JPS59225703A - Porous membrane and preparation thereof - Google Patents

Porous membrane and preparation thereof

Info

Publication number
JPS59225703A
JPS59225703A JP58100075A JP10007583A JPS59225703A JP S59225703 A JPS59225703 A JP S59225703A JP 58100075 A JP58100075 A JP 58100075A JP 10007583 A JP10007583 A JP 10007583A JP S59225703 A JPS59225703 A JP S59225703A
Authority
JP
Japan
Prior art keywords
porous membrane
silicon compound
producing
porous
polydimethylsiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58100075A
Other languages
Japanese (ja)
Inventor
Katsuya Yamada
克弥 山田
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58100075A priority Critical patent/JPS59225703A/en
Publication of JPS59225703A publication Critical patent/JPS59225703A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers

Abstract

PURPOSE:To obtain a membrane having an extremely thin dense layer and good in gas separation capacity and anti-thrombotic property, by using a silicone compound comprising a block copolymer consisting of a compound having at least one aromatic ring in the main chain or side chain thereof and an organosiloxane compound. CONSTITUTION:This silicone compound is a polymer comprising a repeating unit represented by a structural formula and dissolved in dichloromethane, chloroform and carbon tetrachloride. The obtained solution is cast to form a film which is, in turn, immersed in a non-solvent, usually, water and gelled to obtain a porous membrane. As compared with a usual support obtained by the competing reaction of plasma polymerization and plasma sputtering, plasma polymerization is exclusively and preferentially generated and, therefore, the accumulation of a stable polymer membrane is enabled and crater shaped defect or crack parts are almost eliminated.

Description

【発明の詳細な説明】 本発明は、シリコン化合物多孔性膜及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon compound porous membrane and a method for manufacturing the same.

膜の基本的機能は物質分離と遮蔽であり、近年富にその
工業・医療への応用のための研究開発が盛んになってい
る。
The basic functions of membranes are substance separation and shielding, and in recent years, research and development for their industrial and medical applications has been active.

工業分野では、海水の淡水化、純水の製造、ウラン濃縮
食品の精製・濃縮をはじめ、−酸化炭素と水素による基
礎化学品合成のためのCo、H2ガス比率の調整や、燃
焼効率向上のための酸素富化システム、医療分野におい
ては、酸素富化システムや人工肺、人工腎臓、薬剤局所
投与用カプセル膜、人工血管さらには抗血栓性カテーテ
ル等極めて広範囲にわたっている。
In the industrial field, we use seawater desalination, pure water production, refining and enrichment of uranium-enriched foods, adjustment of Co and H2 gas ratios for basic chemical synthesis using carbon oxide and hydrogen, and improvement of combustion efficiency. In the medical field, oxygen enrichment systems are widely used, including oxygen enrichment systems, artificial lungs, artificial kidneys, capsule membranes for local drug administration, artificial blood vessels, and even antithrombotic catheters.

中でも有機多孔質膜の研究はUF、RO膜の研究以来急
速な発展をとげ、その社会的ニーズも工業、医療分野で
増々高まりをみせている。
Among them, research on organic porous membranes has made rapid progress since the research on UF and RO membranes, and the social needs for them are increasing in the industrial and medical fields.

これまで、代表的には酢酸セルロースなどのセルロース
系の多孔性膜、ポリスルホン等のエンジニアリングプラ
スチックの多孔性膜、アミド系の多孔性膜、ポリプロピ
レン多孔性膜、四弗化エチレン等のフッソ系多孔性膜等
を上げることができるが、いずれもガス分離膜への応用
としてはガス透過速度が低い素材群であることが問題で
あり、又5− 医療への応用では、抗血栓性の良好でないことが問題と
なっていた。そのため、に記素材を複合化するか、又は
複雑な表面処理を行なうことが不可欠であった。
Up until now, typical examples have been cellulose-based porous membranes such as cellulose acetate, engineering plastic porous membranes such as polysulfone, amide-based porous membranes, polypropylene porous membranes, and fluorine-based porous membranes such as tetrafluoroethylene. However, the problem with these materials is that they have low gas permeation rates when applied to gas separation membranes, and they do not have good antithrombotic properties when used in medical applications. was a problem. Therefore, it has been essential to compose the materials mentioned above or to perform complicated surface treatments.

しかるに本発明で用いるシリコン化合物は、シリコンゴ
ム特有の高いガス透過性能と抗血栓性を備えており、可
撓性にもすぐれさらには緻密層を有繁雑な複合化や表面
処理を施すことなく、単独でもしくは簡略な表面処理を
施すだけで工業・医療分野への応用が可能な材料を得る
ことができる。
However, the silicon compound used in the present invention has high gas permeability and antithrombotic properties unique to silicone rubber, and has excellent flexibility, and furthermore, it can be formed into a dense layer without complex compounding or surface treatment. Materials that can be applied to industrial and medical fields can be obtained by applying them alone or by simply subjecting them to a simple surface treatment.

本発明で用いるシリコン化合物は、オルガノシロキサン
と、主鎖もしくは側鎖に少なくとも1個の芳香環を有す
る有機物との縮合重合によって得られ、その構造式は次
式で表わされる繰り返し構造単位を持つものである。
The silicon compound used in the present invention is obtained by condensation polymerization of organosiloxane and an organic substance having at least one aromatic ring in the main chain or side chain, and has a repeating structural unit whose structural formula is represented by the following formula: It is.

R。R.

1(2 X:主鎖もしくは側鎖に少なくとも1個の芳香環を有す
る有機基 R,、R2; 1価の官能基 m、n;自然数 本発明の特徴は、耐熱性、耐薬品性、坑飢栓性、ガス透
過性にすぐれてはいるものの自己保持性が小さく、単独
で薄膜を得ることは強度の点から難なすことにある。さ
らにガス分離性能や抗血栓性の良好な膜を得るには、多
孔性構造を形成せしめた後にグロー放電下のプラズマ重
合法で重合薄膜を堆積させる方法を採用することにより
、1μ以下の極薄厚の膜を処理して、ガス透過性に関し
ては高い透過性を維持できると同時にガス選択透過性の
大きい素材を、抗血栓性に関しては、さらに抗血栓性の
良好な素材を広い範囲から自由に選べることを見い出し
た。
1 (2 Although it has excellent starvation properties and gas permeability, it has low self-retention properties, and it is difficult to obtain a thin film by itself from the viewpoint of strength.Furthermore, it is difficult to obtain a film with good gas separation performance and antithrombotic properties. In order to achieve high gas permeability, we can process extremely thin films of less than 1 μm by forming a porous structure and then depositing a polymerized thin film using plasma polymerization under glow discharge. We have discovered that it is possible to freely select a material from a wide range of materials that can maintain its properties and at the same time have high gas selective permeability, and with regard to antithrombotic properties, materials that have good antithrombotic properties.

具体的には芳香環を主鎖又は側鎖に少なくとも1゜個有
する化合物と、オルガノシロキサン化合物とのブロック
共重合体からなるシリコン化合物はグロー放電によるプ
ラズマ雰囲気における分解が不思議な程に少なく、プラ
ズマ重合とプラズマスパッタリングとの競争反応となる
通常の支持体と比較して、専らプラズマ重合の方が優先
的に生じるため安定な重合薄膜の堆積が可能となり、結
果として支持体の解重合や水素発生に起因すると思われ
るクレータ−状の欠陥や亀裂等の部分がほとんど消滅す
る。
Specifically, a silicon compound made of a block copolymer of a compound having at least 1 degree aromatic ring in its main chain or side chain and an organosiloxane compound has a mysteriously low decomposition in a plasma atmosphere due to glow discharge, and Compared to normal supports where polymerization and plasma sputtering compete with each other, plasma polymerization occurs preferentially, making it possible to deposit stable polymeric thin films, resulting in depolymerization of the support and hydrogen generation. Most of the crater-like defects and cracks that are thought to be caused by this will disappear.

芳香環を有しない化合物として、たとえばジメチルポリ
シロキサンを支持体としてグロー放電雰囲気にさらすと
、プラズマ重合による重量増加よりもプラズマスパッタ
リングによる重量減少の方が優先して進行し、結果とし
て安定な品質の複合膜を得ることが出来難くなる。
When a compound without an aromatic ring, such as dimethylpolysiloxane, is used as a support and exposed to a glow discharge atmosphere, the weight decrease due to plasma sputtering takes precedence over the weight increase due to plasma polymerization, resulting in stable quality. It becomes difficult to obtain a composite membrane.

本発明で用いるシリコン化合物は構造式;X;主鎖もし
くは側鎖に少なくとも1個の芳香環を有する有機基 R,、R2; ]価の官能基 m、n;自然数 で示される繰り返し単位からなる重合体であってもちろ
んこれ以外のものであっても良い。
The silicon compound used in the present invention has a structural formula; Although it is a polymer, it may of course be other than this.

R,、R2は例えば−H、−CH,、−(EE> 、 
−CH= CH2゜−CH千CH−CH8,−c=cH
などがあげられる。もちろんこれ以外のものであっても
よい。
R,, R2 is, for example, -H, -CH,, -(EE>,
-CH= CH2゜-CH1,000CH-CH8, -c=cH
etc. can be mentioned. Of course, it may be other than this.

これらのシリコン化合物は、ジクロルメタン、クロロホ
ルム、四塩化炭素、レリクレン等の塩素系溶媒、ジメチ
ルアセトアミド等のアミド系溶媒、テトラヒドロフラン
等の環状エーテル、クレゾールベンゼン、トルエン等の
芳香族炭化水素系溶媒、−〇− メチルエチルケトン、アセトン等のケトン類に溶解する
。またN・メチル−2ピロリドン等の環状含窒素系溶媒
にも溶解性を示すので、溶解度の大きい溶媒と溶解度の
小さい溶媒を混合して用いることもできる。
These silicon compounds include chlorine-based solvents such as dichloromethane, chloroform, carbon tetrachloride, and reliclane, amide-based solvents such as dimethylacetamide, cyclic ethers such as tetrahydrofuran, aromatic hydrocarbon-based solvents such as cresolbenzene, toluene, etc. - Soluble in ketones such as methyl ethyl ketone and acetone. Furthermore, since it exhibits solubility in cyclic nitrogen-containing solvents such as N.methyl-2-pyrrolidone, a solvent with high solubility and a solvent with low solubility can be mixed and used.

溶液濃度、溶媒の種類、溶媒の組合せ、膨潤剤の添加や
凝固剤の種類などにより溶液の粘度を調整升・気孔率や
孔0形状・緻密層0厚みを力゛えるこ一■もできる。
It is also possible to adjust the viscosity of the solution, the porosity, the shape of the pores, and the thickness of the dense layer by adjusting the solution concentration, type of solvent, combination of solvents, addition of a swelling agent, type of coagulant, etc.

ここで言う膨潤剤とは、膜の孔形成を促進するものであ
り、必ずしも膜形成時に抽出される必要はなく多孔性膜
の1部をなす場合がある。
The swelling agent referred to herein is one that promotes the formation of pores in the membrane, and does not necessarily need to be extracted at the time of membrane formation, but may form a part of the porous membrane.

ここに上げた溶媒の中では、ジメチルア七l・アミドが
膨潤剤等の添加なしで容易に多孔性構造が得られ、特に
好ましい。
Among the above-mentioned solvents, dimethylamide is particularly preferred because it can easily form a porous structure without adding a swelling agent or the like.

更に、第2の溶媒を添加することにより孔径や気孔率を
操作することも可能である。
Furthermore, it is also possible to manipulate the pore size and porosity by adding a second solvent.

次にこれらの溶液をドクターナイフを用いて支持板上に
均一流延し、流延したのち非溶媒通常は水中もしくはエ
タノール中に浸漬してゲル化させ10− るかあるいは流延した溶液中の溶媒を一部蒸発させたの
ちにゲル化させることにより、シリコン化合物多孔性膜
を得る。勿論管状ノズルによる中空体をつくることも出
来る。
Next, these solutions are uniformly cast onto a support plate using a doctor knife, and after the casting, they are immersed in a non-solvent, usually water or ethanol, to gel. A silicon compound porous membrane is obtained by partially evaporating the solvent and then gelling it. Of course, it is also possible to create a hollow body using a tubular nozzle.

溶液濃度、溶媒の種類、膨潤剤の量、凝固剤の種類など
により多孔性膜の特性は影響をうけ、一般的に膨潤剤の
量が増える程ガスの透過性は大きくMるが、太くなりす
ぎると強度の低下や、不均一1−P: 佐を招くことがある。
The properties of porous membranes are affected by the solution concentration, type of solvent, amount of swelling agent, type of coagulant, etc. Generally, the gas permeability increases as the amount of swelling agent increases, but the membrane becomes thicker. Too much may lead to a decrease in strength and non-uniformity.

本発明では前記した多孔性膜をそのまま用いるか又はさ
らに多孔性膜の緻密層側の表面にプラズマ重合によって
薄膜を積層することで欠陥部分の補修も可能であり、ガ
ス透過特性に関しては透過速度を著しく低下させること
なく、選択透過性を上昇させることができ、又抗血栓性
に関してはより抗血栓性の良好な表面層を形成せしめる
ことが可能である。
In the present invention, it is possible to repair defective parts by using the above-mentioned porous membrane as it is or by laminating a thin film on the surface of the dense layer side of the porous membrane by plasma polymerization. It is possible to increase the permselectivity without significantly lowering it, and it is also possible to form a surface layer with better antithrombotic properties.

プラズマ重合層は1μ以下、好ましくは0.3μ以下の
厚さに堆積する。たとえば系内を5 torr以下、好
ましくは2 torr以下の減圧とし、系に非重合性ガ
スと重合性ガスの混合ガスを導入し、所定の出力、たと
えば5〜500W好ましくは20Wで系中に高周波によ
るグロー放電を行うと重合性ガスがプラズマ重合し、シ
リコン化合物多孔性膜上に薄膜として堆積する。この薄
膜の厚みは、グロー放電時間の長さまたは重合性ガスの
流量にほぼ比例して増加するので、任意の厚み、たとえ
ば1μまたは0.3μの厚みに調節することができる。
The plasma polymerized layer is deposited to a thickness of less than 1 micron, preferably less than 0.3 micron. For example, the pressure in the system is reduced to 5 torr or less, preferably 2 torr or less, a mixed gas of a non-polymerizable gas and a polymerizable gas is introduced into the system, and a high frequency wave is applied to the system at a predetermined output, for example, 5 to 500W, preferably 20W. When glow discharge is performed, the polymerizable gas undergoes plasma polymerization and is deposited as a thin film on the porous silicon compound film. Since the thickness of this thin film increases approximately in proportion to the length of glow discharge time or the flow rate of the polymerizable gas, it can be adjusted to an arbitrary thickness, for example, 1 μm or 0.3 μm.

また、グロー放電時の出力の増減によっても堆積厚みが
増減するが、これらの造膜条件は、この分野の技術に習
熟している者にとって容易に最適化できる範囲である。
The deposition thickness also increases or decreases depending on the increase or decrease in the output during glow discharge, but these film forming conditions are within a range that can be easily optimized by those familiar with the technology in this field.

いずれにしても、本発明では欠陥のない均一重合膜を上
記厚みで堆積させることが必要である。
In any case, in the present invention, it is necessary to deposit a defect-free uniform polymer film with the above-mentioned thickness.

i)・重合性ガスの一つの選択基準は、プラズマ重合−
プ 薄膜が厚さ1μまたは0.3μ以下という極薄層である
からガス分離に用いる場合分離しようとする混合ガスの
一方の成分を可及的に透過させないということであり、
人工肺、人工野臓、人工血管、カテーテル等の用途では
抗血栓性にすぐれているということである。この基準を
満すためには、エチレン、スチレン等の一般のプラズマ
重合性モノ有機シラン化合物が好ましく用いられる。
i) One selection criterion for the polymerizable gas is plasma polymerization.
Since the thin film is an extremely thin layer with a thickness of 1μ or 0.3μ or less, when used for gas separation, it does not allow one component of the mixed gas to be separated to permeate as much as possible.
It has excellent antithrombotic properties when used in artificial lungs, artificial organs, artificial blood vessels, catheters, etc. In order to satisfy this criterion, common plasma-polymerizable monoorganosilane compounds such as ethylene and styrene are preferably used.

第8級炭素含有化合物の例としては、t−ブチルアミン
等のt−ブチル化合物、4−メチル−1−ペンテンなど
のペンテン誘導体、1−オクテンなどのオクテン類、あ
るいはイソプレン等も用いるチルシラン、ヘキサメチル
ジシラザン、メチルジクロロシラン、メチルトリクロロ
シラン等のシランが挙げられる。さらに、不飽和結合を
有する有機シラン化合物、たとえばトリメチルビニルシ
ラン、ジメチルビニルクロロシラン、ビニルトリクロロ
シラン、メチルビニルジクロロシラン、メチルトリビニ
ルシラン、アリルトリメチルシラン、エサニー一−ルト
リメチルシラン等がより好ましく用いられる。
Examples of 8th-class carbon-containing compounds include t-butyl compounds such as t-butylamine, pentene derivatives such as 4-methyl-1-pentene, octenes such as 1-octene, and tylsilane, which also uses isoprene, hexamethyl Examples include silanes such as disilazane, methyldichlorosilane, and methyltrichlorosilane. Furthermore, organic silane compounds having an unsaturated bond, such as trimethylvinylsilane, dimethylvinylchlorosilane, vinyltrichlorosilane, methylvinyldichlorosilane, methyltrivinylsilane, allyltrimethylsilane, ethanyltrimethylsilane, and the like are more preferably used.

18− ガス透過特性に関する評価は、ガス透過係数の単位 P −cn? ・ty’tz2・sec −(yHHg
を用いて表され、これは素材1cPn厚さに換算したも
のである。一方、複合膜においては素材の厚みそのもの
の透過速度 Q =cm8/cm” 1see 0mHgの単位で表
わされており、10μと1μの膜厚では、透過係数は同
じ値であっても、透過速度は]0倍の差が生じる。従っ
て、実際に必要な特性は透過速度であり、膜の厚さであ
る。
18-Evaluation of gas permeability characteristics is performed using the unit of gas permeability coefficient P-cn?・ty'tz2・sec −(yHHg
It is expressed using , which is converted into a thickness of 1 cPn of material. On the other hand, in the case of a composite membrane, the permeation rate Q of the thickness of the material itself is expressed in units of 0 mHg = cm8/cm'' 1see 0 mHg. ] A difference of 0 times occurs. Therefore, the properties that are actually required are the permeation rate and the thickness of the membrane.

次にはこれを実施例によってさらに説明する。Next, this will be further explained using examples.

実施例−1゜ ポリジメチルシロキサン−ビスフェノールAカーボネー
トブロックコポリマー(PSO99;チッソ■製)20
重量部をジメチルアセトアミド80重量部に溶解せしめ
た溶液をガラス板上に300μの厚みに流延し、ガラス
板ごと蒸留水中に浸漬し、膜が凝固剥離した後2時間水
洗し、50°Cに含2時間通風乾燥して厚さ約80μの
多孔性膜を得た。得14− られた膜は表面に光沢があり、裏面は光沢がなかった。
Example-1 Polydimethylsiloxane-bisphenol A carbonate block copolymer (PSO99; manufactured by Chisso ■) 20
A solution prepared by dissolving 80 parts by weight of dimethylacetamide was cast onto a glass plate to a thickness of 300μ, and the glass plate was immersed in distilled water. After the film solidified and peeled off, it was washed with water for 2 hours, and heated to 50°C. The mixture was air-dried for 2 hours to obtain a porous membrane with a thickness of about 80 μm. Obtained 14- The obtained film had gloss on the surface and lacked gloss on the back surface.

断面の走査電子顕微鏡写真を図−1−A〜Cに示す。Scanning electron micrographs of the cross section are shown in Figures 1-A to 1-C.

気孔率を測定したところ約4.0%であった。The porosity was measured and was approximately 4.0%.

強度測定を行なったところ、 引張強度;37Kg〆一 引張伸び; 180  % 引裂強度;  11 K9/cm であった。When we measured the strength, Tensile strength: 37Kg Tensile elongation; 180% Tear strength: 11 K9/cm Met.

この多孔性膜のガス透過特性を空気を原料ガスとして評
価したところ、 QOgΦ5.5 X 10−5cm8/cm” ・se
e −(ygHHgP02 + 5.OX 10− c
m8・cry’crr? ・sec −−gα(Qo2
/QN2) + 1.8  であツタ。
When the gas permeation characteristics of this porous membrane were evaluated using air as a raw material gas, QOgΦ5.5 X 10-5cm8/cm" ・se
e −(ygHHgP02 + 5.OX 10− c
m8・cry'crr?・sec --gα(Qo2
/QN2) + 1.8 and ivy.

実施例−2 実施例−■と全(同様にし上寿たシリコン化合物多孔性
膜表面にトリメチルビニルシランヲ流速1.0 cm8
/minで系内に導入しながら、2′OWの出力で30
分間反応溶密器中グロー放電を行ない、プラズマ重合膜
を堆積させた。
Example 2 Trimethylvinylsilane was applied to the surface of the silicon compound porous membrane at a flow rate of 1.0 cm8.
/min into the system, and the output of 2'OW is 30
A plasma polymerized film was deposited by performing glow discharge in a reaction densifier for a minute.

ガス透過特性を評価したところ QO2+ 2.OX 10 ’ cm3/cm2・se
ccmHgα(QoQ/QN2 ) = 2.9 であった。
When gas permeation characteristics were evaluated, QO2+ 2. OX 10' cm3/cm2・se
ccmHgα(QoQ/QN2) = 2.9.

実施例−3 ポリジメチルシロキサン・ビスフェノールAカーボネー
トブロックコポリマー16重量部をポリカーボネー)(
S−2000;三菱ガス化学製)4重量部ヲジク四ルメ
タン80重量部に溶解セシメタ溶液を、ガラス板上に3
00μの厚みに流延し、ガラス板ごとエタノール中に浸
漬し、膜が凝固剥離した後2時間水洗し50°Cにて2
時間通風乾燥して厚さ約100μの多孔性膜を得た。
Example-3 16 parts by weight of polydimethylsiloxane/bisphenol A carbonate block copolymer was added to polycarbonate) (
S-2000 (manufactured by Mitsubishi Gas Chemical) 4 parts by weight Sesimeta solution dissolved in 80 parts by weight of tetramethane was placed on a glass plate for 3 minutes.
The glass plate was cast to a thickness of 0.00μ, immersed in ethanol together with the glass plate, and after the film solidified and peeled off, it was washed with water for 2 hours and heated at 50°C for 2 hours.
A porous membrane with a thickness of about 100 μm was obtained by ventilation drying for a period of time.

気孔率を測定したところ7%であった。When the porosity was measured, it was 7%.

強度測定を行なったところ 引張強度;  11’ 7 Ky/cm”引張伸び;2
00 % 引裂強度;  33 Ky/cm ガス透過特性は QO2申1.6 X 10−’  cm87cm2− 
see ・cmHgP02+1.6X10−8crn”
im”sec・m1gα(Qoa /QN2 ) + 
2.4であった。
Tensile strength: 11'7 Ky/cm" Tensile elongation: 2
00% Tear strength: 33 Ky/cm Gas permeability: QO2: 1.6 x 10'cm87cm2-
see ・cmHgP02+1.6X10-8crn"
im”sec・m1gα(Qoa/QN2) +
It was 2.4.

比較例−1 ポリジメチルシロキサン・ビスフェノールAカーボネー
トブロックコポリマー20重量部をジクロルメタン80
重量部に溶解せしめた溶液を、ガラス板上に300μの
厚みに流延しガラス板ごと蒸留水中に浸漬し、膜が凝固
剥離した後、2時間水洗し50°Cにて2時間通風乾燥
して厚さ約60μの透明に近い膜を得た。
Comparative Example-1 20 parts by weight of polydimethylsiloxane/bisphenol A carbonate block copolymer was mixed with 80 parts by weight of dichloromethane.
The solution dissolved in parts by weight was cast onto a glass plate to a thickness of 300 μm, and the glass plate was immersed in distilled water. After the film solidified and peeled off, it was washed with water for 2 hours and dried with ventilation at 50°C for 2 hours. A nearly transparent film with a thickness of about 60 μm was obtained.

気孔率は約1%であった。The porosity was about 1%.

ガス透過特性を評価したところ Qo2+2.8X10’   i〆→2・SeC・σH
gPog中1.7×l0−8crn8・cw/crn2
−8eC−m1gα(Q□g /QN2 ) 中2.1 であった。
When gas permeation characteristics were evaluated, Qo2+2.8X10' i〆→2・SeC・σH
1.7×l0-8crn8・cw/crn2 in gPog
-8eC-m1gα(Q□g/QN2) was 2.1.

(発明の効果) 本発明により得られたシリコン化合物多孔性膜は、従来
の多孔性膜や非対称孔径膜のもつ欠点で17− ある低ガス透過速度、抗血栓性の不良、可撓性の不足が
改善されており、ガス分離膜、液膜の支持体の他、人工
肺、人工血管、カテーテルへの適用にも好適といえる。
(Effects of the Invention) The silicon compound porous membrane obtained by the present invention has the following disadvantages of conventional porous membranes and asymmetric pore membranes: low gas permeation rate, poor antithrombotic properties, and lack of flexibility. It can be said that it is suitable for application to gas separation membranes, liquid membrane supports, artificial lungs, artificial blood vessels, and catheters.

そして、その加工工程が簡便なことからより省エネルギ
ー、省資源的な実施を可能とするものである。
Furthermore, since the processing process is simple, it is possible to carry out the process in a more energy-saving and resource-saving manner.

【図面の簡単な説明】[Brief explanation of drawings]

図−1−A−Cは、シリコン化合物多孔性膜の断面の走
査電子顕微鏡写真であり、 図−1−Aは、緻密層を有する表面付近図−1−Bは、
中央部分 図−1−Cは、裏面付近  の写真である。 倍率はいずれもXIo、000.−である。 18− A      X 10.000 B       XIo、000
Figures 1-A-C are scanning electron micrographs of a cross-section of a silicon compound porous membrane, and Figure 1-A is near the surface with a dense layer.
Center part view-1-C is a photograph of the back side. All magnifications are XIo, 000. − is. 18- A X 10.000 B XIo, 000

Claims (1)

【特許請求の範囲】 (1)多孔性膜の片側表面の緻密層の平均厚みが、8μ
以下で該多孔性膜の平均気孔率が80%以上であり、該
多孔性膜が主として構造式1X;主鎖もしくは側鎖に少
なくとも1個の芳香環を有する有機基 R1,R,i 1価の官能基 m、n;自然数 で示されるシリコン化合物からなることを特徴とする多
孔性膜。 (2)シリコン化合物が、ポリジメチルシロキサン−と
スフエノールAカーボネートブロックコポリマー、ポリ
ジメチルシロキサン−αメチルスチレンブロックコポリ
マーの中から選ばれたことを特徴とする特許請求の範囲
第1項記載の多孔性膜。 (3)特許請求の範囲第1項記載のシリコン化合物から
なる多孔性膜の片側表面の緻密層に、グロー放電による
プラズマ重合薄膜が少なくとも1層堆積されていること
を特徴とする多孔性膜。 (4)プラズマ重合薄膜が有機シラン化合物からなるこ
とを特徴とする特許請求の範囲第3項記載の多孔性膜。 (5)特許請求の範囲第1項記載のシリコン化合物から
なる多孔性膜を得るために、構造式;X;主鎖もしくは
側鎖に少なくとも1個の芳香環を有する有機基 R11R11; 1価の官能基 m、n;自然数 で示されるシリコン化合物と、溶剤および必要があれば
膨潤剤を含んで成る溶液を製膜し、凝固剤と接触させ、
溶剤を除去し、乾燥させることを特徴とする多孔性膜の
製造方法。 (6)シリコン化合物がポリジメチルシロキサン−ビス
フェノールAカーボネートブロックコポリマーもしくは
ポリジメチルシロキサン−αメチルスチレンブロックコ
ポリマーであることを特徴とする特許請求の範囲第5項
記載の多孔性膜の製造方法。 (7) i 液が、ジクロルメタン、クロロホルム、ト
リクレン、ベンゼン、トルエン、THEから選ばれた1
種もしくは2種以上の混合物を溶剤とし、かつ膨゛潤剤
を含んで成ることを特徴とする特許請求の範囲第5項記
載の多孔性膜の製造方法。 (8)溶剤がジメチルア七ドアミドであることを特徴と
する特許請求の範囲第5項記載の多孔性膜の製造方法。 (9)膨潤剤の構造式が主鎖もしくは側鎖に少なくとも
1個の芳香環を有するくり返し単位からなることを特徴
とする特許請求の範囲第5項記載の多孔性膜の製造方法
。 θ1シリコン化合物がポリジメチルシロキサン−ビスフ
ェノールAカーボネートブロックコポリマーで膨潤剤が
ポリカーボネートであることを特徴とする特許請求の範
囲第5項記載の多孔性膜の製造方法。 (11)シリコン化合物がポリジメチルシロキサン−α
メチルスチレンブロックコポリマーで膨潤剤がα−メチ
ルスチレンであることを特徴とする特許請求の範囲第5
項記載の多孔性膜の製造方法。 θの特許請求の範囲第5項の方法で得られたシリコン化
合物からなる多孔性膜の緻密層表面に0.5torr以
下の雰囲気で重合性モノマーを供給しながらグロー放電
させてプラズマ重合膜を堆積さセルことを特徴とする多
孔性膜の製造方法。 α枠重合性モノマーが有機シラン化合物であることを特
徴とする特許請求の範囲第12項記載の多孔性膜の製造
方法。
[Claims] (1) The average thickness of the dense layer on one surface of the porous membrane is 8 μm.
In the following, the average porosity of the porous membrane is 80% or more, and the porous membrane is mainly composed of a structural formula 1X; an organic group R1, R, i having at least one aromatic ring in the main chain or side chain; A porous membrane comprising a silicon compound represented by functional groups m and n; natural numbers. (2) The porous membrane according to claim 1, wherein the silicon compound is selected from polydimethylsiloxane and sphenol A carbonate block copolymers and polydimethylsiloxane-α-methylstyrene block copolymers. . (3) A porous film comprising at least one plasma polymerized thin film formed by glow discharge deposited on the dense layer on one surface of the porous film made of a silicon compound according to claim 1. (4) The porous film according to claim 3, wherein the plasma polymerized thin film is made of an organic silane compound. (5) In order to obtain a porous film made of a silicon compound according to claim 1, structural formula; Functional groups m, n; forming a film of a solution containing a silicon compound represented by a natural number, a solvent and, if necessary, a swelling agent, and contacting it with a coagulant,
A method for producing a porous membrane, characterized by removing a solvent and drying it. (6) The method for producing a porous membrane according to claim 5, wherein the silicon compound is a polydimethylsiloxane-bisphenol A carbonate block copolymer or a polydimethylsiloxane-α-methylstyrene block copolymer. (7) i The liquid was selected from dichloromethane, chloroform, trichlene, benzene, toluene, THE
6. The method for producing a porous membrane according to claim 5, which comprises using a species or a mixture of two or more species as a solvent and a swelling agent. (8) The method for producing a porous membrane according to claim 5, wherein the solvent is dimethyl amide. (9) The method for producing a porous membrane according to claim 5, wherein the structural formula of the swelling agent consists of repeating units having at least one aromatic ring in the main chain or side chain. 6. The method for producing a porous membrane according to claim 5, wherein the θ1 silicon compound is a polydimethylsiloxane-bisphenol A carbonate block copolymer and the swelling agent is polycarbonate. (11) The silicon compound is polydimethylsiloxane-α
Claim 5, characterized in that the swelling agent in the methylstyrene block copolymer is α-methylstyrene.
A method for producing a porous membrane as described in Section 1. A plasma polymerized film is deposited on the surface of a dense layer of a porous film made of a silicon compound obtained by the method of claim 5 of θ by glow discharge while supplying a polymerizable monomer in an atmosphere of 0.5 torr or less. A method for producing a porous membrane characterized by having cells. 13. The method for producing a porous membrane according to claim 12, wherein the α-frame polymerizable monomer is an organic silane compound.
JP58100075A 1983-06-03 1983-06-03 Porous membrane and preparation thereof Pending JPS59225703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100075A JPS59225703A (en) 1983-06-03 1983-06-03 Porous membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100075A JPS59225703A (en) 1983-06-03 1983-06-03 Porous membrane and preparation thereof

Publications (1)

Publication Number Publication Date
JPS59225703A true JPS59225703A (en) 1984-12-18

Family

ID=14264325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100075A Pending JPS59225703A (en) 1983-06-03 1983-06-03 Porous membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS59225703A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516169A (en) * 1999-05-01 2003-05-13 プシメデイカ・リミテツド Induced porous silicon
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
WO2011095393A1 (en) 2010-02-02 2011-08-11 Wacker Chemie Ag Method for producing porous silicon molded bodies
WO2014037197A1 (en) * 2012-09-07 2014-03-13 Wacker Chemie Ag Porous membranes made of cross-linkable silicone compositions
DE102012219544A1 (en) 2012-10-25 2014-04-30 Wacker Chemie Ag Porous membranes of crosslinked silicone compositions
DE102013203127A1 (en) 2013-02-26 2014-08-28 Wacker Chemie Ag Porous membranes of cross-linked thermoplastic silicone elastomer
DE102013203129A1 (en) 2013-02-26 2014-08-28 Wacker Chemie Ag Asymmetric porous membranes of cross-linked thermoplastic silicone elastomer
DE102013213318A1 (en) 2013-07-08 2015-01-08 Wacker Chemie Ag Asymmetric porous membranes of aldehyde-crosslinked thermoplastic silicone elastomer
US9475010B2 (en) 2008-08-22 2016-10-25 Wacker Chemie Ag Porous membranes made up of organopolysiloxane copolymers
WO2021148122A1 (en) 2020-01-23 2021-07-29 Wacker Chemie Ag Method for preparing porous siloxane moulds

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516169A (en) * 1999-05-01 2003-05-13 プシメデイカ・リミテツド Induced porous silicon
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
US9475010B2 (en) 2008-08-22 2016-10-25 Wacker Chemie Ag Porous membranes made up of organopolysiloxane copolymers
KR101434770B1 (en) * 2010-02-02 2014-08-27 와커 헤미 아게 Method for producing porous silicon molded bodies
US8629193B2 (en) 2010-02-02 2014-01-14 Wacker Chemie Ag Method for producing porous silicon molded bodies
CN102740959A (en) * 2010-02-02 2012-10-17 瓦克化学股份公司 Method for producing porous silicon molded bodies
WO2011095393A1 (en) 2010-02-02 2011-08-11 Wacker Chemie Ag Method for producing porous silicon molded bodies
WO2014037197A1 (en) * 2012-09-07 2014-03-13 Wacker Chemie Ag Porous membranes made of cross-linkable silicone compositions
DE102012215881A1 (en) 2012-09-07 2014-03-13 Wacker Chemie Ag Porous membranes of crosslinkable silicone compositions
DE102012219544A1 (en) 2012-10-25 2014-04-30 Wacker Chemie Ag Porous membranes of crosslinked silicone compositions
DE102013203127A1 (en) 2013-02-26 2014-08-28 Wacker Chemie Ag Porous membranes of cross-linked thermoplastic silicone elastomer
DE102013203129A1 (en) 2013-02-26 2014-08-28 Wacker Chemie Ag Asymmetric porous membranes of cross-linked thermoplastic silicone elastomer
WO2014131706A1 (en) 2013-02-26 2014-09-04 Wacker Chemie Ag Porous membranes made of cross-linked thermoplastic silicone elastomer
WO2014131673A1 (en) 2013-02-26 2014-09-04 Wacker Chemie Ag Asymmetrically porous membranes made of cross-linked thermoplastic silicone elastomer
DE102013213318A1 (en) 2013-07-08 2015-01-08 Wacker Chemie Ag Asymmetric porous membranes of aldehyde-crosslinked thermoplastic silicone elastomer
WO2021148122A1 (en) 2020-01-23 2021-07-29 Wacker Chemie Ag Method for preparing porous siloxane moulds

Similar Documents

Publication Publication Date Title
US4689267A (en) Composite hollow fiber
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
EP0143552A2 (en) Composite membrane and process for the production thereof
JPS59225703A (en) Porous membrane and preparation thereof
JPS59225705A (en) Composite membrane and preparation thereof
JPS6253211B2 (en)
JPS6178402A (en) Separation of organic liquid mixture
EP0112134A2 (en) Gas-selectively permeable membrane and method of forming said membrane
JPS61129008A (en) Composite membrane for separating gas and its preparation
JPS6223403A (en) Porous hollow yarn membrane and its preparation
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
KR100198198B1 (en) The method of manufacture of gas separation membrane and gas separation membrane
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS59127603A (en) Gas permselective membrane and preparation thereof
JP2001149763A (en) Semipermeable membrane and production method for semipermeable membrane
JPS6336286B2 (en)
JPS6121702A (en) Porous film and manufacture thereof
JPS59127602A (en) Gas permselective membrane and preparation thereof
JPS6391123A (en) Porous hollow yarn composite membrane and its production
EP0264229A2 (en) Process for preparing a polyimide membrane
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JPS6333410B2 (en)
JPS61107922A (en) Composite membrane for gas separation
CN114749036A (en) Hollow fiber heterogeneous membrane and preparation method and application thereof
JPS6297625A (en) Gas permselective membrane and its preparation