JPH051049B2 - - Google Patents

Info

Publication number
JPH051049B2
JPH051049B2 JP59229914A JP22991484A JPH051049B2 JP H051049 B2 JPH051049 B2 JP H051049B2 JP 59229914 A JP59229914 A JP 59229914A JP 22991484 A JP22991484 A JP 22991484A JP H051049 B2 JPH051049 B2 JP H051049B2
Authority
JP
Japan
Prior art keywords
membrane
gas
film
asymmetric pore
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229914A
Other languages
Japanese (ja)
Other versions
JPS61107923A (en
Inventor
Shigeru Asako
Koichi Okita
Shinichi Toyooka
Katsuya Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59229914A priority Critical patent/JPS61107923A/en
Publication of JPS61107923A publication Critical patent/JPS61107923A/en
Publication of JPH051049B2 publication Critical patent/JPH051049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、ガス選択透過性複合膜の製造方法に
関し、更に詳しくは、その表面をシランカツプリ
ング剤またはシリコンプライマーで処理、改質し
たポリエーテルイミド非対称孔径膜を支持体とし
これに初めにプラズマ重合膜を堆積し、次にオル
ガノポリシロキサンの薄膜を積層するガス選択透
過性複合膜の製造方法に関する。 「従来の技術と問題点」 近年ガス選択透過性膜の開発が活発である。ガ
ス選択透過性膜は優れたガス選択透過性(高い選
択性と大きい透過性)の他に優れた耐熱性、耐薬
品性、機械的強度を有することが、実際の使用上
必要である。これら諸特性を同一素材による単一
膜で満すことは難しく、機能を分担した複合膜が
有効になる。 構造式; で示される繰返し単位から成るポリエーテルイミ
ドは、芳香族イミドが機械的強度を、エーテル結
合が優れた流動性と加工性を与え、耐熱性、耐薬
品性にも優れた素材である。このポリエーテルイ
ミドの非対称孔径膜あるいは、非対称孔径膜の緻
密な構造を有する側の表面層をプラズマ重合膜等
の重合体薄膜を積層させて成る複合膜が優れたガ
ス選択透過性膜になることが特開昭59−115738に
記載されている。 しかしながら、その発明内容は、非対称孔径膜
を支持体とした複合膜化において、極めて高いガ
ス選択性を有するプラズマ重合膜の機能を十分に
引き出した構成、並びに製造方法を明示していな
い。すなわちその複合膜化の実施例では、プラズ
マ重合膜のみを堆積した2層複合膜の製膜方法、
あるいは非対称孔径膜にシリコンゴム薄膜を積層
し、その上にプラズマ重合膜を堆積した3層複合
膜の製膜方法を例示しているが、得られた複合膜
の選択性は、支持体であるポリエーテルイミドの
有する固有の値を凌駕していない。 プラズマ重合膜は、一般に高度の架橋・分岐構
造をとり、優れたガス選択性を示すが、反面脆く
欠陥が入りやすいという欠点を有する。またプラ
ズマ重合膜の機能は、プラズマ重合膜が堆積・成
長する基体の化学的および物理的構造に強く影響
されることが知られている。 この様なプラズマ重合膜の性質を十分考慮し
て、複合膜を作成することが、その優れたガス選
択性を引き出すために必要である。 「問題点を解決するための手段」 本発明者は、上記発明の改善を鋭意検討した結
果、ポリエーテルイミド非対称孔径膜の緻密な構
造を有する側の表面層をシランカツプリング剤又
はシリコンプライマーで処理し、改質した後、プ
ラズマ重合膜を堆積、ついでオルガノポリシロキ
サンの薄膜を積層すれば極めて優れたガス選択透
過性複合膜が得られることを見い出し本発明を完
成させた。更にプラズマ重合膜の形成には、窒素
原子を含むオルガノシリコン化合物か、あるいは
少くとも1個の二重結合又は三重結合を含むオル
ガノシリコン化合物を用いることがより好適であ
ることを見い出した。 「作用」 本発明のガス選択透過性複合膜の製造方法は、
基本的に次の4つの工程に分けられる。 (1) ポリエーテルイミド非対称孔径膜を湿式製膜
する。 (2) 該非対称孔径膜の乾燥を行うが、この時緻密
な構造を有する側の表面層にシランカツプリン
グ剤またはシリコンプライマーを含む溶液を塗
布し加熱乾燥することで表面改質する。 (3) 表面が改質された非対称孔径膜の緻密な構造
を有する側にプラズマ重合膜を堆積する。 (4) 続いてオルガノポリシロキサンを含む溶液を
塗布し、加熱硬化させて、オルガノポリシロキ
サン薄膜をプラズマ重合膜上に積層する。 以下各工程について詳述する。 工程(1)で用いるポリエーテルイミドは で示される繰り返し単位からなる重合体であつて
2,2−bis〔4−(3,4−ジカルボキシフエノ
オキシ)フエニール〕プロパン無水物とメタフエ
ニレンジアミンとの縮合反応によつて得られる。
勿論カルボキシとフエノオキシの位置は3,3′;
4,4′;3,4′あるいはこれらの混合物であつて
も良く、またプロパンは−C(CH32−の構造が
最も好ましいものであるがその他の−CH2−CH2
−CH2−,
"Industrial Application Field" The present invention relates to a method for producing a gas-selective permselective composite membrane, and more specifically to a method for supporting a polyetherimide asymmetric pore diameter membrane whose surface has been treated and modified with a silane coupling agent or a silicone primer. The present invention relates to a method for manufacturing a gas selectively permeable composite membrane, in which a plasma polymerized membrane is first deposited on the body, and then a thin film of organopolysiloxane is laminated thereon. "Conventional technology and problems" In recent years, gas selective permeable membranes have been actively developed. In actual use, the gas selectively permeable membrane must have not only excellent gas selective permeability (high selectivity and high permeability) but also excellent heat resistance, chemical resistance, and mechanical strength. It is difficult to satisfy these characteristics with a single membrane made of the same material, so a composite membrane with shared functions becomes effective. Structural formula; Polyetherimide, which is composed of repeating units represented by the following formula, is a material with aromatic imide providing mechanical strength, ether bond providing excellent fluidity and processability, and excellent heat resistance and chemical resistance. This polyetherimide asymmetric pore membrane or a composite membrane formed by laminating a thin polymer film such as a plasma polymerized membrane on the densely structured surface layer of the asymmetric pore membrane can be an excellent gas selective permeability membrane. is described in JP-A-59-115738. However, the content of the invention does not specify a structure or manufacturing method that fully brings out the functions of a plasma polymerized membrane having extremely high gas selectivity in forming a composite membrane using an asymmetric pore membrane as a support. That is, in the example of forming a composite film, a method for forming a two-layer composite film in which only a plasma polymerized film is deposited;
Alternatively, a method for forming a three-layer composite membrane in which a silicone rubber thin film is laminated on an asymmetric pore membrane and a plasma polymerized membrane is deposited thereon is exemplified, but the selectivity of the resulting composite membrane is dependent on the support It does not exceed the inherent value of polyetherimide. Plasma polymerized membranes generally have a highly crosslinked/branched structure and exhibit excellent gas selectivity, but on the other hand, they have the disadvantage of being brittle and prone to defects. Furthermore, it is known that the function of a plasma polymerized film is strongly influenced by the chemical and physical structure of the substrate on which the plasma polymerized film is deposited and grown. It is necessary to create a composite membrane with sufficient consideration to the properties of such a plasma polymerized membrane in order to bring out its excellent gas selectivity. "Means for Solving the Problems" As a result of intensive study on improvements to the above invention, the inventors of the present invention have determined that the surface layer of the polyetherimide asymmetric pore membrane on the side having a dense structure is coated with a silane coupling agent or a silicone primer. After treatment and modification, the inventors discovered that by depositing a plasma polymerized membrane and then laminating a thin film of organopolysiloxane, an extremely excellent composite membrane with gas selective permeability could be obtained, and the present invention was completed. Furthermore, it has been found that it is more suitable to use an organosilicon compound containing a nitrogen atom or an organosilicon compound containing at least one double bond or triple bond for forming a plasma polymerized film. "Function" The method for producing a gas selectively permeable composite membrane of the present invention includes:
Basically, it can be divided into the following four steps. (1) Wet-form a polyetherimide asymmetric pore membrane. (2) The asymmetric pore size membrane is dried, and at this time, a solution containing a silane coupling agent or a silicone primer is applied to the surface layer on the side having a dense structure, and the surface is modified by heating and drying. (3) Depositing a plasma polymerized membrane on the densely structured side of the surface-modified asymmetric pore membrane. (4) Subsequently, a solution containing organopolysiloxane is applied and cured by heating to laminate a thin organopolysiloxane film on the plasma polymerized film. Each step will be explained in detail below. The polyetherimide used in step (1) is A polymer consisting of repeating units represented by 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane anhydride and metaphenylenediamine obtained by a condensation reaction .
Of course, the carboxy and phenooxy positions are 3,3';
It may be 4,4';3,4' or a mixture thereof, and propane has the most preferred structure of -C( CH3 ) 2- , but other -CH2 -CH2
−CH 2 −,

【式】であつても良く、更 にはプロパン以外の−CoH2oのうちn=1〜8の
範囲でもかまわない。 このポリエーテルイミドを用いた非対称孔径膜
は、該樹脂を含む溶液をフイルムあるいは中空糸
状に流延したのち、直ちにあるいは溶媒の一部を
表面から蒸発させたのち、主として非溶媒よりな
る凝固浴中に浸漬してゲル化させることで得られ
る。 ポリエーテルイミドの良溶媒は、メチレンクロ
ライド、クロロホルム等の塩素系溶剤やジメチル
ホルムアミド、N−メチル2ピロリドンなどがあ
り、特にジメチルホルムアミド、N−メチル2ピ
ロリドンが好適に用いられる。またテトラヒドロ
フラン等の比較的よい溶解性を示す溶媒も一部混
合して用いることができる。また多価アルコー
ル、無機塩等を溶液に添加し、非対称孔径膜の孔
径を制御することもできる。これら添加剤は一般
に膨潤剤と呼ばれる。溶液濃度は通常10重量%か
ら40重量%の範囲で調製される。溶液濃度が低い
と得られる非対称孔径膜は気孔率が高くなり、ガ
ス透過性も増大するが、反面機械的強度は低下す
る。一方溶液濃度が高いと得られる非対称孔径膜
は全体により緻密な構造となり強くなるがガス透
過性が減少する。十分撹拌溶解された溶液は、精
密過し、脱泡する。 次に溶液を例えばドクターナイフを用いてフイ
ルム状に、又管状ノズルにより中空糸状に流延す
る。流延後直ちにあるいは流延した溶液中の溶媒
を表面から一部蒸発させたのち、非溶媒より主と
してなる凝固浴中に浸漬してゲル化させる。凝固
剤は例えば水であり、メタノール、エタノールで
ありアセトンであり、あるいはこれら非溶媒に溶
液調製で用いた良溶媒を一部混合してなる。凝固
浴組成、凝固浴温度もまた非対称孔径膜の構造、
孔径に影響を与える。 一般に凝固速度の遅い条件を選ぶと、得られる
非対称孔径膜は全体により緻密な構造になる傾向
がある。例えば凝固浴中の良溶媒の比率を増すと
か凝固浴温度を下げることで凝固速度を遅くする
ことができる。ゲル化後は、膜中に残された溶媒
が非溶媒と十分置換されるまで、非溶媒中に浸漬
される。脱溶媒が完了した時点で次の工程(2)に移
る。 工程(2)は、本発明を特徴づける重要な工程であ
る。即ち工程(1)で製膜された非対称孔径膜を乾燥
するに、緻密な構造を有する側の表面層にシラン
カツプリング側又はシリコンプライマーを含む溶
液を塗布し、しかる後に加熱乾燥する。もちろん
半乾燥あるいは乾燥した後に、シランカツプリン
グ剤又はシリコンプライマーを含む溶液を塗布し
再度乾燥させてもよい。 シランカツプリング剤は、アルコキシ基、クロ
ル基、アセトキシ基、アルキルアミノ基、プロペ
ノキシ基等の加水分解性基と、ビニル基、エポキ
シ基、メタクリル基、アミノ基、メルカプト基な
どの官能基を有し、表面改質剤として広く利用さ
れている。またシリコンプライマーは、有機官能
基間の反応、加水分解性基間の共加水分解反応な
どによるシランカツプリング剤の縮合物よりな
り、シランカツプリング剤と同様の効果がある
が、その違いは、シリコンプライマーがフイルム
形成能を有する点にある。 いずれにせよ、シランカツプリング剤又はシリ
コンプライマーによる非対称孔径膜表面の改質が
本工程の主眼である。 表面改質の目的は、次工程(3)のプラズマ重合膜
堆積に関連する。プラズマ重合膜の特性は、基体
の化学的、物理的性質に強く影響を受ける。 本発明者は、シランカツプリング剤又はシリコ
ンプライマーで非対称孔径膜の表面を処理した後
プラズマ重合膜を堆積すると、処理しない場合に
較べてガス選択透過機能が一段と向上することを
見い出した。その理由は明確でないが、重合初期
過程での基体表面とモノマーの吸着反応、化学反
応の差から、その界面の化学構造が変化する為と
推定する。またシリコンプライマーの場合は、非
対称孔径膜表面の孔形態あるいは平滑性などの高
次構造も変え、これもガス選択透過性に好影響を
与えていると考える。 代表的なシランカツプリング剤として、ビニル
トリエトキシシラン、ジフエニルジメトキシシラ
ン、γ−クロロプロピルトリメトキシシラン、γ
−アミノプロピルトリエトキシシラン、N−(β
−アミノエチル)−γ−アミノプロピルトリメト
キシシラン、γ−メルカプトプロピルトリメトキ
シシラン、γ−グリシドキシプロピルトリメトキ
シシラン、γ−メタクリロキシプロピルトリメト
キシシランなどがあり、またこれらの縮合物から
シリコンプライマーが得られる。 シランカツプリング剤又はシリコンプライマー
は適当な溶媒で希釈されて用いられる。もちろん
ポリエーテルイミドを溶解あるいは膨潤させる溶
媒は用いることができない。一般にアルコール類
が好適である。非対称孔径膜をシランカツプリン
グ剤又はシリコンプライマーを含む溶液で処理し
た後、加熱して乾燥又は硬化させる。この時の温
度が低いとシランカツプリング剤又はシリコンプ
ライマーの非対称孔径膜との結合が不十分とな
り、また高すぎると非対称孔径膜の多孔質構造が
変形する。一般に60℃から180℃の間で処理され
る。次の工程(3)では、ポリエーテルイミド非対称
孔径膜の改質された緻密な構造を有する側の表面
層にプラズマ重合膜が堆積される。プラズマ重合
膜は、モノマーを蒸気の状態で減圧下に導入し、
電場を作用させ、高速電子の非弾性衝突によりモ
ノマーをラジカルあるいはイオン等に活性化し、
逐次結合させて高分子量化させる重合方法であ
る。その特徴は、均質でピンホールのない極薄膜
が得られること、分岐構造や架橋構造に富む分子
構造を有すること、非晶性であることなどであ
る。この様な分子構造は分子ふるいとなつて高度
のガス選択性を発現し、非晶性は透過性に有利に
作用しまた耐熱性、耐薬品性に優れた薄膜とな
る。有機モノマーの大多数は、この方法で重合可
能であり本発明に適用可能であるが、とりわけ窒
素原子を含むオルガノシリコン化合物、または少
くとも1個以上の二重結合又は三重結合を含むオ
ルガノシリコン化合物が極めて優れたガス選択透
過性を与えることがわかつた。一般にオルガノシ
リコン化合物は重合性に富み巾広い操作条件で良
質な重合体薄膜を形成する傾向にある。一方窒素
原子はプラズマ中、比較的容易に重合体にとり込
まれ、親水性や接着性の機能も発現する。また二
重結合や三重結合は、プラズマの中で、容易に活
性点となり、高度な架橋構造を促進する。これら
の理由から窒素原子を含むオルガノシリコン化合
物あるいは少くとも1個以上の二重結合又は三重
結合を有するオルガノシリコン化合物からのプラ
ズマ重合膜は、表面改質されたポリエーテルイミ
ド非対称孔径膜に密着し、又高度に架橋構造の進
んだ薄膜を形成し、その結果ポリエーテルイミド
固有のガス選択性をはるかに上回る複合膜を与え
ることになる。プラズマ重合膜の堆積は非対称孔
径膜の表面改質された緻密な構造を有する側を、
モノマーを含む5torr以下、好ましくは2torr以下
の減圧雰囲気下にさらしグロー放電させて行う。
モノマーは単独またはHe,Ar等の不活性ガス、
H2,N2,O2,CO等の非重合性ガスと共存させ
て供給する。グロー放電の条件は、使用するモノ
マー、電極・反応管の形状等により変える必要が
あるが、一般に放電出力は5〜200W、放電時間
は10〜3600秒の間で行なわれる。他の操作条件が
同じであればプラズマ重合体の膜厚は、放電時間
にほぼ比例する。放電出力は低すぎると生成する
重合体は低分子量化し、高すぎると基体ならびに
堆積したプラズマ重合膜へエツチング作用や発熱
作用により損傷を与える。 ポリエーテルイミド非対称孔径膜の緻密な構造
を有する側の表面層をシランカツプリング剤又は
シリコンプライマーで表面改質した後、プラズマ
重合膜を堆積することで優れたガス選択透過性を
有する複合膜となるが、更に工程(4)によりこの複
合膜上にオルガノポリシロキサンの薄膜を積層す
ることで安定したガス選択透過性複合膜となる。
該オルガノポリシロキサン薄膜の主要な機能は、
高度のガス選択性を有するプラズマ重合膜の保護
膜である。プラズマ重合膜の高度な分岐・架橋構
造は、ガス選択性を高める反面、脆く可撓性に乏
しいという欠点につながる。また透過性を高める
ために、プラズマ重合膜は選択機能の発現する範
囲で、できるだけ薄膜化することが望ましい。 従い、ポリエーテルイミド非対称孔径膜の改質
された表面層にプラズマ重合膜が堆積された二層
構造複合膜は製膜中、あるいはガス選択透過性複
合膜を集合しモジユール化する時の取扱い中、更
にはモジユールによる実際のガス分離操作中に、
微小な欠陥を発生させ易く、ガス選択性能のバラ
ツキあるいは急激な低下を招くことが多い。 プラズマ重合膜の上に積層されるオルガノポリ
シロキサンは、プラズマ重合膜中の微細な欠陥を
密閉し、更にその後の取扱い性を飛躍的に向上さ
せる。 工程(4)の具体的操作は、溶媒で希釈したオルガ
ノポリシロキサン溶液に必要であれば加硫剤を添
加し、浸漬塗布、スプレーコーテイング、ロール
コーテイング、ナイフコーテイング等の方法で、
(3)までの工程で得られた複合膜に塗布し、続いて
加熱硬化させ、オルガノポリシロキサン薄膜を形
成する。オルガノポリシロキサンは耐熱性、耐薬
品性に優れ、またガス透過性の大きい材料である
から、その薄膜を積層しても複合膜のガス透過性
をほとんど低下させることがない。 オルガノポリシロキサンの具体例として、ジメ
チルポリシロキサン、メチルビニルポリシロキサ
ン、メチルフエニルポリシロキサン、トリフルオ
ロプロピルメチルポリシロキサン、アミノ基やア
ルキルアリル基等で変性されたポリシロキサンな
どがあり、シリコンオイル、シリコンゴム、シリ
コンワニスあるいはシリコンプライマーとして市
販されている。更にシロキサン構造を含む共重合
体、例えばポリジメチルシロキサン−ビスフエノ
ールAカーボネート共重合体なども利用できる。
これらオルガノポリシロキサンを適当な溶媒で溶
解し必要であれば加硫剤を添加して溶液を調製す
る。溶媒は支持体であるポリエーテルイミドを溶
解あるいは膨潤させる様な溶媒を用いることはで
きない。エチルアルコール、イソプロピルアルコ
ールt−ブチルアルコール等のアルコール類ある
いはフレオンンなどが主溶媒として用いられる。
積層厚さは、主に溶液濃度で制御する。塗布後加
熱乾燥又は加熱加硫により硬化させる。加熱温度
はポリエーテルイミドの熱変形温度以下に制限さ
れる。以下本発明を実施例によつて説明する。な
お実施例で示すガス透過速度並びにガス選択性
は、ASTM方式(圧力法)に基づき、透過成分
をガスクロマトグラフにより分離、検出し定量を
行うことによつて求めた。ガス透過速度の単位は
cm3(STP)/cm2Sec・cmHgであり、ガス選択性
は各ガスの透過速度の比である。 また測定は100℃の雰囲気で行なつた。 実施例 1 ポリエーテルイミド(ULTEM;エンジニアリ
ングプラスチツク(株)社販売)をN−メチル2ピロ
リドンに溶解し、25重量%溶液を調整した。この
溶液を平滑なガラス板上にドクターナイフで厚さ
300μに流延し即ちにガラス板ごと、温度5℃に
保たれたN−メチル2ピロリドン5%水溶液中に
浸漬した。膜が凝固剥離後、流水中で24時間の洗
滌を行なつた。得られた湿潤状態の非対称孔径膜
の緻密な構造を有する側の表面にγ−メタクリロ
キシプロピルトリメトキシシラン、イソプロピル
アルコール、蒸留水を10:80:10の重量比で混合
した溶液を塗布した後、120℃雰囲気中で乾燥す
ることにより表面改質した非対称孔径膜を得た。
この膜をベルジヤー型プラズマ反応装置に入れ、
装置内を0.01torr以下に排気後1,1,3,3テ
トラメチルジシラザンとN2ガスを2:1の比率
で導入し、系内圧力を0.45torrに調整しながら出
力60Wで15分間グロー放電を行い、非対称孔径膜
の改質された表面層にプラズマ重合膜を堆積し
た。装置は13.56MHzの高周波電源をもち、平行
平板の容量結合型電極を備えている。次にこのプ
ラズマ重合膜上に二液混合型液状シリコーンゴム
(SE6721、トーレ・シリコーン(株)社製)のフレオ
ン5重量%溶液をスプレーコーテイングした後、
膜を垂直に立て余分な溶液を取り除き、120℃加
熱硬化させて薄膜を形成した。 得られた実質的に三層構造よりなる複合膜のガ
ス選択性は以下の通りであつた。 ヘリウム透過速度QHe;1.8×10-5 窒素透過速度 QN2;6.8×10-8 He/N2選択性;265 比較例 1 湿潤状態の非対称孔径膜を乾燥するに、シラン
カツプリング剤を用いた処理を行うことなしに
120℃雰囲気中で乾燥した以外、実施例1と同じ
条件で作成した三層構造複合膜のガス選択透過性
は以下の通りであつた。 QHe;2.0×10-5 QN2;1.8×10-7 He/N2選択性;111 実施例 2 ポリエーテルイミドをジメチルホルムアミドに
溶解し、30重量%溶液を調整し、ガラス板上に厚
さ300μに流延し、1分間、30℃、50%相対湿度
の雰囲気に放置後、温度10℃の蒸留水中に浸漬
し、膜が凝固剥離後、流水中で24時間の洗滌を行
なつた。得られた湿潤状態の非対称孔径膜の緻密
な構造を有する側の表面層にシリコンプライマー
(ME151;東芝シリコーン(株)社製)の50%t−ブ
チルアルコール溶液を塗布した後、140℃雰囲気
中で乾燥することにより表面改質した非対称孔径
膜を得た。この膜に実施例1と同様一の手順でプ
ラズマ重合膜とオルガノポリシロキサンの薄膜を
形成した。 プラズマ重合条件は、メチルトリビニルシラン
とN2ガスを4:1の比率で供給し、系内圧力
0.45torr、出力30W、反応時間15分であつた。 オルガノポリシロキサン薄膜の形成は実施例1
と同じ条件で行なつた。得られた複合膜のガス選
択透過性は以下の通りであつた。 QHe;1.4×10-5 QN2;4.5×10-8 He/N2選択性;311 比較例 2 シリコンプライマーによる表面改質を行わない
こと以外は、実施例2と同じ条件で作成した複合
膜のガス選択透過性は以下の通りであつた。 QHe;2.0×10-5 QN2;2.3×10-7 He/N2選択性;87 「本発明の効果」 本発明によるガス選択透過性複合膜の製造方法
は、耐熱性、耐薬品性、機械的強度に優れ、また
比較的優れたガス選択性も有するポリエーテルイ
ミドの非対称孔径膜を支持体とし、これに高度の
ガス選択透過性を示すプラズマ重合膜と保護的機
能を有するオルガノポリシロキサン薄膜を積層し
優れたガス選択透過性複合膜を製造する上に、非
対称孔径膜の緻密な構造を有する側の表面層をシ
ランカツプリング剤又はシリコンプライマーで処
理し、その表面を改質することで、該表面とプラ
ズマ重合膜との界面特性を改善し、この結果一段
と優れたガス選択性を示すガス選択透過性複合膜
を与える。
[Formula] may be used, and furthermore, n may be in the range of 1 to 8 among -C o H 2o other than propane. This asymmetric pore membrane using polyetherimide is produced by casting a solution containing the resin into a film or hollow fiber, and then immediately or after partially evaporating the solvent from the surface, it is placed in a coagulation bath mainly consisting of a non-solvent. It can be obtained by soaking it in water and gelling it. Good solvents for polyetherimide include chlorinated solvents such as methylene chloride and chloroform, dimethylformamide, and N-methyl-2-pyrrolidone, with dimethylformamide and N-methyl-2-pyrrolidone being particularly preferred. In addition, a solvent exhibiting relatively good solubility such as tetrahydrofuran may also be used in combination. The pore size of the asymmetric pore membrane can also be controlled by adding polyhydric alcohol, inorganic salt, etc. to the solution. These additives are commonly called swelling agents. The solution concentration is usually prepared in the range of 10% to 40% by weight. When the solution concentration is low, the resulting asymmetric pore membrane has a high porosity and gas permeability, but on the other hand, its mechanical strength is decreased. On the other hand, when the solution concentration is high, the resulting asymmetric pore membrane has a denser overall structure and is stronger, but its gas permeability is reduced. The solution, which has been thoroughly stirred and dissolved, is passed through a precision sieve to defoam. Next, the solution is cast into a film using, for example, a doctor knife, or into a hollow fiber using a tubular nozzle. Immediately after casting or after partially evaporating the solvent in the cast solution from the surface, it is immersed in a coagulation bath mainly consisting of a non-solvent to form a gel. The coagulant is, for example, water, methanol, ethanol, acetone, or a mixture of these non-solvents with a portion of the good solvent used in solution preparation. The coagulation bath composition and coagulation bath temperature also affect the structure of the asymmetric pore membrane,
Affects pore size. In general, when conditions with a slow solidification rate are selected, the resulting asymmetric pore membrane tends to have a more dense overall structure. For example, the coagulation rate can be slowed down by increasing the ratio of good solvent in the coagulation bath or lowering the coagulation bath temperature. After gelation, the membrane is immersed in a non-solvent until the solvent remaining in the membrane is sufficiently replaced with the non-solvent. Once the solvent removal is completed, proceed to the next step (2). Step (2) is an important step that characterizes the present invention. That is, to dry the asymmetric pore membrane formed in step (1), a solution containing a silane coupling side or a silicone primer is applied to the surface layer on the side having a dense structure, and then dried by heating. Of course, after semi-drying or drying, a solution containing a silane coupling agent or silicone primer may be applied and dried again. Silane coupling agents have hydrolyzable groups such as alkoxy groups, chloro groups, acetoxy groups, alkylamino groups, and propenoxy groups, and functional groups such as vinyl groups, epoxy groups, methacrylic groups, amino groups, and mercapto groups. , is widely used as a surface modifier. Silicone primers are composed of condensates of silane coupling agents caused by reactions between organic functional groups, co-hydrolysis reactions between hydrolyzable groups, etc., and have the same effects as silane coupling agents, but the difference is that The silicon primer has film-forming ability. In any case, the main focus of this step is to modify the surface of the asymmetric pore membrane with the silane coupling agent or silicone primer. The purpose of surface modification is related to the next step (3), plasma polymerized film deposition. The properties of plasma polymerized films are strongly influenced by the chemical and physical properties of the substrate. The present inventors have discovered that when a plasma polymerized membrane is deposited after treating the surface of an asymmetric pore membrane with a silane coupling agent or a silicone primer, the gas selective permeation function is further improved compared to the case without treatment. The reason for this is not clear, but it is presumed that the chemical structure of the interface changes due to the difference in the adsorption reaction and chemical reaction between the substrate surface and the monomer during the initial stage of polymerization. In addition, in the case of silicon primers, the higher-order structure such as the pore morphology or smoothness of the asymmetric pore membrane surface is also changed, which is thought to have a positive effect on gas selective permeability. Typical silane coupling agents include vinyltriethoxysilane, diphenyldimethoxysilane, γ-chloropropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane.
-aminopropyltriethoxysilane, N-(β
-aminoethyl)-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and silicone A primer is obtained. The silane coupling agent or silicone primer is used after being diluted with a suitable solvent. Of course, a solvent that dissolves or swells polyetherimide cannot be used. Alcohols are generally preferred. The asymmetric pore membrane is treated with a solution containing a silane coupling agent or silicone primer and then heated to dry or cure. If the temperature at this time is low, the bonding of the silane coupling agent or silicone primer to the asymmetric pore membrane will be insufficient, and if it is too high, the porous structure of the asymmetric pore membrane will be deformed. Generally processed at temperatures between 60°C and 180°C. In the next step (3), a plasma polymerized membrane is deposited on the surface layer of the modified dense structure side of the polyetherimide asymmetric pore membrane. Plasma polymerized membranes introduce monomers in the form of vapor under reduced pressure.
Applying an electric field to activate monomers into radicals or ions through inelastic collisions of high-speed electrons,
This is a polymerization method that increases the molecular weight by sequentially bonding. Its characteristics include the ability to obtain a homogeneous, ultra-thin film without pinholes, the molecular structure rich in branched and crosslinked structures, and the fact that it is amorphous. Such a molecular structure acts as a molecular sieve and exhibits a high degree of gas selectivity, and the amorphous nature has an advantageous effect on permeability and results in a thin film with excellent heat resistance and chemical resistance. The vast majority of organic monomers can be polymerized in this way and are applicable to the present invention, but especially organosilicon compounds containing nitrogen atoms or containing at least one double or triple bond. was found to provide extremely excellent gas selective permeability. In general, organosilicon compounds have high polymerizability and tend to form high-quality polymer thin films under a wide range of operating conditions. On the other hand, nitrogen atoms are relatively easily incorporated into polymers in plasma and exhibit hydrophilic and adhesive functions. In addition, double bonds and triple bonds easily become active sites in plasma, promoting a highly cross-linked structure. For these reasons, plasma-polymerized membranes made from organosilicon compounds containing nitrogen atoms or at least one double bond or triple bond adhere to surface-modified polyetherimide asymmetric pore membranes. Also, a thin film with a highly cross-linked structure is formed, resulting in a composite film with gas selectivity that far exceeds the gas selectivity inherent to polyetherimide. Deposition of plasma-polymerized membranes results in a surface-modified, densely structured side of the asymmetric pore membrane;
Glow discharge is performed by exposing to a reduced pressure atmosphere of 5 torr or less, preferably 2 torr or less, containing a monomer.
The monomer can be used alone or with an inert gas such as He or Ar,
It is supplied in coexistence with non-polymerizable gases such as H 2 , N 2 , O 2 , and CO. The conditions for glow discharge need to be changed depending on the monomer used, the shape of the electrode and reaction tube, etc., but generally the discharge output is 5 to 200 W and the discharge time is 10 to 3600 seconds. Other operating conditions being the same, the plasma polymer film thickness is approximately proportional to the discharge time. If the discharge output is too low, the polymer produced will have a low molecular weight, and if it is too high, it will damage the substrate and the deposited plasma polymerized film due to etching and heat generation effects. After surface-modifying the densely structured surface layer of the polyetherimide asymmetric pore membrane with a silane coupling agent or silicone primer, a plasma polymerized membrane is deposited to create a composite membrane with excellent gas selective permeability. However, by further laminating a thin film of organopolysiloxane on this composite membrane in step (4), a stable gas selectively permeable composite membrane is obtained.
The main functions of the organopolysiloxane thin film are:
This is a protective film for a plasma polymerized film with a high degree of gas selectivity. Although the highly branched and crosslinked structure of plasma polymerized membranes increases gas selectivity, it leads to the disadvantage of being brittle and lacking in flexibility. Further, in order to increase permeability, it is desirable to make the plasma polymerized membrane as thin as possible within the range where the selective function can be expressed. Therefore, a two-layer composite membrane in which a plasma-polymerized membrane is deposited on a modified surface layer of a polyetherimide asymmetric pore membrane is difficult to handle during film production or when assembling gas-selective permselective membranes into modules. , and even during the actual gas separation operation using the module.
It is easy to generate minute defects, which often leads to variations or rapid decline in gas selection performance. The organopolysiloxane layered on the plasma-polymerized film seals minute defects in the plasma-polymerized film and dramatically improves subsequent handling. The specific operation of step (4) is to add a vulcanizing agent if necessary to the organopolysiloxane solution diluted with a solvent, and use methods such as dip coating, spray coating, roll coating, knife coating, etc.
It is coated on the composite film obtained in steps up to (3) and then heated and cured to form an organopolysiloxane thin film. Organopolysiloxane has excellent heat resistance and chemical resistance, and is a material with high gas permeability, so even if thin films thereof are laminated, the gas permeability of the composite membrane will hardly decrease. Specific examples of organopolysiloxanes include dimethylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, trifluoropropylmethylpolysiloxane, and polysiloxanes modified with amino groups, alkylaryl groups, etc. Silicone oil, It is commercially available as silicone rubber, silicone varnish, or silicone primer. Furthermore, copolymers containing a siloxane structure, such as polydimethylsiloxane-bisphenol A carbonate copolymers, can also be used.
A solution is prepared by dissolving these organopolysiloxanes in a suitable solvent and adding a vulcanizing agent if necessary. A solvent that dissolves or swells the polyetherimide support cannot be used. Alcohols such as ethyl alcohol, isopropyl alcohol and t-butyl alcohol, or freonne are used as the main solvent.
Lamination thickness is mainly controlled by solution concentration. After coating, it is cured by heating drying or heating vulcanization. The heating temperature is limited to below the heat distortion temperature of polyetherimide. The present invention will be explained below with reference to Examples. The gas permeation rate and gas selectivity shown in the examples were determined based on the ASTM method (pressure method) by separating and detecting permeated components using a gas chromatograph and quantifying them. The unit of gas permeation rate is
cm 3 (STP)/cm 2 Sec·cmHg, and gas selectivity is the ratio of the permeation rates of each gas. Furthermore, the measurements were conducted in an atmosphere of 100°C. Example 1 Polyetherimide (ULTEM; sold by Engineering Plastics Co., Ltd.) was dissolved in N-methyl 2-pyrrolidone to prepare a 25% by weight solution. Spread this solution onto a smooth glass plate using a doctor knife until thick.
The glass plate was cast in a 5% aqueous solution of N-methyl 2-pyrrolidone at a temperature of 5°C. After the membrane was coagulated and peeled off, it was washed in running water for 24 hours. After applying a solution of γ-methacryloxypropyltrimethoxysilane, isopropyl alcohol, and distilled water in a weight ratio of 10:80:10 to the surface of the densely structured side of the obtained wet asymmetric pore membrane. , a surface-modified asymmetric pore membrane was obtained by drying in an atmosphere of 120°C.
This film is placed in a Bergier type plasma reactor,
After evacuating the inside of the device to below 0.01 torr, 1,1,3,3 tetramethyldisilazane and N 2 gas were introduced at a ratio of 2:1, and glow was performed for 15 minutes at an output of 60 W while adjusting the system pressure to 0.45 torr. A discharge was applied to deposit a plasma polymerized film on the modified surface layer of the asymmetric pore size film. The device has a 13.56MHz high-frequency power source and is equipped with parallel plate capacitively coupled electrodes. Next, a 5% by weight Freon solution of a two-component liquid silicone rubber (SE6721, manufactured by Toray Silicone Co., Ltd.) was spray coated on the plasma polymerized film.
The film was stood vertically, excess solution was removed, and the film was cured by heating at 120°C to form a thin film. The gas selectivity of the resulting composite membrane having a substantially three-layer structure was as follows. Helium permeation rate QHe; 1.8×10 -5 Nitrogen permeation rate QN 2 ; 6.8×10 -8 He/N 2 selectivity; 265 Comparative example 1 A silane coupling agent was used to dry a wet asymmetric pore membrane. without processing
The gas selective permeability of the three-layer composite membrane prepared under the same conditions as in Example 1 except that it was dried in an atmosphere of 120°C was as follows. QHe; 2.0×10 -5 QN 2 ; 1.8×10 -7 He/N 2 selectivity; 111 Example 2 Polyetherimide was dissolved in dimethylformamide, a 30% by weight solution was prepared, and a thickness was The film was cast to a thickness of 300μ, left in an atmosphere of 30°C and 50% relative humidity for 1 minute, and then immersed in distilled water at a temperature of 10°C. After the film solidified and peeled off, it was washed under running water for 24 hours. After applying a 50% t-butyl alcohol solution of silicone primer (ME151; manufactured by Toshiba Silicone Corporation) to the surface layer of the densely structured side of the obtained asymmetric pore membrane in a wet state, it was heated in an atmosphere of 140°C. A surface-modified asymmetric pore membrane was obtained by drying with . A plasma polymerized film and an organopolysiloxane thin film were formed on this film using the same procedure as in Example 1. The plasma polymerization conditions were to supply methyltrivinylsilane and N2 gas at a ratio of 4:1, and to reduce the system pressure.
It was 0.45torr, output 30W, and reaction time 15 minutes. Example 1 Formation of organopolysiloxane thin film
It was carried out under the same conditions. The gas selective permeability of the obtained composite membrane was as follows. QHe; 1.4×10 -5 QN 2 ; 4.5×10 -8 He/N 2 selectivity; 311 Comparative example 2 Composite membrane prepared under the same conditions as in Example 2, except that surface modification with silicon primer was not performed. The gas selective permeability of was as follows. QHe; 2.0×10 -5 QN 2 ; 2.3×10 -7 He/N 2 selectivity; 87 "Effects of the present invention" The method for producing a gas selectively permeable composite membrane according to the present invention has heat resistance, chemical resistance, A polyetherimide asymmetric pore membrane with excellent mechanical strength and relatively excellent gas selectivity is used as a support, and a plasma polymerized membrane with a high degree of gas selective permeability and an organopolysiloxane with a protective function are used as a support. In addition to laminating thin films to produce a composite membrane with excellent gas selective permeability, the surface layer on the side with a dense structure of the asymmetric pore membrane is treated with a silane coupling agent or silicone primer to modify the surface. In this way, the interfacial properties between the surface and the plasma polymerized membrane are improved, and as a result, a gas selectively permeable composite membrane exhibiting even better gas selectivity is provided.

Claims (1)

【特許請求の範囲】 1 構造式; で示される繰返し単位から成るポリエーテルイミ
ドと、溶媒および必要があれば膨潤剤を含んで成
る溶液を製膜し凝固剤と接触させ、溶媒を除去し
た後、シランカツプリング剤またはシリコンプラ
イマーを含む溶液を塗布後、加熱乾燥して、緻密
な構造を有する側の表面層を改質したポリエーテ
ルイミド非対称孔径膜を得、次いで非対称孔径膜
を重合性モノマーを含む5torr以下の減圧雰囲気
中に導き、グロー放電させ、該非対称孔径膜の緻
密な構造を有する改質された表面層にプラズマ重
合膜を堆積し、続いてオルガノポリシロキサンと
溶媒および必要があれば加硫剤を含んでなる溶液
を塗布し、加熱乾燥又は加熱加硫して硬化し、オ
ルガノポリシロキサン薄膜を積層することを特徴
とするガス選択透過性複合膜の製造方法。 2 窒素原子を含むオルガノシリコン化合物を重
合性モノマーとして、グロー放電によりプラズマ
重合することを特徴とする特許請求の範囲第1項
記載のガス選択透過性複合膜の製造方法。 3 少くとも1個の二重結合又は三重結合を含む
オルガノシリコン化合物を重合性モノマーとして
グロー放電によりプラズマ重合することを特徴と
する特許請求の範囲第1項記載のガス選択透過性
複合膜の製造方法。
[Claims] 1 Structural formula; A film is formed from a solution containing a polyetherimide consisting of repeating units represented by the formula and a solvent and, if necessary, a swelling agent, and is brought into contact with a coagulant, and after removing the solvent, a film containing a silane coupling agent or a silicone primer is formed. After applying the solution, it is heated and dried to obtain a polyetherimide asymmetric pore membrane with a modified surface layer on the side having a dense structure, and then the asymmetric pore membrane is introduced into a reduced pressure atmosphere of 5 torr or less containing a polymerizable monomer. , depositing a plasma polymerized membrane on the densely structured modified surface layer of the asymmetric pore membrane by glow discharge, followed by a solution comprising an organopolysiloxane, a solvent and, if necessary, a vulcanizing agent. 1. A method for producing a gas selectively permeable composite membrane, which comprises coating the membrane, curing it by heating drying or heating vulcanization, and laminating an organopolysiloxane thin film. 2. The method for producing a gas selectively permeable composite membrane according to claim 1, characterized in that plasma polymerization is carried out by glow discharge using an organosilicon compound containing a nitrogen atom as a polymerizable monomer. 3. Production of a gas-selective permselective composite membrane according to claim 1, characterized in that an organosilicon compound containing at least one double bond or triple bond is used as a polymerizable monomer and plasma polymerized by glow discharge. Method.
JP59229914A 1984-10-30 1984-10-30 Manufacture of gas selective permeable composite membrane Granted JPS61107923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229914A JPS61107923A (en) 1984-10-30 1984-10-30 Manufacture of gas selective permeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229914A JPS61107923A (en) 1984-10-30 1984-10-30 Manufacture of gas selective permeable composite membrane

Publications (2)

Publication Number Publication Date
JPS61107923A JPS61107923A (en) 1986-05-26
JPH051049B2 true JPH051049B2 (en) 1993-01-07

Family

ID=16899715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229914A Granted JPS61107923A (en) 1984-10-30 1984-10-30 Manufacture of gas selective permeable composite membrane

Country Status (1)

Country Link
JP (1) JPS61107923A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
US5178649A (en) * 1989-12-21 1993-01-12 The Dow Chemical Company Poly(arylene ether ketimine) gas separation membranes
JP2631253B2 (en) * 1991-08-23 1997-07-16 宇部興産株式会社 Highly selective gas separation membrane and its production method
JP2671072B2 (en) * 1991-11-26 1997-10-29 宇部興産株式会社 Gas separation membrane manufacturing method
JP2009095829A (en) * 2007-09-28 2009-05-07 Orion Mach Co Ltd Water separating hollow fiber and water separating filter

Also Published As

Publication number Publication date
JPS61107923A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPH0324252B2 (en)
JPH07304887A (en) Composite membrane and its preparation
JP5209149B2 (en) Method for producing porous silicone molded body
JPS6094106A (en) Manufacture of compound membrane
JPH0323208B2 (en)
JPH051049B2 (en)
JPH0679660B2 (en) Porous hollow fiber composite membrane and method for producing the same
JPH0852332A (en) Composite gas separation membrane and production thereof
JPS59225703A (en) Porous membrane and preparation thereof
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS58180206A (en) Production of selective permeable membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JP2726471B2 (en) Anisotropic hollow fiber composite membrane
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
JPH119974A (en) Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JPS6336286B2 (en)
JPS6334772B2 (en)
JPH038808B2 (en)
JPH0698284B2 (en) Porous hollow fiber composite membrane and method for producing the same
JPS6254049B2 (en)
JPH08173778A (en) Manufacture of fluorine containing polyimide gas separating membrane
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPS6333410B2 (en)
JPH0310368B2 (en)