JPS6075320A - Permeselective composite membrane for gas and its preparation - Google Patents

Permeselective composite membrane for gas and its preparation

Info

Publication number
JPS6075320A
JPS6075320A JP18320083A JP18320083A JPS6075320A JP S6075320 A JPS6075320 A JP S6075320A JP 18320083 A JP18320083 A JP 18320083A JP 18320083 A JP18320083 A JP 18320083A JP S6075320 A JPS6075320 A JP S6075320A
Authority
JP
Japan
Prior art keywords
plasma
gas
thin film
siloxane compound
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18320083A
Other languages
Japanese (ja)
Other versions
JPH038808B2 (en
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18320083A priority Critical patent/JPS6075320A/en
Publication of JPS6075320A publication Critical patent/JPS6075320A/en
Publication of JPH038808B2 publication Critical patent/JPH038808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve heat resistance, chemical resistance and mechanical strength of the title membrane by laminating a thin film with surface layer comprising a siloxane compd. treated with plasma of non-polymerizable gas on a high molecular porous base body. CONSTITUTION:A thin film having a surface layer comprising a cyclohexane cpd. treated with plasma of non-polymerizable gas such as hydrogen, carbon monoxide, nitrogen, or inert gas is laminated on a high molecular porous base body such as tetrafluoroethylene resin. Then, the film is placed under glow discharge in the atmosphere of polymerizable gas under reduced pressure to deposit plasma polymerized film on the thin film of cyclohexane compd. which has been treated with plasma.

Description

【発明の詳細な説明】 1技術分野1 本発明は、ガス選択透過性複合膜およびその製造方法に
関し、更【こ詳しくは、高分子多孔性支持体」−1−1
その表面層が非重合1−1ガスによるプラズマタリフ1
jされたシロキサン化合物より成る薄膜が積ノ1クサれ
、更にその?WIIS’=−l:にプラズマ重合膜が堆
積されているガス選択透過性複合膜およびその製造方法
に関する。
Detailed Description of the Invention 1 Technical Field 1 The present invention relates to a gas selectively permeable composite membrane and a method for producing the same, and more particularly, to a porous polymeric support.
Plasma tariff 1 whose surface layer is made of non-polymerized 1-1 gas
A thin film made of a siloxane compound is deposited, and then the siloxane compound is deposited. The present invention relates to a gas selectively permeable composite membrane in which a plasma polymerized membrane is deposited on WIIS'=-l: and a method for manufacturing the same.

[発明の一1i′敗1 近年、ガス混合物の分離・精製をガス選択透過性膜で行
うことが積極的に検旧されている。1ullち、空気よ
り酸素を選択的に透過させて酸素′?11比空気全空気
医療あるいは燃焼システムに利用する試み、あるいは石
炭、天然ガス、オイルサンド等を原料に、水蒸気改質や
熱分解等の処理を施すことにJ:り得られる合成ガス、
又は製鉄所等にお(Jるコークス炉の廃ガスから水素を
選択的に透過させ、−・酸化炭素、メタン管の力スと分
離・精製し −れらガスを出発原料としてメタ/−〕呟
エタノール等の基礎化学品を!i!遣する試み、更には
天然ガスからの選択透過によるヘリウム回収の試み′:
やがある。これら用途に期待されるガス選択透過性膜に
必要な特性は、ガス選択性とガス透過性かいずれも犬た
く、かつ耐熱性、耐薬品性、高強度を有することである
[Disadvantages of the Invention 1 In recent years, separation and purification of gas mixtures using gas selectively permeable membranes has been actively investigated. 1ull, selectively permeates oxygen over air to produce oxygen' Synthetic gas obtained by using coal, natural gas, oil sands, etc. as raw materials for steam reforming, thermal decomposition, etc.
Or in steel plants, etc. (by selectively permeating hydrogen from waste gas from coke ovens, separating and refining it from carbon oxide and methane pipe gas, and using these gases as starting materials to produce methane/-) Attempts to use basic chemicals such as ethanol, and even recovery of helium by selective permeation from natural gas':
There is a difference. The characteristics required for gas selectively permeable membranes that are expected to be used in these applications are that they have good gas selectivity and gas permeability, as well as heat resistance, chemical resistance, and high strength.

力゛ス選択性とは、特定ガスと他のガスの透過速度の比
で表わされ、ガス選択性が犬すいとは、ガス分離能か優
れていることに池ならない。ガス透過性は、ガス透過速
度で表わされ、ガス透過性が大きいとは、膜中な透過す
るガス電が多し)ことを意味する。更に、分離対象ガス
混合物の温度、種類、力°ス圧力を考慮すると、力゛ス
選択透過性腺は耐熱性、耐薬品性、高強度が必要となる
Force selectivity is expressed as the ratio of the permeation rate of a specific gas to other gases, and if the gas selectivity is excellent, it means that the gas separation ability is excellent. Gas permeability is expressed in terms of gas permeation rate, and a high gas permeability means that more gas can pass through the membrane. Furthermore, considering the temperature, type, and force pressure of the gas mixture to be separated, the force-selective gland must have heat resistance, chemical resistance, and high strength.

ところが、1旧υにされている高分子重合体または共取
合木の11′L−素祠でこれら要求特性の全てを+14
tこすことは不可能である。従って、これら要求特性を
)14す月利を11トるため1こ現在主で種々の方法が
検a・jされてきた。その例として、相分離を利用し、
表面の活性スキン層の厚みを極力薄くした非λ・]称膜
を用いる方法、あるいは活性スキン層に相当する超薄膜
を独立に製造して池、の多孔性支持体へ複合化しようと
する方法などがある。しかしながら、いずれも上記要求
特性全てを1−分に′T14だした膜を(1することに
は成功していない。
However, all of these required characteristics are +14 with the 11′L-Soji made of high molecular weight polymer or Kyoriki, which has been set as 1 υ.
It is impossible to rub. Therefore, various methods have been currently being investigated in order to reduce the monthly interest rate based on these required characteristics. As an example, using phase separation,
A method using a non-λ-symmetric membrane with the active skin layer on the surface as thin as possible, or a method in which an ultra-thin membrane corresponding to the active skin layer is manufactured independently and composited onto a porous support. and so on. However, none of these methods has succeeded in producing a film that achieves all of the above-mentioned required characteristics in 1 minute.

本発明は、従来の膜に比べて上記要求特性を十分に)μ
j7こした高い性能を有するガス選択透過性膜およびそ
の製造方法を提供するものである。
The present invention satisfactorily satisfies the above-mentioned required characteristics compared to conventional membranes.
The present invention provides a gas selectively permeable membrane having high performance as compared to J7, and a method for manufacturing the same.

[発明の構成1 本発明のガス選択透過性膜は、フィルム状またはチュー
ブ状高分子多孔性支持体に、その表面層が非重合性ガス
によるプラズマ処理されたシロキサン化合物の薄膜が積
)vIされ、更に、その;°〃膜ににプラズマ重合膜が
堆積された構造の複合膜で′ある。この複合膜において
、多孔性支持体は、+、17.ら複合膜の機械的強度を
保持する役割を受(Jも−)。
[Configuration 1 of the Invention The gas selectively permeable membrane of the present invention is a porous polymer support in the form of a film or a tube, the surface layer of which is laminated with a thin film of a siloxane compound that has been plasma-treated with a non-polymerizable gas. Furthermore, it is a composite film having a structure in which a plasma polymerized film is deposited on the film. In this composite membrane, the porous support has +, 17. It plays a role in maintaining the mechanical strength of the composite membrane (J also -).

シロキサン化合物薄膜は、多孔性支持体の孔を閉塞し、
プラズマ重合膜との接着層および強度ガ1j強の役割を
受けもっと同時に、その表面層が非重合性力゛スによる
プラズマ処理され、高度な架1i!’li II’r造
となっており、一定のガス選択透過機能も介せ有してい
る。また、最上層のプラズマ重合膜は、その緻密な架橋
・分1岐構造で、より高度の力゛ス選Jl<透過機能を
受けもっことになる。
The siloxane compound thin film closes the pores of the porous support,
At the same time, its surface layer is plasma-treated using a non-polymerizable force to form an advanced frame 1i! It has a 'li II'r structure and also has a certain gas selective permeation function. In addition, the plasma polymerized film in the top layer has a dense crosslinked and branched structure and has a higher power selective permeation function.

本発明者らは、高分子支持体」−に各種モノマーからの
プラズマ重合膜を堆積させたガス選択透過性複合膜を開
発してトだ。特に、シロキ」Jン化合物を積層した支持
体を用いると、シロキサン化合物の極めて大トなガス透
過性と弾性構造か呟この上にプラズマ重合膜を堆積させ
ると有用な力゛ス選択透過性腹合膜が1:)られること
を見い出している。しかるにシロキサン化合物薄膜−1
−に直ちにプラズマ重合膜を堆積さぜると、?Qられる
複合膜のガス選択透過性能が不安定でバラーバことがし
ばしば見られた。この問題に関し、更に鋭意検則を重ね
た結果、シロキサン化合物薄膜表面に初め非重合性ガス
によるプラズマ処理を行い、次にプラズマ重合を行・)
ことで゛、性能の安定した、かつ一層選択機能の高めら
れたガス選択透過性複合膜が得られることを見い出し本
発明を完成させた。
The present inventors have developed a gas selectively permeable composite membrane in which a plasma polymerized membrane made of various monomers is deposited on a polymeric support. In particular, when a support layered with a siloxane compound is used, the extremely high gas permeability and elastic structure of the siloxane compound can be used, and when a plasma polymerized film is deposited on this support, a useful force-selective permselectivity film can be obtained. It has been found that the synapse can be reduced by 1:). However, siloxane compound thin film-1
- If a plasma polymerized film is immediately deposited on -? The gas selective permeability performance of the composite membrane was unstable and often varied. As a result of further thorough examination regarding this problem, we first performed plasma treatment with a non-polymerizable gas on the surface of the siloxane compound thin film, and then performed plasma polymerization.
The present inventors have discovered that a gas-selective permeable composite membrane with stable performance and further improved selective function can be obtained by doing so, and have completed the present invention.

用いられる高分子多孔性支持体は、孔径か均一で、気孔
率が高く、また耐熱性、耐薬品性、強度特性が1夏れC
いることか望ましい。孔径の大きさは、槓1【りされる
シロへサン化合物の膜厚に影響してくることから、小さ
い方が有利で、望ましくは171111以1・゛かよい
。気1しtは神;端に低くなると、ガス透過性が急:/
、j′i、に]・がることが呟望ましくは30%以」−
か゛必要である。素イ・Aとしては、ポリビニルアルコ
ール、塩化ビニル、ポリプロピレン、ポリアクリレート
、ポリスルボン、ポリイミド、ポリカーボネート等が強
度に優れ有用であるか、耐熱性、耐薬品性にも優れた素
祠として四弗化エチレン樹脂が好適であると言える。
The polymeric porous support used has uniform pore size, high porosity, and excellent heat resistance, chemical resistance, and strength properties.
It is desirable to have one. Since the size of the pores affects the thickness of the film of the silohesane compound to be coated, it is advantageous to have a smaller pore size, and preferably 1.5 mm or larger than 171111 mm. 1 and t are amazing; when it gets low to the edge, gas permeability becomes steep:/
, j′i, ni]・desirably more than 30%.
It is necessary. As the material A, polyvinyl alcohol, vinyl chloride, polypropylene, polyacrylate, polysulfone, polyimide, polycarbonate, etc. are useful because of their strength, and tetrafluoroethylene is used as a material with excellent heat resistance and chemical resistance. It can be said that resin is suitable.

」1記支持体に、シロキサン化合物より成る薄膜が積層
される。シロキサン化合物は、最も優れたガス透過性を
有する高分子祠料で゛、ポリジメチルシロキサン、ポリ
メチルビニルシロキサン、ポリメチル70ロシロキサン
、ポリメチルフェニルシロキサンあるいはボリジメチル
シロキサンーカーボネ−1ブロック共重合体簀の重合体
、典型合本が挙げられる。上記シロキサン化合物の中ひ
特に後二者のように分子鎖中に芳香環を含むシロへサン
化合物か後述するプラズマ処理に好適であることかわか
った。これらシロキサン化合物を積層する方法は、シロ
キサン化合物とこれを溶解′する溶剤、また必要であれ
ば加硫剤を加え、混合して溶液を調製し、これに支持体
を浸漬し、引」二げてイ、’f; 4i又はナイフ、ロ
ールを用いてコーティング塗布した後、溶剤を乾燥・揮
発、更に必要であれば゛加熱加硫する。このように積層
すれたシロキサン化合物薄膜は、支持体の孔を・閉塞し
、1μI11から;)0μmnの膜1!lを有すること
になる。膜厚は、支持体の孔の大きさ、必要な強度に応
して変わるが、それは、溶液濃度、塗布厚さ等によって
制御される。
1. A thin film made of a siloxane compound is laminated on the support. Siloxane compounds are polymeric abrasives with the best gas permeability. Polydimethylsiloxane, polymethylvinylsiloxane, polymethyl 70rosiloxane, polymethylphenylsiloxane, or boridimethylsiloxane-carbon one-block copolymer. Examples include screen polymers and typical combinations. Among the above-mentioned siloxane compounds, it has been found that silohesane compounds containing an aromatic ring in the molecular chain, such as the latter two, are particularly suitable for the plasma treatment described below. The method of laminating these siloxane compounds is to prepare a solution by adding and mixing the siloxane compound, a solvent for dissolving it, and a vulcanizing agent if necessary, and dipping the support into the solution. After applying the coating using a knife or roll, dry and volatilize the solvent, and if necessary, heat and vulcanize. The siloxane compound thin film laminated in this way closes the pores of the support, and the thickness of the siloxane compound thin film 1! It will have l. The film thickness varies depending on the pore size of the support and the required strength, and is controlled by the solution concentration, coating thickness, etc.

次に、積層されたシryqサン化合物剛漠表面にプラズ
マ処理が11”われる。プラズマ処理は、減圧下でグロ
ー放電を行い、ラノカル、電子、イオン、励起種などの
活性種、あるいは紫外線等の光エネルギーで対象物の表
面を主として化学的作用で改質するもので″ある。即ち
スパッタリングやエッチ□ ングなどに比べ、その反応
はゆるやかであって、表面の架橋反応だけが主として進
むことになる。
Next, the surface of the laminated silicon compound is subjected to plasma treatment for 11". Plasma treatment is performed by glow discharge under reduced pressure and active species such as lanocal, electrons, ions, excited species, or ultraviolet rays. It uses light energy to modify the surface of an object primarily through chemical action. That is, compared to sputtering, etching, etc., the reaction is slow, and only the crosslinking reaction on the surface proceeds.

本発明におけるプラズマ処理の効果は、次のようにも考
えられる。1つは、シロキサン化合物表面に付着してい
る水分等の低分子化合物がプラズマ中の活性Tmとの反
応によって表面から除去されることにより、次のプラズ
マ重合反応の再現性を高め、また重合膜との接着性を強
固にすることである。もう1−)は、シロキサン化合物
表面が高度に架1+rfi するため、この部分だけで
一定のガス選択透過性が発現することである。プラズマ
処理は11小合性ガスを用いて行なわれる。即ち、アル
ゴン、へり′ンム、ネオン等の不活性力ス、ある′v1
は水素、窒素、−酸化炭素などを挙げることができる。
The effects of the plasma treatment in the present invention can also be considered as follows. One is that low-molecular compounds such as moisture attached to the surface of the siloxane compound are removed from the surface by reaction with the active Tm in the plasma, improving the reproducibility of the next plasma polymerization reaction, and also improving the reproducibility of the polymerized film. The aim is to strengthen the adhesion with the Another reason (1-) is that since the surface of the siloxane compound is highly cross-linked, a certain degree of selective gas permeability is developed only in this area. Plasma treatment is performed using an 11-polymer gas. That is, an inert force such as argon, aluminum, neon, etc.
can include hydrogen, nitrogen, -carbon oxide, etc.

一方、酸素は処理条件によって酸化反応から主ti’i
切断をさたし、結局エツチング作用か強くなり、効果が
十分でない。
On the other hand, depending on the processing conditions, oxygen may be the main ti'i
This results in a strong etching effect and the effect is not sufficient.

放電条件は、装置によって異なるが、通常、電力5()
〜200 W、時間2〜20分、圧力(+ 、f−15
〜5 、OLorrの範囲で操作することで目的の効果
を挙げることができる。またシロキサン化合物は、一般
の有機ゴムに比べると放射線に対して1憂れた安定性を
もつが、特に芳香環を含むとその耐放射線性:か著しく
高められる。このため、芳、(r環を含むシロキサン化
合物を用いるとプラズマ処理の効果がより強く発現する
ことがわかった。
Discharge conditions vary depending on the device, but usually the power is 5 ()
~200 W, time 2-20 min, pressure (+, f-15
The desired effect can be achieved by operating within the range of ~5, OLorr. Furthermore, siloxane compounds have poor stability against radiation compared to general organic rubbers, but when they contain an aromatic ring, their radiation resistance is significantly improved. Therefore, it has been found that the effect of plasma treatment is more strongly expressed when a siloxane compound containing an aromatic or (r ring) is used.

次に、プラズマ処理されたシロキサン化合物薄膜上にプ
ラズマ重合膜を堆積させる。プラズマ重合(合は、プラ
ズマ処理にひき続いて直ちに行なうことが望ましい。そ
れはプラズマ処理された試オ[を一旦空気雰囲気中1こ
取1)出すと、再び水分などの111着や、残仔するフ
リーラジカル1こよる要9影背が出るためである。イノ
;穴モノマーの大多数は、プラズマ重合が”I能であり
、均質でピンホールのなり・極&7のコーティングか(
11られる1、′I□徴がある。特に、有(茂シラン化
合物は良Ie(なプラズマ屯合体を形成する傾向にある
。更に三重結合や三重結合の不飽和基を含むシラン化合
物は−1(4反応性に富み、分岐や架橋構造のより進ん
だ重合体を形成し、またフェニル基を含むシラン化合物
では、フェニル基を多く側鎖にもつ重合体が形成され、
いずれも優れtこガス選択透過性膜となることを本発明
者らは見い出している。具体的には、トリメチルビニル
シラン、ジメチルノビニルシラン、メチルトリビニルシ
ラン、テトラビニルシラン、ツメチルビニルクロロシラ
ン、アリルI・リメチルシラン、エチニルトリメチルシ
ラン、メチルフェニルシラン、ツメナルフェニルシラン
などを挙げることかできる。プラズマ重合操作は、プラ
ズマ処理後試料を反応容器中に置いたまま、容器内を再
び高真空に戻した後、モノマーを導入して開始する。I
’f:作条外は装置によって変わるか、一般には出力5
−100W、時間3〜60分、圧力(、) 、 (15
〜5.0Lorrの範囲で操作される。出力か低すぎる
と架橋密度の低い重合体となり、出力が高1ぎると小会
より分j1イが1分光してきてなrましくなく、糸+’
i局、L記のような操作範囲か好適となる。時間は重合
膜厚と比例するので皿の条1!1が一定であれば所定の
膜厚に調整するパラメータとなる。圧力は排気速度とモ
ノマー流量の池にモノマーの種類や放電条件によっても
変化するが、低い圧力での操作は堆積速度を遅くする傾
向がある。いずれにしても重合膜厚は2μIl+以下に
調整することか望ましい。
Next, a plasma polymerized film is deposited on the plasma-treated siloxane compound thin film. Plasma polymerization (coordination) is preferably carried out immediately following plasma treatment.This is because once the plasma-treated samples are taken out in an air atmosphere, moisture and other residues are removed again. This is because 1 out of 1 free radicals outweighs 9 out of 1. Ino: The majority of hole monomers are capable of plasma polymerization, resulting in homogeneous pinhole formation, pole & 7 coatings (
11 1,'I□There are signs. In particular, silane compounds containing a triple bond or triple bond unsaturated groups have a high reactivity of -1(4) and have a branched or cross-linked structure. In the case of silane compounds containing phenyl groups, polymers with many phenyl groups in the side chains are formed.
The present inventors have discovered that all of them provide excellent gas selective permeability membranes. Specific examples include trimethylvinylsilane, dimethylnovinylsilane, methyltrivinylsilane, tetravinylsilane, trimethylvinylchlorosilane, allyl I.limethylsilane, ethynyltrimethylsilane, methylphenylsilane, and trimethylphenylsilane. The plasma polymerization operation is started by returning the inside of the reaction vessel to high vacuum again while leaving the plasma-treated sample in the reaction vessel, and then introducing monomers. I
'f: Out of production varies depending on the device, generally the output is 5
-100W, time 3-60 minutes, pressure (,), (15
It operates in the range of ~5.0 Lorr. If the output is too low, the polymer will have a low crosslinking density, and if the output is too high, it will emit 1 minute of light from the small assembly, which is not unpleasant, and the yarn +'
For station i, the operating range as shown in L is preferable. Since the time is proportional to the polymerized film thickness, if the strip 1!1 of the plate is constant, it becomes a parameter for adjusting the film thickness to a predetermined value. Pressure also varies depending on pumping speed and monomer flow rate, type of monomer in the pond, and discharge conditions, but operation at lower pressures tends to slow deposition rates. In any case, it is desirable to adjust the polymer film thickness to 2 μIl+ or less.

これは、プラズマ重合膜がその高度な架橋・分岐(14
造から耐熱性、耐薬品性1こも優れるという特徴を有す
るか、反面厚く堆積させるとその強い内部応力によりク
ラックなどの欠陥が発生しやすいからである。
This is because the plasma polymerized film has a high degree of crosslinking and branching (14
This is because it has excellent heat resistance and chemical resistance due to its structure, but on the other hand, if it is deposited thickly, defects such as cracks are likely to occur due to the strong internal stress.

以下実施例示し、本発明を具体的に説明する。The present invention will be specifically explained below with reference to examples.

なお実施例で示したガス透過速度および選択1/1.は
、A S Tへ1方式(圧力法)にノ、(つき、透過成
分をガスクロマトグラフにより分離、検出し定量を行う
ことによってめた。なに測定温度は全て100゛Cであ
る。また例中各力゛ス透過速度はQを用い、例えば酸素
の透過速度はQ。7、窒素はQN2、水素はりII、、
−酸化炭素は’ COと表示しである。
Note that the gas permeation rate and selection 1/1 shown in the example. was determined using one method (pressure method) for AST, and the permeated components were separated, detected, and quantified using a gas chromatograph.The measurement temperature was 100°C in all cases. For the permeation rate of each force in the medium, Q is used.For example, the permeation rate of oxygen is Q.7, nitrogen is QN2, hydrogen beam II,...
- Carbon oxide is designated as 'CO.

単位はCIll 3/帽)12・・X(・ぐ・cml1
8である。また選択性は各ガスのiλ過i1度の比を・
とっており、酸素と窒素の選択性α。1、/N、はQ。
The unit is CIll 3/hat) 12...X(・gu・cml1)
It is 8. In addition, selectivity is determined by the ratio of iλ past i1 degrees of each gas.
and selectivity α between oxygen and nitrogen. 1, /N, is Q.

/QN、の値である。更1こプラズマ小作膜厚は、重合
による試料の’iJ!′II’t、増加と重合14\の
比重を測定し、そこから計算でめている。
/QN, is the value. Furthermore, the plasma film thickness is determined by the 'iJ!' of the sample due to polymerization. 'II't, Measure the specific gravity of the increase and polymerization 14\, and calculate it from there.

実施例1 フエ二ノリ。(ヲ含むシリコーンゴム(F−レ・シリコ
ーン社製 S ly: 95 !−+ u)をトルエン
で溶解し、加硫剤を添加し”(2<1 ’、iTj:i
’14.%18液を調製した。この溶液をドクターナイ
フを用い′C・1′均孔径0.22/lo+を有する四
弗化エチレン+44脂多孔質膜(住友電気工業社製、7
0ロポアl”r’−(122)l:にフーティングした
後、I ’7 (1’Cで10分間−次加硫を行い、次
いで20 (1’Cで4時間二人加硫を行って架橋硬化
させ、厚さ25μ「1)のシロキサン化合物薄膜を形成
させた。得られた積層膜のガス選択透過性は次の通りで
あった。
Example 1 Feninori. Silicone rubber (manufactured by F-Le Silicone Co., Ltd., S ly: 95!-+ u) containing (2<1', iTj:i) was dissolved in toluene and a vulcanizing agent was added.
'14. %18 liquid was prepared. Using a doctor knife, add this solution to a polytetrafluoroethylene + 44-lipid porous membrane (manufactured by Sumitomo Electric Industries, Ltd., manufactured by Sumitomo Electric Industries, Ltd.,
After footing at 0 Roporel"r'-(122)l:, second vulcanization was performed at I'7 (1'C) for 10 minutes, and then two-person vulcanization was performed at 20 (1'C) for 4 hours. This was crosslinked and cured to form a siloxane compound thin film with a thickness of 25 μm.The gas selective permeability of the obtained laminated film was as follows.

Q02= 1.]X]lヒ5 QN、= 5,2xlo−’ Ql12= 2.8X10’−’ Qco:= ’ノ、() 刈 ()−60、/N2:2
・1 a+1./CO” 3・1 この積層膜を用い、プラズマ処理のみ(操作1)行なっ
た場合、プラズマ重合のみ(操作2)行なった場合、プ
ラズマ処理とプラズマ重合(操作?()を行なった場合
の3つの操作を行い、それぞれの141作の時に11j
られた膜の特性を表−1にまとめた。
Q02=1. ]
・1 a+1. /CO" 3.1 Using this laminated film, when only plasma treatment (operation 1) is performed, when only plasma polymerization (operation 2) is performed, and when plasma treatment and plasma polymerization (operation? () are performed) 11j at the time of each 141 work.
The properties of the obtained membranes are summarized in Table 1.

(操作1) 積層膜をペルジャー型プラズマ装置中に置た、装置をQ
 、 t) OI Lorrに減圧後、アルゴンカ゛ス
を供給し、操作圧力0.3 Lorr、電力3 fl 
fl Wの条件で5分間プラズマ処理を行なった。
(Operation 1) Place the laminated film in a Pelger type plasma device and set the device to Q.
, t) After reducing the pressure to OI Lorr, supply argon gas, operating pressure 0.3 Lorr, power 3 fl
Plasma treatment was performed for 5 minutes under flW conditions.

(1呈1’+: 2 ) (l【層膜を同じプラズマ装置中に置き、装置を0゜(
月+ 1 Lorrに減圧後、メチルトリビニルシラン
を5+nl/mi1+で゛供給、操作圧力0 、2 !
−) torr、電力2()W、反応時間20分の重合
操作を行なった。
(1 presentation 1'+: 2)
After reducing the pressure to +1 Lorr, methyltrivinylsilane was supplied at 5+nl/mi1+, operating pressure 0,2!
-) torr, a power of 2 ()W, and a reaction time of 20 minutes.

得られた重合膜は(1,27μmnであった。The obtained polymer film had a thickness of (1.27 μm).

(操作3) 操作1と同じ操作を行なった後、アルゴンカ゛スの供給
を停止し、11■び装置内を0.001 Lorrに減
圧後、メチルトリビニルシランを5 +n l / m
団で供給し、操作圧力+1.251.orr、電力20
 W、反応時間20分の重合操作を?j“なった3、得
られた重合膜厚はf’、l 、 26μm11であった
(Operation 3) After performing the same operation as Operation 1, stop the supply of argon gas, reduce the pressure inside the apparatus to 0.001 Lorr, and then add methyltrivinylsilane to 5 +nl/m.
Supplied in batches, operating pressure +1.251. orr, power 20
W, polymerization operation with reaction time of 20 minutes? The thickness of the polymerized film obtained was f', l, 26 μm11.

これに示すように、プラズマ処理とそれに続くプラズマ
重合を行う、二とで、最も[憂れたガス選択透過(幾能
を有する複合膜力田られることかわかる。
As shown in this figure, it can be seen that by performing plasma treatment and subsequent plasma polymerization, a composite membrane having the most selective gas permeation function can be produced.

実施例2〜j3 ポリジメチルシロキザンーカーボネートブロック共重合
体(チッソ(抹)販売)を塩化メチレンで溶解し、);
重W+、%溶液を調製した。この溶液を1tクターナイ
フを用いて、実施例1と同じく70ロボ7FT”022
j二にコーティングした後、50℃雰囲気で溶剤を揮発
させ、厚さ11μIl+の薄膜を積層すせた。1:jら
れた積層膜をプラズマ装置に設置し、系内を(1、fl
 f、l 、11.orrに減圧後、水素ガスを0(給
、IM ft由力fl 、 21.orr 、電力10
 (l Wの条1′1で′:3分間プラスマ処理を行な
った。次に水素力スの0(給を停止1.上山び装置内を
(1、f) (11Lorrに減圧後、表−2に示[各
種のシランモノマーを01給しプラズマ重合操作を行な
った。i、!f、られた複合膜は表−;)に示す如く、
優れたガス選択透過性を有していた。
Examples 2 to j3 Polydimethylsiloxane-carbonate block copolymer (sold by Chisso) was dissolved in methylene chloride;
A weight W+,% solution was prepared. Using a 1 ton knife, apply this solution to 70 Robo 7FT”022 in the same manner as in Example 1.
After coating the second layer, the solvent was evaporated in an atmosphere of 50° C., and a thin film having a thickness of 11 μl+ was laminated. The laminated film prepared by 1:j is installed in a plasma device, and the system is heated to
f, l, 11. After reducing the pressure to orr, hydrogen gas was supplied to 0 (supply, IM ft free force fl, 21.orr, power 10
(1) Plasma treatment was carried out for 3 minutes on row 1'1 of W. Next, the hydrogen supply was stopped. As shown in Table 2, various silane monomers were supplied and plasma polymerization was performed.
It had excellent gas selective permeability.

[発明の効果] 本発明の力゛ス選択透過性複合膜は、耐熱性、耐薬品性
、磯(戒的強度に優れた高分子支持田七に力゛ス透過性
の犬といシロキサン化合物の薄膜か積層され、かつその
薄膜の表面層がプラズマ処理されて高度な架橋構造をな
し、更にこの−ににプラズマ重合膜か堆積された複合膜
構造となっている。このプラズマ処理とプラズマ重合の
組合せにより、ガス選択透過性が極めて1憂れているば
かりでなく、耐熱性、耐薬品性、高強度を有する複合膜
となっ′Cいる。
[Effects of the Invention] The force-selective permselective composite membrane of the present invention combines a force-permeable siloxane compound with a polymer support that has excellent heat resistance, chemical resistance, and chemical strength. Thin films are laminated, and the surface layer of the thin film is plasma treated to form a highly cross-linked structure, and then a plasma polymerized film is deposited on top of this to form a composite film structure.This plasma treatment and plasma polymerization The combination results in a composite membrane that not only has extremely poor gas selective permeability, but also has heat resistance, chemical resistance, and high strength.

Claims (10)

【特許請求の範囲】[Claims] (1)高分子−多孔性支持体」二に、その表面層が非重
合性ガス(ユ)、るプラズマ処理されたシロキサン化合
物より成る薄膜が積11秘れ、その薄膜」二にプラズマ
重合膜が坩槓されていることを特徴とするガス選択透過
性複合膜。
(1) A polymer-porous support, the surface layer of which is a non-polymerizable gas, a thin film made of a plasma-treated siloxane compound, and a plasma-polymerized film. A gas selectively permeable composite membrane characterized in that it is crucible.
(2)シロキリン化合物が芳行環を含む重合体または共
重合体であることを特徴とする特N’llN!求の範囲
第1項記載の複合膜。
(2) Special N'llN! characterized in that the siloquiline compound is a polymer or copolymer containing an aromatic ring! Composite membrane according to claim 1.
(3)シロへザン化合物より成る薄膜の表面層か水素、
−酸化炭素、窒素JJよび不活性ガスのいずれか又はこ
れらの混合物によるプラズマで処理されていることを特
徴とする特許請求の範囲グロ項記載の複合膜、。
(3) the surface layer of a thin film made of a silohezane compound or hydrogen;
- A composite membrane according to claim 1, characterized in that it has been treated with plasma using any one of carbon oxide, nitrogen JJ, and an inert gas, or a mixture thereof.
(4)少くとも1測置−11のU重結合又は三重結合又
はフェニル基を含むオルガノシラン化合物がグロー放電
によりプラズマ重合されて堆積されていることを1.1
徴とする特11′1情求の範囲第1 jrj記I或の複
合膜。
(4) 1.1 that an organosilane compound containing at least 1-11 U double bonds or triple bonds or phenyl groups is deposited by plasma polymerization by glow discharge;
Characteristic Features 11'1 Scope of Interest 1st JRJ I Some Composite Films.
(5)高分子多孔性支持体が四弗化エチレン樹脂よりな
ることを特徴とする特許請求の範囲第1項記載の複合膜
(5) The composite membrane according to claim 1, wherein the polymeric porous support is made of tetrafluoroethylene resin.
(6)シロキサン化合物を含む溶液を高分j′−多孔性
支持体に塗布し、乾燥又は加熱して多孔性支持体」−に
シロキサン化合物薄膜を積層した後、!’) 1.(1
r「以下のj威圧下、非重合性ガス雰囲気でグロー放電
下に置き、」−記シロキサン化合物薄膜の表面層をプラ
ズマ処理上ついで5 Lorr以−[の減圧下、重合性
ガス雰囲気でグロー放電下に置き、−1−記プラズマ処
理されたシロキサン化合物薄膜I−にプラズマ重合膜を
堆積させることを特徴とするガス選択透過性複合膜の製
造方法。
(6) After applying a solution containing a siloxane compound to a porous support and drying or heating it, a thin film of the siloxane compound is laminated on the porous support. ') 1. (1
The surface layer of the siloxane compound thin film is plasma treated and then subjected to glow discharge in a polymerizable gas atmosphere under a reduced pressure of not more than 5 Lorr. 1. A method for producing a gas selectively permeable composite membrane, comprising: depositing a plasma polymerized membrane on the plasma-treated siloxane compound thin film I described in -1- below.
(7)シロキサン化合物が芳香環を含む重合体または共
重合体であることを特徴とする特8′1請求の範囲第6
項記載の製造方法。
(7) Claim 6 of Part 8'1, characterized in that the siloxane compound is a polymer or copolymer containing an aromatic ring.
Manufacturing method described in section.
(8)非重合性ガスに水素、−酸化炭素、窒素す3よび
不活性ガスのいずれか又はこれらの混合物を用いること
を特徴とする特i!’1ltl“1求の範囲f56項記
載の製造方法。
(8) A special feature characterized in that the non-polymerizable gas is hydrogen, carbon oxide, nitrogen or an inert gas, or a mixture thereof! '1ltl'1 range f56 manufacturing method.
(9)重合性ガスに、少くとも1個以上の二重結合又は
1屯結合又はフェニル基を含むオルガ/シラン化合物を
用いる、−とを特徴とする特許請求の範囲第6項記11
&の製造方法。
(9) The polymerizable gas is an orga/silane compound containing at least one double bond, single bond, or phenyl group.
& manufacturing method.
(10)高分子−%孔(+1支持体として四弗化エチレ
ンIAI脂よりなるん−)状又はフィルム状多孔質体を
用いることを1・11徴とする1、旨′1請求の範囲第
6項記載の製造方法。
(10) Features 1 and 11 include the use of a porous material in the form of a polymer with % pores (+1 made of tetrafluoroethylene IAI resin as a support) or in the form of a film. The manufacturing method described in Section 6.
JP18320083A 1983-10-03 1983-10-03 Permeselective composite membrane for gas and its preparation Granted JPS6075320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18320083A JPS6075320A (en) 1983-10-03 1983-10-03 Permeselective composite membrane for gas and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18320083A JPS6075320A (en) 1983-10-03 1983-10-03 Permeselective composite membrane for gas and its preparation

Publications (2)

Publication Number Publication Date
JPS6075320A true JPS6075320A (en) 1985-04-27
JPH038808B2 JPH038808B2 (en) 1991-02-07

Family

ID=16131516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18320083A Granted JPS6075320A (en) 1983-10-03 1983-10-03 Permeselective composite membrane for gas and its preparation

Country Status (1)

Country Link
JP (1) JPS6075320A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
US4732841A (en) * 1986-03-24 1988-03-22 Fairchild Semiconductor Corporation Tri-level resist process for fine resolution photolithography
WO2023186615A1 (en) * 2022-03-29 2023-10-05 Fujifilm Manufacturing Europe Bv Gas separation membranes
WO2023186616A1 (en) * 2022-03-29 2023-10-05 Fujifilm Manufacturing Europe Bv Gas separation membranes
EP4357008A1 (en) 2022-10-20 2024-04-24 Seiko Epson Corporation Gas separation membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730528A (en) * 1980-07-30 1982-02-18 Toyota Central Res & Dev Lab Inc Vapor-separating member
JPS5781805A (en) * 1980-11-11 1982-05-22 Sumitomo Electric Ind Ltd Gas selective permeable composite membrane and its production
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730528A (en) * 1980-07-30 1982-02-18 Toyota Central Res & Dev Lab Inc Vapor-separating member
JPS5781805A (en) * 1980-11-11 1982-05-22 Sumitomo Electric Ind Ltd Gas selective permeable composite membrane and its production
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
US4732841A (en) * 1986-03-24 1988-03-22 Fairchild Semiconductor Corporation Tri-level resist process for fine resolution photolithography
WO2023186615A1 (en) * 2022-03-29 2023-10-05 Fujifilm Manufacturing Europe Bv Gas separation membranes
WO2023186616A1 (en) * 2022-03-29 2023-10-05 Fujifilm Manufacturing Europe Bv Gas separation membranes
EP4357008A1 (en) 2022-10-20 2024-04-24 Seiko Epson Corporation Gas separation membrane

Also Published As

Publication number Publication date
JPH038808B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
Kramer et al. Low temperature plasma for the preparation of separation membranes
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US3657113A (en) Separating fluids with selective membranes
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
Bell et al. A study of the performance and chemical characteristics of composite reverse osmosis membranes prepared by plasma polymerization of allylamine
Kashiwagi et al. Separation of ethanol from ethanol/water mixtures by plasma-polymerized membranes from silicone compounds
Sakata et al. Plasma polymerized membranes and gas permeability. II
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS5924845B2 (en) Method for manufacturing gas selective permeability composite membrane
JPS6075320A (en) Permeselective composite membrane for gas and its preparation
Le Roux et al. Gas transport properties of surface fluorinated poly (vinyltrimethylsilane) films and composite membranes
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
Klta et al. Preparation of plasma-polymerized membranes from I-(trimethylsilyl)-I-propyne and gas permeability through the membranes
JPS586207A (en) Production of gas permselective composite membrane
Hollahan et al. Some experimental parameters affecting performance of composite reverse osmosis membranes produced by plasma polymerization
Lin et al. Improvement of oxygen/nitrogen permselectivity of poly [1-(trimethylsilyl)-1-propyne] membrane by plasma polymerization
Oh et al. Gas permeation through poly (dimethylsiloxane)-plasma polymer composite membranes
JPH0262294B2 (en)
JPH0387B2 (en)
JPS61153105A (en) Manufacture of gas permselective composite membrane
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
JPH0453575B2 (en)
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
JPS61149210A (en) Preparation of gas permselective composite membrane