JPH01258724A - Production of gas separation membrane - Google Patents

Production of gas separation membrane

Info

Publication number
JPH01258724A
JPH01258724A JP8588588A JP8588588A JPH01258724A JP H01258724 A JPH01258724 A JP H01258724A JP 8588588 A JP8588588 A JP 8588588A JP 8588588 A JP8588588 A JP 8588588A JP H01258724 A JPH01258724 A JP H01258724A
Authority
JP
Japan
Prior art keywords
water
base body
gas separation
separation membrane
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8588588A
Other languages
Japanese (ja)
Inventor
Tasuke Sawada
太助 沢田
Shigeru Ryuzaki
粒崎 繁
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8588588A priority Critical patent/JPH01258724A/en
Publication of JPH01258724A publication Critical patent/JPH01258724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a thin and uniform gas separation membrane having high pressure resistance by impregnating water into an inorganic porous base body, removing then surface water, coating a soln. of a high molecular material in a water-insoluble org. solvent, evaporating the org. solvent, then removing residual water in the base body by drying. CONSTITUTION:Water is impregnated into the inorganic porous base body and the water on the surface of the base body is then removed. The soln. of the high molecular material in the water-insoluble org. solvent is applied to the surface of the base body. The gas separation membrane is then formed by evaporating the org. solvent, and the water remaining in pores of the base body is removed by drying. By this method, the soln. of the high molecular material does not diffuse into pores of the base body where water is remaining, since the soln. is insoluble in water, so a uniform thin film is formed on the surface of the base body. Moreover, since the base body is constituted of an inorganic material, a separation film resistant to a large pressure drop is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体の分離濃縮をするための気体分離膜の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a gas separation membrane for separating and concentrating gases.

従来の技術 近年、有機高分子膜を用いた気体分離膜が空気中より酸
素を効率よく安価に濃縮できることから、燃焼機器や汚
泥処理設備、健康機器、医療機器などの分野での応用が
期待されている。また、混合冷媒を使用した冷凍サイク
ルにおいて、混合冷媒濃度を任意に変えることができる
ならば、効率のよい冷凍サイクルを構成することができ
るようになる。
Conventional technology In recent years, gas separation membranes using organic polymer membranes have been able to efficiently and inexpensively concentrate oxygen from the air, and are expected to be used in fields such as combustion equipment, sludge treatment equipment, health equipment, and medical equipment. ing. Furthermore, in a refrigeration cycle using a mixed refrigerant, if the mixed refrigerant concentration can be changed arbitrarily, an efficient refrigeration cycle can be constructed.

一般に、均質な膜における気体の透過量は、次の関係式
で表される。
Generally, the amount of gas permeation through a homogeneous membrane is expressed by the following relational expression.

ただし q、:気体iの透過量(cc)PI:気体透過
係数(cc−cm / cnf ・秒・cmHg)ΔP
l:気体iの膜両面での分圧差(cm Hg )t :
透過時間(秒) A :膜面積(cnf) e :膜厚(c+u) この関係式から明らかなように、膜厚eを薄(すればす
るほど、気体の透過量を多(することができる。このよ
うな膜厚の薄い気体分離膜を得る方法のひとつとして、
水面上に溶媒に溶解した有機高分子を展開して高分子薄
膜を形成し、これを多孔質支持体に担持させるという方
法が提案されている(特開昭56−92926号公報、
特開昭58−35722号公報など)。
However, q,: permeation amount of gas i (cc) PI: gas permeability coefficient (cc-cm/cnf・sec・cmHg)ΔP
l: Partial pressure difference (cm Hg) of gas i on both sides of the membrane t:
Permeation time (seconds) A: Membrane area (cnf) e: Membrane thickness (c+u) As is clear from this relational expression, the thinner the membrane thickness e, the greater the amount of gas permeation. .One of the methods to obtain such a thin gas separation membrane is as follows.
A method has been proposed in which organic polymers dissolved in a solvent are spread on the water surface to form a thin polymer film, and this is supported on a porous support (Japanese Patent Laid-Open No. 56-92926,
(Japanese Unexamined Patent Publication No. 58-35722, etc.).

このように膜S2を薄くするために、気体分離膜単体で
は機械的強度がないため、前述のように多孔質支持体上
に展開して、担持させるという方法が実際的である。ま
た、さらに膜厚eを薄(するために、限外濾過などに用
いられている多孔質支持体などを使用することも検討さ
れている(特公昭61−48965号公報)。
In order to make the membrane S2 thin as described above, since the gas separation membrane alone does not have mechanical strength, it is practical to spread it on a porous support and support it as described above. Furthermore, in order to further reduce the membrane thickness e, the use of porous supports used in ultrafiltration and the like is being considered (Japanese Patent Publication No. 48965/1983).

発明が解決しようとする課題 しかしながら、上述のように溶媒に溶解させた高分子溶
液を水面上に展開させて薄膜化した気体分離膜を、高分
子の多孔質支持体に担持させた気体分離複合膜は、気体
供給側と気体透過側との圧力差が大きい分離器に用いる
場合、太き圧力差によって支持体が伸びたり破損したり
する。支持体が伸びると、それに担持されている気体分
離膜も伸びたり、破損したりして、気体分離の機能を失
ってしまう。そこで、支持体を補強することも考えられ
るが、高分子多孔質支持体を伸びないようにするのは実
際上不可能といっても過言でない。また、強度の点を考
慮すれば、無機材料からなる多孔質支持体を使用するこ
とが考えられる。ところが、気体分離膜の材料たとえば
ポリ4−メチルペンテン−1やポリフマル酸エステルな
どによっては、水面展開して薄膜化した気体分離膜を直
接無機多孔質支持体に担持させることは非常に困難なこ
とである。一方、有機溶媒に溶解させた高分子溶液を無
機多孔質支持体に直接塗布すると、3膜の気体分離膜を
得ることができないという課題もあった。
Problems to be Solved by the Invention However, as described above, a gas separation composite in which a gas separation membrane formed by spreading a polymer solution dissolved in a solvent onto a water surface to form a thin film is supported on a porous polymer support. When a membrane is used in a separator with a large pressure difference between the gas supply side and the gas permeation side, the support may stretch or be damaged due to the large pressure difference. When the support stretches, the gas separation membrane supported on it also stretches or breaks, and loses its gas separation function. Therefore, reinforcing the support may be considered, but it is no exaggeration to say that it is practically impossible to prevent the porous polymer support from stretching. Furthermore, in consideration of strength, it is conceivable to use a porous support made of an inorganic material. However, depending on the material of the gas separation membrane, such as poly-4-methylpentene-1 or polyfumaric acid ester, it is extremely difficult to directly support the gas separation membrane, which has been developed into a thin film on the water surface, on an inorganic porous support. It is. On the other hand, when a polymer solution dissolved in an organic solvent is directly applied to an inorganic porous support, there is also the problem that a three-layer gas separation membrane cannot be obtained.

本発明は、上記課題にかんがみ、薄い均質膜を形成する
ことができ、しかも圧力差の大きな分離器にも適用でき
る気体分離膜の製造方法を提供しようとするものである
In view of the above problems, the present invention aims to provide a method for producing a gas separation membrane that can form a thin homogeneous membrane and can also be applied to separators with large pressure differences.

課題を解決するための手段 本発明の気体分離膜の製造方法は、無機材料からなる多
孔質支持体に水を含浸する工程と、多孔質支持体の表面
の水を除去する工程と、多孔質支持体の表面に水に不溶
の有機溶媒で溶解した高分子溶液を塗布する工程と、有
機溶媒を蒸発させ、気体分離膜を形成する工程と、多孔
質支持体の孔に残存している水を乾燥除去する工程とを
有し、この順序で実施することを特徴とする。
Means for Solving the Problems The method for producing a gas separation membrane of the present invention includes a step of impregnating a porous support made of an inorganic material with water, a step of removing water on the surface of the porous support, and a step of impregnating a porous support made of an inorganic material with water. A process of applying a polymer solution dissolved in a water-insoluble organic solvent to the surface of the support, a process of evaporating the organic solvent to form a gas separation membrane, and a process of coating the surface of the support with water remaining in the pores of the porous support. and a step of removing by drying, and is characterized by being carried out in this order.

作  用 無機材料からなる多孔質支持体に水を含浸させ、気体分
離膜を担持する面の水を除去し、水に不溶の有機溶媒で
溶解した高分子溶液を塗布すると、水を除去した面上に
は高分子溶液が載るが、水に不溶であるため、水が残存
している支持体の孔内には浸透して行かず、支持体の表
面に薄い均質な膜が形成される。しかも、支持体が無機
材料で構成されているため、大きな圧力差にも耐えるこ
とができる。
Function: A porous support made of an inorganic material is impregnated with water, the water is removed from the surface supporting the gas separation membrane, and a polymer solution dissolved in a water-insoluble organic solvent is applied. The polymer solution is placed on top, but since it is insoluble in water, water does not penetrate into the remaining pores of the support, forming a thin homogeneous film on the surface of the support. Furthermore, since the support is made of an inorganic material, it can withstand large pressure differences.

実施例 以下、本発明にかかる気体分離膜の製造方法について、
その実施例にもとづいて説明する。
Examples Below, the method for manufacturing a gas separation membrane according to the present invention,
An explanation will be given based on an example thereof.

〔実施例1〕 高純度のアルミナからなる、内径6IIn、外径10川
、表面孔径0.1μmの多孔質セラミック管の両端部分
それぞれに端から約10m+a程度までエボリシ樹脂を
塗布硬化させて、その両端部分の孔を埋めた。このセラ
ミック管を純水中に約5分間浸漬し、その孔内に水を十
分に浸透させた。そして、それから取り出し、表面の水
を濾紙でふき取ってから、セラミック管の両端に弗素樹
脂枠を詰めた。
[Example 1] Evolisi resin was applied to both ends of a porous ceramic tube made of high-purity alumina and had an inner diameter of 6IIn, an outer diameter of 10mm, and a surface pore diameter of 0.1μm, and was cured to about 10m+a from the end. Filled the holes at both ends. This ceramic tube was immersed in pure water for about 5 minutes to allow water to sufficiently penetrate into the pores. Then, it was taken out, the water on the surface was wiped off with filter paper, and fluororesin frames were packed at both ends of the ceramic tube.

そして、ジt−ブチルフマレート酢酸ビニルとの共重合
体の4%塩化nブチル溶液に浸漬し、ゆっくり引上げて
、常温で塩化nブチル溶媒を蒸発させた。さらに、約3
0分間常温に放置してから、温度60℃で10時間乾燥
させて、多孔質セラミック管一体型の気体分離膜を作製
した。
Then, it was immersed in a 4% n-butyl chloride solution of a copolymer of di-t-butyl fumarate and vinyl acetate, and slowly pulled up to evaporate the n-butyl chloride solvent at room temperature. Furthermore, about 3
After being left at room temperature for 0 minutes, it was dried at a temperature of 60° C. for 10 hours to produce a gas separation membrane integrated with a porous ceramic tube.

〔実施例2〕 実施例1における多孔質セラミック管と同じセラミック
管を使用し、実施例1と同じ手順で処理してから、ポリ
ジメチルシロキサンとポリスルホンとポリヒドロキシス
チレンとの共重合体の5%ベンゼン溶液に浸漬し、ゆっ
くり引上げた。そして、常温でベンゼン溶媒を蒸発させ
た。約30分間常温に放置してから、温度60℃で10
時間乾燥させて、多孔質セラミック管一体型の気体分離
膜を作製した。
[Example 2] The same porous ceramic tube as in Example 1 was used, treated with the same procedure as in Example 1, and then treated with 5% of a copolymer of polydimethylsiloxane, polysulfone, and polyhydroxystyrene. It was immersed in a benzene solution and slowly pulled out. Then, the benzene solvent was evaporated at room temperature. Leave it at room temperature for about 30 minutes, then heat it at 60℃ for 10 minutes.
After drying for a period of time, a gas separation membrane integrated with a porous ceramic tube was produced.

〔実施例3〕 実施例1における多孔質セラミック管と同じセラミック
管を使用し、実施例1と同じ手順で処理してから、ポリ
4−メチルペンテン−1の4%シクロヘキサン溶液に浸
漬し、ゆっ(り引上げた。
[Example 3] The same porous ceramic tube as in Example 1 was used, treated in the same manner as in Example 1, and then immersed in a 4% cyclohexane solution of poly-4-methylpentene-1 and slowly soaked. (I raised it.

そして、常温でシクロヘキサン溶媒を蒸発させた。Then, the cyclohexane solvent was evaporated at room temperature.

約30分間常温に放置してから、温度60℃で10時間
乾燥させ、多孔質セラミック管一体型の気体分離膜を作
製した。
After being left at room temperature for about 30 minutes, it was dried at a temperature of 60° C. for 10 hours to produce a gas separation membrane integrated with a porous ceramic tube.

実施例1〜3による気体分離膜を用いて冷媒の透過性能
を測定した。冷媒としては、モノクロロジフルオロメタ
ンとトリフルオロブロモメタンを使用し、供給側の圧力
を5 kg / ciとし、透過側は大気開放とした。
The refrigerant permeation performance was measured using the gas separation membranes according to Examples 1 to 3. Monochlorodifluoromethane and trifluorobromomethane were used as refrigerants, the pressure on the supply side was 5 kg/ci, and the permeate side was opened to the atmosphere.

測定結果を下表に示す。The measurement results are shown in the table below.

(以下余白) 発明の効果 以上のように、本発明は無機多孔質支持体に水を、含浸
させ、表面の水を除去した後、水に不溶の有機溶媒で溶
解した高分子溶液を塗布し、この溶媒窓を蒸発させて、
この多孔質支持体の孔に残存する水を乾燥させることに
より、圧力差の大きい分離器に利用できる薄い均質な気
体分離膜を得ることができる
(The following is a blank space) Effects of the Invention As described above, the present invention impregnates an inorganic porous support with water, removes the water on the surface, and then applies a polymer solution dissolved in a water-insoluble organic solvent. , by evaporating this solvent window,
By drying the water remaining in the pores of this porous support, a thin, homogeneous gas separation membrane that can be used in separators with large pressure differences can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 無機材料からなる多孔質支持体に水を含浸する工程と、
前記多孔質支持体の表面の水を除去する工程と、前記多
孔質支持体の表面に水に不溶の有機溶媒で溶解した高分
子溶液を塗布する工程と、前記有機溶媒を蒸発させ、気
体分離膜を形成する工程と、前記多孔質支持体の孔に残
存している水を乾燥除去する工程とを有し、前記順序で
実施することをを特徴とする気体分離膜の製造方法。
a step of impregnating a porous support made of an inorganic material with water;
a step of removing water on the surface of the porous support; a step of applying a polymer solution dissolved in a water-insoluble organic solvent to the surface of the porous support; and a step of evaporating the organic solvent to separate the gas. A method for producing a gas separation membrane, comprising a step of forming a membrane and a step of drying and removing water remaining in the pores of the porous support, which are carried out in the above order.
JP8588588A 1988-04-07 1988-04-07 Production of gas separation membrane Pending JPH01258724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8588588A JPH01258724A (en) 1988-04-07 1988-04-07 Production of gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8588588A JPH01258724A (en) 1988-04-07 1988-04-07 Production of gas separation membrane

Publications (1)

Publication Number Publication Date
JPH01258724A true JPH01258724A (en) 1989-10-16

Family

ID=13871363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8588588A Pending JPH01258724A (en) 1988-04-07 1988-04-07 Production of gas separation membrane

Country Status (1)

Country Link
JP (1) JPH01258724A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012821A (en) * 2001-07-03 2003-01-15 Japan U-Pica Co Ltd Method for producing fiber-reinforced porous cured molding having cavity
US20090280262A1 (en) * 2008-05-08 2009-11-12 Chung Yuan Christian University Method for forming composite membrane with porous coating layer and apparatus thereof
JP2011101837A (en) * 2009-11-10 2011-05-26 Fujifilm Corp Separation membrane, and method of producing the same
JP2011518661A (en) * 2008-04-08 2011-06-30 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Membrane preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012821A (en) * 2001-07-03 2003-01-15 Japan U-Pica Co Ltd Method for producing fiber-reinforced porous cured molding having cavity
JP2011518661A (en) * 2008-04-08 2011-06-30 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Membrane preparation method
US20090280262A1 (en) * 2008-05-08 2009-11-12 Chung Yuan Christian University Method for forming composite membrane with porous coating layer and apparatus thereof
JP2011101837A (en) * 2009-11-10 2011-05-26 Fujifilm Corp Separation membrane, and method of producing the same

Similar Documents

Publication Publication Date Title
US4875908A (en) Process for selectively separating gaseous mixtures containing water vapor
US4055696A (en) Porous polypropylene hollow filaments and method making the same
Chabot et al. Development of poly (vinylidene fluoride) hollow‐fiber membranes for the treatment of water/organic vapor mixtures
JPH0335971B2 (en)
JPH024419A (en) Gas dewatering
CA2670681A1 (en) Separation membrane and manufacturing process thereof
KR101035717B1 (en) A preparation of asymmetric porous PEBA membrane for composite membrane
KR900002095B1 (en) Production of porous membrane
JPS62241527A (en) Dehumidifying method for air
JPH01258724A (en) Production of gas separation membrane
JPH07275676A (en) Multiple membrane,its preparation and method of application
JPH0260370B2 (en)
US5320754A (en) Pan composite membranes
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JPS6028803A (en) Selective permeable membrane and its manufacture
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JP2890469B2 (en) Method for producing porous separation membrane
JP3102591B2 (en) Microporous membrane
JPH055529B2 (en)
JP3016451B2 (en) Microporous membrane surface treated with nylon
JPH0157604B2 (en)
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPH0256224A (en) Production of laminated hollow fiber membrane
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
JPS6110724Y2 (en)