JPS61103521A - Selective permeable compound film for gas and its preparation - Google Patents

Selective permeable compound film for gas and its preparation

Info

Publication number
JPS61103521A
JPS61103521A JP59226476A JP22647684A JPS61103521A JP S61103521 A JPS61103521 A JP S61103521A JP 59226476 A JP59226476 A JP 59226476A JP 22647684 A JP22647684 A JP 22647684A JP S61103521 A JPS61103521 A JP S61103521A
Authority
JP
Japan
Prior art keywords
thin film
gas
film
plasma polymer
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59226476A
Other languages
Japanese (ja)
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Shinichi Toyooka
新一 豊岡
Katsuya Yamada
克弥 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59226476A priority Critical patent/JPS61103521A/en
Publication of JPS61103521A publication Critical patent/JPS61103521A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides

Abstract

PURPOSE:To prepare a compound film having superior selective permeability for gas, heat resistance and chemical resistance by forming a thin film of a plasma polymer on the surface of a dense layer of an asymmetric film of polyetherimide, then laminating a thin film of organosiloxane. CONSTITUTION:A polyetherimide film as expressed by the formula having asymmetric pore size distribution is used. An extremely thin film of a plasma polymer having excellent gas selective permeability is deposited on a surface layer at a denser side of the polyetherimide. By the deposition of the plasma polymer, pores having <=0.1 micron mean pore size are clogged. Preferred material for the plasma polymn. is an organosilicon compd. having N atom and that having an unsatd. bond. A thin film of organopolysiloxane is further deposited on the plasma polymer film. The film serves as a protecting film of the plasma polymer thin film.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ガス選択透過性複合膜およびその製造方法に
関し、更に詳しくは、ポリエーテルイミド非対称孔径膜
を支持体として、初めにプラズマ重合体薄膜が堆積され
、次にオルガノポリシロキサンの薄膜が積層されてなる
ガス選択透過性複合膜およびその製造方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a gas-selective permselective composite membrane and a method for producing the same, and more specifically, it relates to a gas selectively permeable composite membrane and a method for producing the same. The present invention relates to a gas selectively permeable composite membrane in which a thin film is deposited and then a thin film of organopolysiloxane is laminated thereon, and a method for manufacturing the same.

「従来の技術と問題点」 近年ガス選択透過性膜の開発が活発である。ガス選択透
過性膜は優れたガス選択透過性(高い選択性と大きい透
過性)の他に優れた耐熱性、耐薬品性、機械的強度を有
することが、実際の使用上必要である。これら諸特性を
同一素材による単一膜で満すことは難しく、機能を分担
した複合膜が有効になる。構造式; で示される繰返し単位から成るポリエーテルイミドは、
芳香族イミドが機械的強度を、エーテル結合が優れた流
動性と加工性を与え、耐熱性、耐薬品性にも優れた素材
である。このポリエーテルイミドの非対称孔径膜あるい
は、非対称孔径膜の緻密な構造を有する側の表面層にプ
ラズマ重合体等の重合体薄膜を積層させて成る複合膜が
優れたガス選択透過性膜になることが特開昭59−11
5738に記載されている。
"Conventional technology and problems" In recent years, gas selective permeable membranes have been actively developed. In actual use, the gas selectively permeable membrane must have not only excellent gas selective permeability (high selectivity and high permeability) but also excellent heat resistance, chemical resistance, and mechanical strength. It is difficult to satisfy these characteristics with a single membrane made of the same material, so a composite membrane with shared functions becomes effective. Polyetherimide consisting of repeating units represented by the structural formula;
The aromatic imide provides mechanical strength, the ether bond provides excellent fluidity and processability, and the material also has excellent heat resistance and chemical resistance. This polyetherimide asymmetric pore membrane or a composite membrane made by laminating a thin polymer film such as a plasma polymer on the densely structured surface layer of the asymmetric pore membrane becomes an excellent gas selective permeability membrane. is published in Japanese Unexamined Patent Publication No. 59-11
5738.

しかしながら、その発明内容は、非対称孔径膜を   
1支持体とした複合膜化において、極めて高いガス選択
性を有するプラズマ重合体薄膜の機能を十分に引き出し
た構成を明示していない。すなわちその複合膜化におけ
る実施例では、プラズマ重合体薄膜のみを堆積した2層
複合膜、あるいは非対称孔径膜にシリコンゴム薄膜を積
層し、その上にプラズマ重合体薄膜を堆積した3層複合
膜を例示しているが、その選択性は支持体であるポリエ
ーテルイミドが有する固有の値を凌駕していない。
However, the content of the invention is that the asymmetric pore size membrane is
In forming a composite membrane using a single support, the authors have not clearly demonstrated a configuration that fully brings out the functions of a plasma polymer thin film with extremely high gas selectivity. In other words, in the examples of composite membrane formation, a two-layer composite membrane in which only a plasma polymer thin film is deposited, or a three-layer composite membrane in which a silicone rubber thin film is laminated on an asymmetric pore size membrane and a plasma polymer thin film is deposited on top of the silicon rubber thin film is laminated on an asymmetric pore diameter membrane. Although exemplified, the selectivity does not exceed the inherent value of the polyetherimide support.

プラズマ重合体は一般)ζ高度の架橋−分岐構造をとり
、優れたガス選択性を示すが、反面脆く、欠陥が入りや
すいという欠点を有する。
Plasma polymers generally have a highly cross-linked/branched structure and exhibit excellent gas selectivity, but have the disadvantage of being brittle and prone to defects.

このプラズマ重合体の特性を十分に考慮して複合膜を構
成することが重要である。
It is important to construct a composite membrane by fully considering the characteristics of this plasma polymer.

「問題点を解決するための手段」 本発明者は、上記発明の改善を鋭意、検討した結果、ポ
リエーテルイミド非対称孔径膜の緻密な構造を有する側
の表面層に初めにプラズマ重合体薄膜を堆積し、ついで
オルガノポリシロキサンの薄膜を積層した3層構造の複
合膜が、極めて優れたガス選択透過性の発現と、機械的
強度の優れた複合膜となり、更にプラズマ重合体薄膜に
窒素原子を含むオルガノシリコン化合物か、あるいは少
くとも1個の二重結合又は三重結合を含むオルガノシリ
コン化合物を用いることで、これら諸特性が一層向上さ
れることを見い出し、本発明を完成させた。
"Means for Solving the Problems" As a result of intensive study on improvements to the above-mentioned invention, the present inventor first applied a plasma polymer thin film to the surface layer of the densely structured polyetherimide asymmetric pore membrane. The three-layer composite film obtained by depositing and then laminating a thin film of organopolysiloxane becomes a composite film with extremely excellent gas selective permeability and excellent mechanical strength. The present inventors have discovered that these properties can be further improved by using an organosilicon compound containing at least one double bond or triple bond, and have completed the present invention.

「作 用」 本発明による8層構造複合膜は、ポリエーテルイミド非
対称孔径膜が支持体の役割を担う。本発明で用いるポリ
エーテルイミドは、 で示される繰り返し単位からなる重合体であって、2 
、2−bis (4−(3,4−ジカルボキシフェノオ
キシ)フェニール〕プロパン無水物とメタフェニレンジ
アミンとの縮合反応によって得られる。
"Function" In the eight-layer composite membrane according to the present invention, the polyetherimide asymmetric pore membrane serves as a support. The polyetherimide used in the present invention is a polymer consisting of repeating units represented by 2
, 2-bis (4-(3,4-dicarboxyphenoxy)phenyl)propane anhydride and metaphenylenediamine.

勿論カルボキシとフェノオキシの位置はa、a’;4 
、4’ ; 3 、4’あるいはこれらの混合物であっ
ても良く、またプロパンは−C(CH3)2−の構造が
最も好ましいものであるが、その他の CH3 −CH2−CH2−CH2−、−CH2−CH−であっ
ても良く、更にはプロパン以外の−CnHgHのうちn
=1〜8の範囲でもかまわない。
Of course, the positions of carboxy and phenoxy are a, a'; 4
, 4'; 3 , 4' or a mixture thereof, and the structure of propane is most preferably -C(CH3)2-, but other structures such as CH3 -CH2-CH2-CH2-, - It may be CH2-CH-, and furthermore, n of -CnHgH other than propane
= may be in the range of 1 to 8.

ポリエーテルイミドは、耐熱性、耐薬品性、機械的強度
に慶れ、また高いガス選択性を有するが、一方、透過性
は、や\不足している。そこで本発明は、ポリエーテル
イミドを非対称孔径膜となし、ガス透過性にも優れた支
持体としている□。
Polyetherimide has excellent heat resistance, chemical resistance, mechanical strength, and high gas selectivity, but on the other hand, permeability is somewhat lacking. Therefore, the present invention uses polyetherimide as an asymmetric pore membrane and uses it as a support with excellent gas permeability.

この非対称孔径膜の緻密な構造を有する側の表面層にガ
ス選択透過性が極めて優れたプラズマ重合体の極薄膜を
堆積させる。
An extremely thin film of plasma polymer with extremely excellent gas selective permeability is deposited on the surface layer of the densely structured side of this asymmetric pore membrane.

非対称孔径膜の平均孔径は、大きい程ガス透過性は増大
するが、−力選択性はなくなり、この上に堆積されるプ
ラズマ重合体薄膜による閉塞も難しくなる。プラズマ重
合体により十分閉塞し、その複合化により高度のガス選
択透過性を発現させるには、緻密な構造を有する側の表
面層の平均孔径が0.1μ 以下であることが好ましい
。プラズマ重合は、モノマーを蒸気、の状態で減圧下に
導入し、電場を作用させ、高速電子の非弾性衝突により
モノマーをラジカルあるいはイオン等に活性化し、逐次
結合させて高分子量化させる重合方法である。
The larger the average pore diameter of the asymmetric pore membrane, the higher the gas permeability, but the loss of force selectivity and the difficulty of clogging by the plasma polymer thin film deposited thereon. In order to sufficiently occlude with the plasma polymer and develop a high degree of gas selective permeability through its compositing, it is preferable that the average pore diameter of the surface layer on the side having a dense structure is 0.1 μm or less. Plasma polymerization is a polymerization method in which monomers are introduced in the form of vapor under reduced pressure, an electric field is applied, and the monomers are activated into radicals or ions by inelastic collisions of high-speed electrons, which are sequentially bonded to increase the molecular weight. be.

その特徴は、均質でピンホールのない極薄膜が得られる
こと、分岐構造や架橋構造νζ富む分子構造を有するこ
と、非品性であることなどである。この様な分子構造は
分子五ふσ1となって高度のガス選択性を発現し、非品
性は透過性に有利に作用し、また耐熱性、耐薬品性に優
れた薄膜となる。更にプラズマ重合体は一般に基体との
接着性が優れての大多数は、この方法で重合が可能であ
り、本発明に適用可能であるが、とりわけ窒素原子を含
むオルガノシリコン化合物と、少くとも1個以上の二重
結合又は三重結合を含むオルガノシリコン化合物が極め
て優れたガス選択透過性を与えることがわかった。一般
にオルガノシリコン化合物は重合性に富み巾広い操作条
件で良質な重合体薄膜を形成する傾向にある。一方窒素
原子はプラズマ中、比較的容易に重合体にとり込まれ、
親木性や接着性の機能に貢献する。また二重結合や三重
結合はプラズマの中で、容易に活性点となり、高度な架
橋構造を促進する。これらの理由から窒素原子を含むオ
ルガノシリコン化合物あるいは少くとも1個以上の二重
結合又は三重結合を有するオルガノシリコン化合物から
のプラズマ重合体は、ポリエーテルイミド非対称孔径膜
に強固に密着した、又高度に架橋構造の進んだ薄膜を形
成し、その結果ポリエーテルイミド固有のガス選択性を
はるかに上回る複合膜を与えるものと推定する。
Its characteristics include being able to obtain a homogeneous and pinhole-free ultrathin film, having a molecular structure rich in branched and cross-linked structures νζ, and being of poor quality. Such a molecular structure has a molecular structure of 5 and σ1, and exhibits a high degree of gas selectivity, and its low quality has an advantageous effect on permeability, and results in a thin film with excellent heat resistance and chemical resistance. Furthermore, the majority of plasma polymers that generally have excellent adhesion to substrates can be polymerized by this method and are applicable to the present invention, but in particular, organosilicon compounds containing nitrogen atoms and at least one It has been found that organosilicon compounds containing more than one double or triple bond provide extremely good gas selective permselectivity. In general, organosilicon compounds have high polymerizability and tend to form high-quality polymer thin films under a wide range of operating conditions. On the other hand, nitrogen atoms are relatively easily incorporated into polymers in plasma,
Contributes to wood-loving and adhesive functions. In addition, double and triple bonds easily become active sites in plasma, promoting a highly cross-linked structure. For these reasons, plasma polymers made from organosilicon compounds containing nitrogen atoms or having at least one double or triple bond have a strong adhesion to polyetherimide asymmetric pore membranes and highly It is presumed that this results in the formation of a thin film with an advanced cross-linked structure, resulting in a composite film with gas selectivity that far exceeds the gas selectivity inherent to polyetherimide.

窒素原子を含むオルガノシリコン化合物の具体例として
、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメ
チルアミノ)メチルシラン、ビス(ジメチルアミノ)メ
チルビニルシラン、メチルトリス(ジメチルアミノ)シ
ラン、ビス(エチルアミノ)ジメチルシラン、トリメチ
ルシリルジメチルアミン、1−トリメチルシリルイミダ
ゾールヘキサメチルジシラザン、1,1,3,3−テト
ラメチルジシラザン、1,1,3,3,5.5−ヘキサ
メチルシクロトリシラザンなどを、また少くとも1個以
上の二重結合あるいは三重結合を含むオルガノシリコン
化合物の具′体側として、トリメチルビニルシラン、ジ
メチルジビニルシラン、メチルトリビニルシラン、テト
ラビニルシラン、ジメチルビニルクロロシラン、アリル
トリメチルシラン、エチニールトリメチルシラン、ジビ
ニルテトラメチルジシロキサン、ジメチルフェニルビニ
ルシランなどを挙げることができる。
Specific examples of organosilicon compounds containing a nitrogen atom include bis(dimethylamino)dimethylsilane, bis(dimethylamino)methylsilane, bis(dimethylamino)methylvinylsilane, methyltris(dimethylamino)silane, bis(ethylamino)dimethylsilane, trimethylsilyldimethylamine, 1-trimethylsilylimidazolehexamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,1,3,3,5.5-hexamethylcyclotrisilazane, and at least one As an embodiment of an organosilicon compound containing two or more double bonds or triple bonds, trimethylvinylsilane, dimethyldivinylsilane, methyltrivinylsilane, tetravinylsilane, dimethylvinylchlorosilane, allyltrimethylsilane, ethynyltrimethylsilane, divinyltetramethyl Examples include disiloxane and dimethylphenylvinylsilane.

本発明は、これらのプラズマ重合体薄膜をポリエーテル
イミド非対称孔径膜に堆積後、更にその上にオルガノポ
リシロキサンの薄膜を積層する。本薄膜の主要な機能は
、高度のガス選択性を有するプラズマ重合体薄膜の保護
膜である。プラズマ重合体の高度な分岐−架橋構造は、
ガス選択性を高める反面、脆く可撓性に乏しいという欠
点につながる。また透過性を高めるために、プラズマ重
合体は選択機能の発現する範囲で、できるだけ薄膜化す
ることが望ましい。従い、ポリエーテルイミド非対称孔
径膜にプラズマ重合体薄膜が堆積された二層構造複合膜
は、製膜中あるいはガス選択透過性複合膜を集合しモジ
ュール化する時の取扱い中、更にはモジュールによる実
際のガス分離操作中に、微小な欠陥を発生させ易く、ガ
ス選択性能のバラツキあるいは急激な低下を招くことが
多い。
The present invention deposits these plasma polymer thin films onto a polyetherimide asymmetric pore size membrane, and then further laminates an organopolysiloxane thin film thereon. The primary function of the film is a protective coating for plasma polymer thin films with a high degree of gas selectivity. The highly branched-crosslinked structure of plasma polymers
Although it improves gas selectivity, it has the disadvantage of being brittle and lacking in flexibility. Further, in order to increase permeability, it is desirable to make the plasma polymer as thin as possible within the range where the selective function can be expressed. Therefore, a two-layer composite membrane in which a plasma polymer thin film is deposited on a polyetherimide asymmetric pore membrane can be used during film production or during handling when assembling gas-selective permeable composite membranes into modules, and even during actual processing by modules. During gas separation operations, microscopic defects are likely to occur, often leading to variations or rapid decline in gas selection performance.

プラズマ重合体薄膜の上に積層されるオルガノポリシロ
キサンは、プラズマ重合体薄膜中の微細な欠陥を密閉し
、更にその後の取扱い性を飛躍的に向上させる。オルガ
ノポリシロキサンは、耐熱性、耐薬品性に優れ、またガ
ス透過性の大きい材料であるから、これらの薄膜を積層
しても、ガス透過性は、積層前と較べ、はとんど低下す
ることがない。オルガノポリシロキサンの具体例として
、ジメチルポリシロキサンメチルビニルポリシロキサン
、メチルフェニルポリシロキサン、トリフルオロプロピ
ルメチルポリシロキサン、アミノ基やアルキルアリル基
等で変性されたポリシロキサンなトカアリ、シリコンオ
イル、シリコンゴム、シリコンオイル、あるいはシリコ
ンプライマーなどとして市販されている。
The organopolysiloxane laminated on the plasma polymer thin film seals minute defects in the plasma polymer thin film and further improves subsequent handling properties dramatically. Organopolysiloxane has excellent heat resistance and chemical resistance, and is a material with high gas permeability, so even if these thin films are laminated, the gas permeability will decrease compared to before lamination. Never. Specific examples of organopolysiloxanes include dimethylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, trifluoropropylmethylpolysiloxane, polysiloxanes modified with amino groups, alkylaryl groups, etc., silicone oil, silicone rubber, It is commercially available as silicone oil or silicone primer.

更にシロキサン構造を含む共重合体、例えばポリジメチ
ルシロキサン−5ビスフ工ノールAカーボネート共重合
体なども利用できる。
Furthermore, copolymers containing a siloxane structure, such as polydimethylsiloxane-5 bisulfonol A carbonate copolymers, can also be used.

次に本発明のガス選択透過性複合膜の製造方法について
詳述する。ポリエーテルイミド非対称孔径膜は、該樹脂
を含む溶液をフィルム状あるいは中空糸状に流延したの
ち、即ちにあるいは溶媒の一部を蒸発させたのち、主と
して非溶媒よりなる凝固浴中に浸漬してゲル化、溶媒を
十分抽出後、乾i操させて非対称孔径膜を得る。この流
延時、外気に接触した側、即ちガラス板等の平板へフィ
ルム状に流延した時は、平板に接している側の反対側が
、また中空糸状の紡糸では、外周側が緻密な構造となる
Next, the method for manufacturing the gas selectively permeable composite membrane of the present invention will be described in detail. A polyetherimide asymmetric pore membrane is produced by casting a solution containing the resin in the form of a film or hollow fibers, that is, after evaporating a portion of the solvent, and then immersing it in a coagulation bath mainly consisting of a non-solvent. After gelation and sufficient extraction of the solvent, drying is performed to obtain an asymmetric pore membrane. During this casting, the side that is in contact with the outside air, that is, when it is cast in the form of a film onto a flat plate such as a glass plate, the side opposite to the side that is in contact with the flat plate will have a dense structure, and when spinning hollow fibers, the outer peripheral side will have a dense structure. .

ポリエーテルイミドの良溶媒は、メチレンクロライド、
クロロホルム等の塩素系溶剤やジメチルホルムアミド、
N−メチル2ピロリドンなどがあ゛す、1特にジメチル
ホルムアミド、N−メチル2ピロリドンが好適に用いら
れる。またテトラヒドロフラン等の比較的よい溶解性を
示す溶媒も一部混合して用いることができる。また多価
アルコール、無機塩等を溶液に添加し、非対称孔径膜の
孔径を調整することも出来る。これら添加剤は、一般に
膨潤剤と呼ばれる。溶液濃度は通常10重量%から40
重量%の範囲で調整される。溶液濃度が低いとガス透過
性は増大するが、平均孔径は大きくなり、機械的強度も
低下する。溶液濃度が高いと全体により緻密な構造とな
り、機械的強度も上るが、透過性は低下する。溶液は精
密−過し、十分脱泡する。次に溶液を例えばドクターナ
イフを用いてフィルム状に、又管状ノズルにより中空糸
状に流延 ゛する。流延後即ちにあるいは流延した溶液
中の溶えば水であり、メタノール、エタノールであり、
アセトンであり、あるいはこれら非溶媒に溶液調製で用
いた良溶媒を混合してなる。凝固浴組成、凝固浴温度も
また非対称孔径膜の構造、孔径に影雪を与える。
Good solvents for polyetherimide are methylene chloride,
Chlorinated solvents such as chloroform, dimethylformamide,
N-methyl-2-pyrrolidone and the like are preferably used, particularly dimethylformamide and N-methyl-2-pyrrolidone. In addition, a solvent exhibiting relatively good solubility such as tetrahydrofuran may also be used in combination. It is also possible to adjust the pore diameter of the asymmetric pore membrane by adding polyhydric alcohol, inorganic salt, etc. to the solution. These additives are commonly called swelling agents. The solution concentration is usually 10% by weight to 40% by weight.
Adjusted in weight percentage range. When the solution concentration is low, gas permeability increases, but the average pore size increases and mechanical strength also decreases. When the solution concentration is high, the overall structure becomes denser and the mechanical strength increases, but the permeability decreases. The solution is thoroughly degassed through a precision sieve. Next, the solution is cast into a film using, for example, a doctor knife or into a hollow fiber using a tubular nozzle. If dissolved after casting or in the cast solution, it is water, methanol, ethanol,
It is acetone, or it is made by mixing these non-solvents with a good solvent used in solution preparation. Coagulation bath composition and coagulation bath temperature also influence the structure and pore size of asymmetric pore membranes.

ゲル化後は、膜中に残された溶媒が非溶媒と十分置換さ
れるまで、非溶媒中に浸漬し、次いでポリエーテルイミ
ドの熱変形温度以下の温度で乾燥する。次にプラズマ重
合操作について述べる。前記したポリエーテルイミド非
対称孔径膜を重合性モノマーを含む5 torr  以
下、好ましくは2 jorr以下の減圧雰囲気に置き、
グロー放電させ、非対称孔径膜の緻密な構造を有する側
の表面層にプラズマ重合体薄膜を堆積させる。重合性モ
ノマーは単独またはHe、Ar等の不活性ガス、H2,
NZ、02.Co等の非重合性ガスと共に反応系内に導
入する。グロー放電の条件は、使用するモノマー、装置
、電極の形状等により変える必要があるが、一般に放電
出力は5〜200W、放電時間は10秒〜3600秒の
間で行なわれる。他の操作条件が同じであればプラズマ
重合体の膜厚は、放電時間にほぼ比例する。放電出力は
低すぎると生成する重合体は低分子量化し、高すぎると
基体であるポリエーテルイミド非対称孔径膜を損傷する
After gelation, the film is immersed in a non-solvent until the solvent remaining in the film is sufficiently replaced by the non-solvent, and then dried at a temperature below the heat distortion temperature of polyetherimide. Next, the plasma polymerization operation will be described. Place the polyetherimide asymmetric pore membrane described above in a reduced pressure atmosphere of 5 torr or less, preferably 2 jorr or less, containing a polymerizable monomer,
A glow discharge is applied to deposit a thin plasma polymer film on the surface layer of the densely structured side of the asymmetric pore membrane. The polymerizable monomer may be used alone or with an inert gas such as He or Ar, H2,
NZ, 02. It is introduced into the reaction system together with a non-polymerizable gas such as Co. The conditions for glow discharge need to be changed depending on the monomer used, the device, the shape of the electrode, etc., but generally the discharge output is 5 to 200 W and the discharge time is 10 seconds to 3600 seconds. Other operating conditions being the same, the plasma polymer film thickness is approximately proportional to the discharge time. If the discharge output is too low, the resulting polymer will have a low molecular weight, and if it is too high, it will damage the polyetherimide asymmetric pore membrane that is the base.

プラズマ重合体薄膜を堆積後、次にオルガノポリシロキ
サンの薄膜を積層する。溶媒で希釈したオルガノポリシ
ロキサン溶液に、必要であれば加硫剤を添加し、浸漬、
スプレー、ロール、ナイフコーティング等によりプラズ
マ重合体薄膜を堆積したポリエーテルイミド非対称孔径
膜へ塗布する。
After depositing the plasma polymer film, a thin organopolysiloxane film is then laminated. If necessary, add a vulcanizing agent to the organopolysiloxane solution diluted with a solvent, immerse it,
A thin plasma polymer film is applied to the deposited polyetherimide asymmetric pore membrane by spraying, roll, knife coating, etc.

続いて乾燥又は加硫して硬化させ、オルガノポリシロキ
サン薄膜を形成する。薄膜の厚さは、50μ以下、好し
くけ20μ以下になる様、溶液濃度、塗布厚さを調整す
る。またここで用いる溶媒は、ポリエーテルイミドを溶
解あるいは膨潤させないものが好ましく、例えばアルコ
ール類、フレオンが好適に用いられる。
Subsequently, it is dried or cured by vulcanization to form an organopolysiloxane thin film. The solution concentration and coating thickness are adjusted so that the thickness of the thin film is 50 μm or less, preferably 20 μm or less. Further, the solvent used here is preferably one that does not dissolve or swell the polyetherimide, and for example, alcohols and Freon are preferably used.

以下本発明を実施例によって説明する。なお実施例で示
すガス透過速度並びにガス選択性は、ASTM方式(圧
力法ンに基づき透過成分をガスクロマトグラフにより分
離、検出し定量を行うことによって求めた。ガス透過速
度の単位はα3(STP) 7cm2−5 e(−CI
!LHJlであり、ガス選択性は、各ガスの透過速度の
比である。
The present invention will be explained below with reference to Examples. The gas permeation rate and gas selectivity shown in the examples were determined by separating and detecting permeated components using a gas chromatograph and quantifying them based on the ASTM method (pressure method).The unit of gas permeation rate is α3 (STP). 7cm2-5 e(-CI
! LHJl, and gas selectivity is the ratio of the permeation rates of each gas.

また測定は80゛Cの雰囲気中で行なった。Further, the measurement was carried out in an atmosphere of 80°C.

実施例1゜ ポリエーテルイミド(ULTEM ;エンジニアリング
プラスチック(株〕社販売)をN−メチル2ピロリドン
シー溶解し、25重量%溶液を調製した。
Example 1 Polyetherimide (ULTEM, sold by Engineering Plastics Co., Ltd.) was dissolved in N-methyl 2-pyrrolidone to prepare a 25% by weight solution.

この溶液を平滑なガラス板上にドクターナイフで厚さ3
00μに流延し、即ちにガラス板ごと蒸留水に浸漬、膜
が凝固剥離した後、6時間水洗し、続いて110℃1時
間加熱乾燥して厚さ約150μの非対称孔径膜を得た。
Spread this solution onto a smooth glass plate to a thickness of 3 cm using a doctor knife.
After the film was coagulated and peeled off, it was washed with water for 6 hours, and then dried by heating at 110° C. for 1 hour to obtain an asymmetric pore membrane with a thickness of about 150 μm.

この膜のヘリウムおよび窒素に対するガス透過特性を評
価した所、以下の値が得られた。
When the gas permeation properties of this membrane for helium and nitrogen were evaluated, the following values were obtained.

He 透過速度; 5.s X 1O−5N2  透過
速度;5X10−6 He/N 2選択性;12 この非対称孔径膜をペルジャー型プラズマ反応装置に入
れ、装置内を0.01torr  以下に排気後、1゜
1.3,8テトラメチルジシラザンとAr  ガスをl
:1の比率で導入し、系内圧力を0.45torr  
に   )調整しながら出力60Wで20分間グロー放
電を行い、非対称孔径膜の緻密な構造を有する側の表面
層とプラズマ重合体薄膜を堆積させた。装置は13.5
6 MHzの高周波電源をもち、平行平板の容量結合型
電極を備えている。このプラズマ重合体薄膜を堆積した
二層構造膜のガス透過特性は以下の通りであった。
He permeation rate; 5. s Tetramethyldisilazane and Ar gas
:1 ratio, and the system pressure was 0.45 torr.
) Glow discharge was performed for 20 minutes at an output of 60 W while adjusting the temperature to deposit the surface layer on the densely structured side of the asymmetric pore membrane and the plasma polymer thin film. The device is 13.5
It has a 6 MHz high frequency power source and is equipped with parallel plate capacitively coupled electrodes. The gas permeation characteristics of the two-layer structure film deposited with this plasma polymer thin film were as follows.

He 透過速度; 1.20 X 1O−5N2 透過
速度;  6  Xl0−8He//′NQ選択性;2
00 次にこの二層構造膜に二液混合型液状シリコーンゴム(
SE6721.  )−レーシリコーン(株ン社製)の
フレオン5重量%溶液をスプレーコーティングした後、
膜を垂直に立て、余分な溶液を取り除き、120 ’C
で加熱硬化させて薄膜を形成した。製膜後断面の電子顕
微鏡観察により、この薄膜厚さは、15μであることが
確認された。このポリエーテルイミド非対称孔径膜にプ
ラズマ重合体薄膜が堆積され、ついでシリコーンゴム薄
膜が積層された三層構造膜のガス透過特性は以下の通り
であった。
He permeation rate; 1.20 X 1O-5N2 permeation rate; 6 Xl0-8He//'NQ selectivity; 2
00 Next, a two-component mixed liquid silicone rubber (
SE6721. ) - After spray coating with a 5% by weight Freon solution of Ray Silicone (manufactured by Co., Ltd.),
Stand the membrane vertically, remove excess solution, and incubate at 120'C.
A thin film was formed by heating and curing. Electron microscopic observation of the cross section after film formation confirmed that the thickness of this thin film was 15 μm. The gas permeation properties of this three-layer membrane, in which a plasma polymer thin film was deposited on this polyetherimide asymmetric pore membrane and then a silicone rubber thin film was laminated thereon, were as follows.

He 透過速度; 1.15 X 1O−5N2 透過
速度;  4  Xl0−8He7’N 2選択性;2
88 実施例2゜ ポリエーテルイミドをジメチルホルムアミドに溶解し、
30重量%溶液を調製し、実施例1と同一の手順にて、
厚さ175μの非対称孔径膜を得た。
He permeation rate; 1.15 X 1O-5N2 permeation rate; 4 Xl0-8He7'N 2 selectivity; 2
88 Example 2゜Polyetherimide was dissolved in dimethylformamide,
A 30% by weight solution was prepared, and following the same procedure as in Example 1,
An asymmetric pore membrane with a thickness of 175μ was obtained.

そのガス透過特性は、以下の通りであった。Its gas permeation properties were as follows.

He 透過速度; 2.4 X 1O−5N2 透過速
度;6X10−7 He4選択性;40 この非対称孔径膜の緻密な構造を有する側の表面層に実
施例1と同一の手順にて、プラズマ重合体薄膜とオルガ
ノポリシロキサン薄膜をこの順位で積層した。プラズマ
重合は、モノマーにビス(ジメチルアミノ)メチルシラ
ン、共存ガスにN2  ガスを用い圧力0.38tor
r、放電出力40Wで15分間反応を行なった。
He permeation rate; 2.4 The thin film and organopolysiloxane thin film were laminated in this order. Plasma polymerization uses bis(dimethylamino)methylsilane as a monomer and N2 gas as a coexisting gas at a pressure of 0.38 torr.
r, the reaction was carried out for 15 minutes at a discharge output of 40W.

またオルガノポリシロキサン薄膜は、シリコンプライマ
ー(ME151;東芝シリコーン(株)社製)をt−ブ
タノールで希釈し、塗布乾燥することで膜厚2μの膜を
形成した。これにより得られた三層構造複合膜のガス透
過特性は以下の通りであった。
The organopolysiloxane thin film was formed by diluting a silicone primer (ME151; manufactured by Toshiba Silicone Co., Ltd.) with t-butanol and coating and drying to form a film with a thickness of 2 μm. The gas permeation properties of the three-layer composite membrane thus obtained were as follows.

He 透過速度、 7,4 x IP’N2  透過速
度;2XlO−8 He/’N2選択性;370 実施例3、 実施例1と同一の手順で製膜した非対称孔径膜の緻密な
構造を有する側の表面層に以下の条件でプラズマ重合体
薄膜とオルガノポリシロキサン薄膜をこの順位で積層し
た。プラズマ重合条件は、メチルトリビニルシランとN
2  ガスヲ5 : 1の比率で供給し、系内圧力0.
50torr、出力20W、反応時間15分であった。
He permeation rate, 7.4 A plasma polymer thin film and an organopolysiloxane thin film were laminated in this order on the surface layer under the following conditions. The plasma polymerization conditions were methyltrivinylsilane and N
2 Gas is supplied at a ratio of 5:1, and the system pressure is 0.
The temperature was 50 torr, the output was 20 W, and the reaction time was 15 minutes.

またオルガノポリシロキサン薄膜情、実施例1と同じ二
液混合型液状シリコーンゴムのt−ブタノール6重量%
溶液を浸漬塗布し、余分な溶液を除去後、120℃、3
0分間加熱して製膜した。得られた三層構造膜のガス透
過特性は以下の通りであった。
In addition, regarding the organopolysiloxane thin film, 6% by weight of t-butanol was added to the same two-component liquid silicone rubber as in Example 1.
After applying the solution by dip coating and removing excess solution, 120℃, 3
A film was formed by heating for 0 minutes. The gas permeation properties of the obtained three-layer membrane were as follows.

He 透過速度; 1.3 X 1O−5N2 透過速
度;6xlO−8 He/1’J2選択性;217 「本発明の効果」 本発明によるガス選択透過性複合膜とその製造方法は、
それ自身比較的高いガス選択性を有するポリエーテルイ
ミドを支持体素材に用い、その非対称孔径膜の緻密な構
造を有する表面層にプラズマ重合体薄膜を堆積させるこ
とで、優れたガス選択透過性を発現せしめ、さらにその
上にオルガノポリシロキサン薄膜を積層させることで、
一層高く安定したガス選択透過性を示す複合膜を与える
He permeation rate; 1.3 x 1O-5N2 permeation rate; 6xlO-8 He/1'J2 selectivity; 217 "Effects of the present invention" The gas selectively permeable composite membrane and its manufacturing method according to the present invention are as follows:
By using polyetherimide as the support material, which itself has relatively high gas selectivity, and depositing a plasma polymer thin film on the densely structured surface layer of the asymmetric pore membrane, excellent gas selective permeability can be achieved. By developing it and then layering a thin organopolysiloxane film on top of it,
A composite membrane exhibiting higher and more stable gas selective permeability is provided.

特にプラズマ重合体薄膜を窒素原子を含むオルガノシリ
コ、ン化合物又は少くとも1個の2型詰合又は3型詰合
を含むオルガノシリコン化合物で行うことにより極めて
高いガス選択性を有する耐熱性、耐薬品性、機械的強度
にも優れたガス選択透過性複合膜を与えることができる
In particular, by forming the plasma polymer thin film with an organosilicon compound containing nitrogen atoms or an organosilicon compound containing at least one 2-type or 3-type packing, heat resistance and resistance properties with extremely high gas selectivity can be achieved. A gas selectively permeable composite membrane with excellent chemical properties and mechanical strength can be provided.

Claims (6)

【特許請求の範囲】[Claims] (1)構造式: ▲数式、化学式、表等があります▼ で示される繰り返し単位を有するポリエーテルイミドか
ら成る非対称孔径膜を支持体とし、その緻密な構造を有
する側の表面層にグロー放電によるプラズマ重合体薄膜
、次にオルガノポリシロキサンの薄膜が積層されて成る
ことを特徴とするガス選択透過性複合膜。
(1) Structural formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ An asymmetric pore membrane made of polyetherimide having the repeating unit shown by is used as a support, and the surface layer on the side with a dense structure is coated with glow discharge. A gas selectively permeable composite membrane characterized by laminating a plasma polymer thin film and then an organopolysiloxane thin film.
(2)グロー放電によるプラズマ重合体薄膜が窒素原子
を含むオルガノシリコン化合物より成ることを特徴とす
る特許請求の範囲第1項記載のガス選択透過性複合膜。
(2) The gas selectively permeable composite membrane according to claim 1, wherein the plasma polymer thin film produced by glow discharge is made of an organosilicon compound containing nitrogen atoms.
(3)グロー放電によるプラズマ重合体薄膜が少くとも
1個の二重結合又は三重結合を含むオルガノシリコン化
合物より成ることを特徴とする特許請求の範囲第1項記
載のガス選択透過性複合膜。
(3) The gas selectively permeable composite membrane according to claim 1, wherein the plasma polymer thin film produced by glow discharge is made of an organosilicon compound containing at least one double bond or triple bond.
(4)特許請求の範囲第1項記載のガス選択透過性複合
膜において構造式; ▲数式、化学式、表等があります▼ で示される繰返し単位から成るポリエーテルイミドと、
溶媒および必要があれば膨潤剤を含んで成る溶液を製膜
し凝固剤と接触させ、溶媒を除去し、乾燥させて非対称
孔径膜を得た後、該非対称孔径膜を重合性モノマーを含
む5torr以下の減圧雰囲気中に置き、グロー放電さ
せ、該非対称孔径膜の緻密な構造を有する側の表面層に
プラズマ重合体薄膜を堆積、次いでオルガノポリシロキ
サンに溶媒および必要があれば、加硫剤を含んで成る溶
液を塗布し、乾燥又は加硫して硬化させることを特徴と
するガス選択透過性複合膜の製造方法。
(4) In the gas selectively permeable composite membrane according to claim 1, a polyetherimide consisting of a repeating unit represented by the structural formula;
A solution comprising a solvent and, if necessary, a swelling agent is formed into a membrane, contacted with a coagulant, the solvent removed, and dried to obtain an asymmetric pore membrane, which is then heated at 5 Torr containing a polymerizable monomer. A thin plasma polymer film is deposited on the surface layer of the densely structured side of the asymmetric pore membrane by placing it in a reduced pressure atmosphere and causing a glow discharge, then the organopolysiloxane is coated with a solvent and, if necessary, a vulcanizing agent. 1. A method for producing a gas selectively permeable composite membrane, comprising applying a solution comprising the above-mentioned gas and curing it by drying or vulcanization.
(5)窒素原子を含むオルガノシリコン化合物をモノマ
ーとして、グロー放電によりプラズマ重合することを特
徴とする特許請求の範囲第4項記載のガス選択透過性複
合膜の製造方法。
(5) A method for producing a gas selectively permeable composite membrane according to claim 4, characterized in that plasma polymerization is performed by glow discharge using an organosilicon compound containing a nitrogen atom as a monomer.
(6)少くとも1個の二重結合又は三重結合を含むオル
ガノシリコン化合物をモノマーとして、グロー放電によ
りプラズマ重合することを特徴とする特許請求の範囲第
4項記載のガス選択透過性複合膜の製造方法。
(6) A gas selectively permeable composite membrane according to claim 4, characterized in that an organosilicon compound containing at least one double bond or triple bond is used as a monomer and plasma polymerized by glow discharge. Production method.
JP59226476A 1984-10-26 1984-10-26 Selective permeable compound film for gas and its preparation Pending JPS61103521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59226476A JPS61103521A (en) 1984-10-26 1984-10-26 Selective permeable compound film for gas and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226476A JPS61103521A (en) 1984-10-26 1984-10-26 Selective permeable compound film for gas and its preparation

Publications (1)

Publication Number Publication Date
JPS61103521A true JPS61103521A (en) 1986-05-22

Family

ID=16845694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226476A Pending JPS61103521A (en) 1984-10-26 1984-10-26 Selective permeable compound film for gas and its preparation

Country Status (1)

Country Link
JP (1) JPS61103521A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897092A (en) * 1989-02-27 1990-01-30 Air Products And Chemicals, Inc. Polyimide membrane having improved flux
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
JPH0549882A (en) * 1991-08-23 1993-03-02 Ube Ind Ltd High selective gas separation membrane and its production
CN108744920A (en) * 2018-06-22 2018-11-06 韩志刚 A kind of vulcanization of rubber waste gas treatment process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897092A (en) * 1989-02-27 1990-01-30 Air Products And Chemicals, Inc. Polyimide membrane having improved flux
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
JPH0549882A (en) * 1991-08-23 1993-03-02 Ube Ind Ltd High selective gas separation membrane and its production
CN108744920A (en) * 2018-06-22 2018-11-06 韩志刚 A kind of vulcanization of rubber waste gas treatment process

Similar Documents

Publication Publication Date Title
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPH0324252B2 (en)
US4590098A (en) Process for producing composite membrane
JPH057749A (en) Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes
JPH0323208B2 (en)
JPS58163403A (en) Gas separation membrane
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPH0852332A (en) Composite gas separation membrane and production thereof
JPS59225703A (en) Porous membrane and preparation thereof
JPS6271503A (en) Porous hollow yarn composite membrane and its production
JPS62152507A (en) Porous hollow yarn composite membrane and its preparation
JPH051049B2 (en)
CN112646220B (en) Atomic oxygen prevention polyimide composite film and preparation method thereof
JPH0521012B2 (en)
JPS6336286B2 (en)
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
JPS6334772B2 (en)
JPS6075320A (en) Permeselective composite membrane for gas and its preparation
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
JPS62116776A (en) Production of thin film
JPS61103506A (en) Preparation of compound semipermeable membrane
JPS60139316A (en) Preparation of gas separating laminated composite membrane
JPS62286503A (en) Porous hollow yarn composite membrane and its production
JPS6254049B2 (en)
JPS6391123A (en) Porous hollow yarn composite membrane and its production