims 1 to 3, wherein the amorphous diamond thin film is a thin film formed by plasma polymerizing hydrocarbon gas. Composite membrane.
(5)前記非晶質ダイヤモンド薄膜の膜厚が5μm以下
であることを特徴とする特許請求の範囲第1〜4項のい
ずれか1項に記載のガス選択透過性複合膜。
(5) The gas selectively permeable composite membrane according to any one of claims 1 to 4, wherein the amorphous diamond thin film has a thickness of 5 μm or less.
(6)前記非晶質ダイヤモンド薄膜の膜厚が0.1〜1
.0μmの範囲であることを特徴とする特許請求の範囲
第5項に記載のガス選択透過性複合膜。
(6) The thickness of the amorphous diamond thin film is 0.1 to 1.
.. The gas selectively permeable composite membrane according to claim 5, characterized in that the membrane has a thickness in the range of 0 μm.
JP1750387A 1987-01-28 1987-01-28 Gas permselective composite membrane Pending JPS63185428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1750387A JPS63185428A (en) 1987-01-28 1987-01-28 Gas permselective composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1750387A JPS63185428A (en) 1987-01-28 1987-01-28 Gas permselective composite membrane

Publications (1)

Publication Number Publication Date
JPS63185428A true JPS63185428A (en) 1988-08-01

Family

ID=11945788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1750387A Pending JPS63185428A (en) 1987-01-28 1987-01-28 Gas permselective composite membrane

Country Status (1)

Country Link
JP (1) JPS63185428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039792A (en) * 1997-06-24 2000-03-21 Regents Of The University Of California And Bp Amoco Corporation Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation
WO2015080259A1 (en) * 2013-11-29 2015-06-04 独立行政法人物質・材料研究機構 Nanofiltration or reverse osmosis membrane made of hard carbon film, filtering filter, two-layer-bonded-type filtering filter, and methods for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039792A (en) * 1997-06-24 2000-03-21 Regents Of The University Of California And Bp Amoco Corporation Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation
WO2015080259A1 (en) * 2013-11-29 2015-06-04 独立行政法人物質・材料研究機構 Nanofiltration or reverse osmosis membrane made of hard carbon film, filtering filter, two-layer-bonded-type filtering filter, and methods for manufacturing same
JPWO2015080259A1 (en) * 2013-11-29 2017-03-16 国立研究開発法人物質・材料研究機構 NF or RO membrane made of hard carbon membrane, filtration filter, two-layer bonded filtration filter, and production method thereof

Similar Documents

Publication Publication Date Title
EP2511002B1 (en) Separation membrane including graphene
US4685940A (en) Separation device
JP5750109B2 (en) Method for improving the selectivity of polybenzoxazole membranes
US9278318B2 (en) Graphene nanotube array for gas filtration
JPH02169017A (en) Semi-permeable polymeric membrance
JPS60137417A (en) Gas separating member and its preparation
JPS58166018A (en) Continuous manufacture of polymethyl pentene film
JPS588517A (en) Preparation of composite film with selective permeability for gas
Hirota et al. Evaluation of permeation mechanisms of silylated ionic liquid-derived organosilica membranes for toluene/methane separation
JP3020120B2 (en) Method for separating hydrogen from gas mixtures using a semipermeable membrane based on polycarbonate derived from tetrahalobisphenol
JPS63185428A (en) Gas permselective composite membrane
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JPS586207A (en) Production of gas permselective composite membrane
JPH0330416B2 (en)
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
JPS61149210A (en) Preparation of gas permselective composite membrane
JPS59162904A (en) Hydrogen selective permeation composite membrane and preparation thereof
JPH0423572B2 (en)
JPS6121718A (en) Hydrogen permselective composite membrane and preparation thereof
Kita et al. Plasma polymerization over porous inorganic membranes and the permeability of the membranes (II)