JP2890469B2 - Method for producing porous separation membrane - Google Patents

Method for producing porous separation membrane

Info

Publication number
JP2890469B2
JP2890469B2 JP1130224A JP13022489A JP2890469B2 JP 2890469 B2 JP2890469 B2 JP 2890469B2 JP 1130224 A JP1130224 A JP 1130224A JP 13022489 A JP13022489 A JP 13022489A JP 2890469 B2 JP2890469 B2 JP 2890469B2
Authority
JP
Japan
Prior art keywords
membrane
solvent
polymer
liquid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1130224A
Other languages
Japanese (ja)
Other versions
JPH03118A (en
Inventor
雅俊 青山
英嗣 岩谷
能成 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP1130224A priority Critical patent/JP2890469B2/en
Publication of JPH03118A publication Critical patent/JPH03118A/en
Application granted granted Critical
Publication of JP2890469B2 publication Critical patent/JP2890469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、揮発性有機液体成分をその水溶液から濃
縮分離する膜分離法に使用する分離膜の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a separation membrane used in a membrane separation method for concentrating and separating a volatile organic liquid component from an aqueous solution thereof.

(従来の技術) 一般に、反応系あるいは種々のプロセス内で生成ある
いは蓄積してくる有機液体の水溶液から、該有機液体を
濃縮しつつ系外に分離して取り出すニーズは非常に多
い。膜分離法に関する技術は、逆浸透法、限外ろ過法、
拡散透析法、血液透析法、電気透析法、ガス分離法、お
よびパーベーパレーション法等の技術として、近年、目
覚ましく発展しているが、しかし、従来の分離技術で
は、低濃度の有機液体の水溶液から有機液体成分を効率
よく省エネルギー的に分離することは困難であった。現
在注目されているパーベーパレーション法においても、
有機液体の水溶液からの分離を試みると、ほとんどすべ
ての膜素材は水を選択的に透過させ、また、大容量の装
置を高い真空度に保つ等といった必要から、エネルギー
多消費型プロセスとなる等の問題点があった。
(Prior Art) Generally, there is a great need to separate and extract an organic liquid from an aqueous solution of an organic liquid generated or accumulated in a reaction system or various processes while concentrating the organic liquid. Technologies related to membrane separation include reverse osmosis, ultrafiltration,
In recent years, technologies such as diffusion dialysis, hemodialysis, electrodialysis, gas separation, and pervaporation have been remarkably developed.However, in conventional separation technologies, aqueous solutions of low-concentration organic liquids have been developed. It has been difficult to efficiently and efficiently separate organic liquid components from water. In the pervaporation method that is currently attracting attention,
When attempting to separate organic liquids from aqueous solutions, almost all membrane materials selectively allow water to permeate, and require large-capacity equipment to maintain a high degree of vacuum, resulting in an energy-intensive process. There was a problem.

そこで、温度を主たる駆動力とする、液−液系の揮発
性有機液体成分を濃縮する、疎水性高分子の多孔性膜を
用いたアップヒル輸送型膜分離法や、膜の2次側に不活
性気体を流し透過液を捕集する分離法等を特願昭60−38
810号公報、特願昭62−27218号公報により提案した。
Therefore, the uphill transport type membrane separation method using a hydrophobic polymer porous membrane, which concentrates the liquid-liquid type volatile organic liquid component, which uses temperature as the main driving force, or the secondary side of the membrane Japanese Patent Application No. 60-38 discloses a separation method in which an inert gas is flown and the permeate is collected.
810 and Japanese Patent Application No. 62-27218.

(発明が解決しようとする課題) 特願昭60−38810号公報において提案した、アップヒ
ル輸送型膜分離法は、温度差を主たる駆動力とする液−
液直接接触型の分離法である。この分離法には、平均微
細孔径が20から1000Åの疎水性高分子の多孔性膜を使用
する必要がある。膜面は分離対象物の揮発性有機液体水
溶液に濡れると、分離対象物が液体状態で膜の微細孔内
に侵入し、分離の現象が起きない。この分離の機構を推
察すると、分離対象物は、1次側液膜界面で蒸気となっ
て膜の微細孔内へ侵入し、蒸気の状態で膜の微細孔内を
透過していると考えられる。さらに、膜素材や膜の状態
によっては気液平衡を超える分離係数が見出だされてい
ることから、この透過の過程において、膜素材高分子と
親和性の高い分離対象物中の特定成分が、選択的に1次
側膜表面へ吸着し、かつ膜内微細孔表面においても優先
的に吸脱着を伴う表面拡散をおこすために、特定成分が
2次側に濃縮されると考えられる。特願昭62−4035号公
報、特願昭62−4036号公報、特願昭62−149087号公報
で、膜表面にシリコーン系ポリマ、ケトン樹脂あるいは
ポリ(1−トリメチルシリル−1−プロピン)等のポリ
マを膜表面にコートした複合膜が高い分離性能を示した
ことは、この分離機構の考え方を支持するものと考えら
れる。
(Problems to be Solved by the Invention) The uphill transport type membrane separation method proposed in Japanese Patent Application No. 60-38810 discloses a liquid having a temperature difference as a main driving force.
This is a liquid direct contact type separation method. This separation method requires the use of a hydrophobic polymer porous membrane having an average micropore diameter of 20 to 1000 °. When the surface of the membrane gets wet with the volatile organic liquid aqueous solution of the object to be separated, the object to be separated penetrates into the micropores of the membrane in a liquid state, and the phenomenon of separation does not occur. By inferring the mechanism of this separation, it is considered that the object to be separated turns into vapor at the primary liquid film interface, enters the micropores of the membrane, and permeates through the micropores of the membrane in a vapor state. . Furthermore, since a separation coefficient exceeding the vapor-liquid equilibrium has been found depending on the membrane material and the state of the membrane, during the permeation process, specific components in the separation target that have a high affinity for the polymer of the membrane material are removed. It is considered that the specific component is concentrated on the secondary side because it selectively adsorbs on the primary membrane surface and preferentially causes surface diffusion accompanied by adsorption and desorption on the micropore surface in the membrane. Japanese Patent Application No. 62-4035, Japanese Patent Application No. 62-4036, and Japanese Patent Application No. 62-149087, wherein a silicone polymer, a ketone resin or poly (1-trimethylsilyl-1-propyne) is coated on the film surface. The fact that the composite membrane in which the polymer was coated on the membrane surface exhibited high separation performance is considered to support the idea of this separation mechanism.

アップヒル輸送型膜分離法は、このように選択透過の
機構を考えた場合、透析や限外濾過のように、分離対象
物が膜内を液体状態で透過し、膜の平均孔径と分離対象
物の分子サイズの違いにより分離のおこる液−液系分離
法とは全く異なる分離法といえる。また、いわゆる緻密
膜を用いるパーベーパレーション法などのように分離対
象成分が溶解拡散で透過すると考えられている分離法
や、あるいは平均微細孔径が0.1μmから5μmの膜を
用いる膜蒸留法などのような分離対象成分が膜内を単な
る粘性流で透過する分離法とも異なる分離法であると考
えられる。
Considering the mechanism of selective permeation, the uphill transport type membrane separation method, as in the case of dialysis and ultrafiltration, allows the substance to be separated to permeate through the membrane in a liquid state, as in dialysis and ultrafiltration. It can be said that this is a completely different separation method from the liquid-liquid separation method in which separation occurs due to the difference in the molecular size of the product. In addition, a separation method in which the component to be separated is permeated by dissolution and diffusion, such as a pervaporation method using a so-called dense membrane, or a membrane distillation method using a membrane having an average micropore diameter of 0.1 μm to 5 μm. It is considered that such a separation method is different from a separation method in which such a component to be separated permeates through a membrane by a simple viscous flow.

我々は、この揮発性有機液体水溶液の濃縮に対して有
効と考えられるアップヒル輸送型膜分離法を特願昭60−
38810号公報において提案し、さらに鋭意検討してき
た。しかしながら、特願昭60−38810号公報の提案に使
用されている膜の場合には、その分離性能は充分満足の
得られるものではなかった。そこで高い分離性能を得る
ための方法として、上述したように、例えば、特願昭62
−4035号公報、特願昭62−4036号公報、特願昭62−1490
87号公報では、膜表面にシリコーン系ポリマ、ケトン樹
脂あるいはポリ(1−トリメチルシリル−1−プロピ
ン)等のポリマをコートした複合膜を提案した。しかし
ながら、これら分離性能の改善方法を試みた場合、一般
的な傾向として、分離性能が高くなる程、それに相反し
て単位時間、単位膜面積あたり膜を通して透過してくる
物質の量すなわち透過速度が低下するという欠点があっ
た。
We have proposed an uphill transport type membrane separation method which is considered to be effective for the concentration of this volatile organic liquid aqueous solution.
It has been proposed in Japanese Patent Publication No. 38810, and has been further studied. However, in the case of the membrane used in the proposal of Japanese Patent Application No. 60-38810, the separation performance was not sufficiently satisfactory. Therefore, as a method for obtaining high separation performance, as described above, for example, Japanese Patent Application No. Sho 62
No.-4035, Japanese Patent Application No. 62-4036, Japanese Patent Application No. 62-1490
No. 87 proposes a composite film having a film surface coated with a polymer such as a silicone polymer, a ketone resin, or poly (1-trimethylsilyl-1-propyne). However, when these methods for improving the separation performance are attempted, as a general tendency, as the separation performance becomes higher, the amount of the substance permeating through the membrane per unit time and per unit membrane area, that is, the permeation rate, conversely increases as the separation performance becomes higher. There was a drawback of lowering.

(課題を解決するための手段) 本発明は、ポリフッ化ビニリデン系ポリマとその溶媒
および該溶媒よりも揮発性の高い有機溶媒を含む混合有
機溶媒系のポリマ溶液から製膜することを特徴とする揮
発性成分含有水溶液濃縮用の多孔性分離膜の製造方法で
あり、温度を分離の駆動力として揮発性有機液体成分を
濃縮する液−液系の膜分離法で使用される揮発性有機液
体水溶液濃縮膜に関するものである。
(Means for Solving the Problems) The present invention is characterized in that a film is formed from a mixed organic solvent-based polymer solution containing a polyvinylidene fluoride-based polymer, a solvent thereof, and an organic solvent having higher volatility than the solvent. A method for producing a porous separation membrane for concentrating a volatile component-containing aqueous solution, wherein a volatile organic liquid aqueous solution used in a liquid-liquid type membrane separation method for concentrating a volatile organic liquid component using temperature as a driving force for separation It relates to a concentration membrane.

本発明で用いるポリフッ化ビニリデン系ポリマとして
は、例えば、ポリフッ化ビニリデンホモポリマ、フッ化
ビニリデン−テトラフルオロエチレン共重合体、フッ化
ビニリデン−六フッ化プロピレン共重合体、あるいは、
これらの混合物などが挙げられるが、好ましくは、ポリ
フッ化ビニリデンを少なくとも50重量%含有することが
好ましい。該ポリフッ化ビニリデン系ポリマの平均分子
量としては、通常入手できるポリマの分子量で十分であ
る。
As the polyvinylidene fluoride polymer used in the present invention, for example, polyvinylidene fluoride homopolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-propylene hexafluoride copolymer, or
These mixtures and the like can be mentioned, and it is preferable that the mixture contains at least 50% by weight of polyvinylidene fluoride. As the average molecular weight of the polyvinylidene fluoride-based polymer, the molecular weight of a generally available polymer is sufficient.

ポリフッ化ビニリデン系ポリマの溶媒としては、例え
ば、N−メチル−2−ピロリドン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジエチルアセトアミド、ジ
エチルホルムアミド、ヘキサメチルホスホルアミド、テ
トラメチル尿素、ジメチルスルホキシドなどが挙げられ
る。また、揮発性の高い有機溶媒とは、製膜の際のポリ
マ溶液の温度において、ポリフッ化ビニリデン系ポリマ
の溶媒よりも沸点が低くかつ、蒸気圧が高いものであれ
ばよく、かならずしもポリマを溶解あるいは膨潤させる
ものである必要はない。このような有機溶媒としては、
例えば、n−ヘキサン、シキロヘキサノン、トルエンな
どの炭化水素、テトラクロルエチレン、1,2−ジクロル
エチレン、トリクロルエチレンなどのハロゲン化炭化水
素、ジエチルエーテル、1,4−ジオキサンなどのエーテ
ル類、酢酸メチルなどのエステル類、メタノール、イソ
プロピルアルコール、1−ブタノールなどのアルコール
類などが挙げられるが、扱いやすさ、安全性を考慮する
と比較的おだやな揮発性を示すトルエン、テトラクロル
エチレン、1,4−ジオキサン、イソプロピルアルコール
などが好ましい。
Examples of the solvent for the polyvinylidene fluoride polymer include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, diethylacetamide, diethylformamide, hexamethylphosphoramide, tetramethylurea, and dimethylsulfoxide. In addition, a highly volatile organic solvent may be any solvent that has a lower boiling point and a higher vapor pressure than a polyvinylidene fluoride-based polymer solvent at the temperature of the polymer solution during film formation. Alternatively, it need not swell. Such organic solvents include
For example, n-hexane, cyclohexanone, hydrocarbons such as toluene, tetrachloroethylene, 1,2-dichloroethylene, halogenated hydrocarbons such as trichloroethylene, diethyl ether, ethers such as 1,4-dioxane, Esters such as methyl acetate, methanol, isopropyl alcohol, alcohols such as 1-butanol and the like, but ease of handling, considering the safety, relatively mild volatility of toluene, tetrachloroethylene, Preferred are 1,4-dioxane, isopropyl alcohol and the like.

このようなポリフッ化ビニリデン系ポリマとその溶媒
および該溶媒より揮発性の高い有機溶媒からなるポリマ
溶液の組成としては、ポリマ濃度は10重量%〜50重量%
が好ましい。また、ポリフッ化ビニリデン系ポリマの溶
媒は極性が強いのに対して、該溶媒より揮発性の高い溶
媒は一般に極性が弱く該ポリマに対して非溶媒であるこ
とが多い。このため該ポリマを膨潤あるいは溶解する溶
媒と異なり、揮発性の高い溶媒を、ポリフッ化ビニリデ
ン系ポリマの溶媒に対して多量に加えると、該ポリマが
ゲル化してしまう。従って、揮発性の高い有機溶媒の割
合には上限が存在する。ポリマおよび溶媒の種類により
一律には言えないが、経験的には、全溶媒量に対して0.
05重量%から20重量%が好ましく、それ以上の割合で加
えてもさらに性能が顕著に向上することはほとんどな
い。
As the composition of such a polymer solution comprising a polyvinylidene fluoride polymer, its solvent and an organic solvent having a higher volatility than the solvent, the polymer concentration is 10% by weight to 50% by weight.
Is preferred. Further, while the solvent of the polyvinylidene fluoride-based polymer has a strong polarity, a solvent having a higher volatility than the solvent generally has a weaker polarity and is often a non-solvent for the polymer. Therefore, unlike a solvent that swells or dissolves the polymer, if a highly volatile solvent is added in a large amount to the solvent of the polyvinylidene fluoride-based polymer, the polymer gels. Therefore, there is an upper limit to the proportion of the highly volatile organic solvent. Although it cannot be said uniformly depending on the type of the polymer and the solvent, empirically, it is 0.
The content is preferably from 05% by weight to 20% by weight, and even if added at a higher ratio, the performance is hardly remarkably improved.

本発明で用いる膜の微細孔径は平均孔径で20Å以上、
1000Å以下であることが好ましく、特に300Å以上、100
0Å以下であることが好ましい。平均孔径が20Åより小
さい場合、気体の状態であっても揮発性有機液体成分が
優先的に透過せず、1000Åより大きい場合、必然的に存
在する細孔径分布のために、膜の一次側に供給する揮発
性有機液体は液体の状態でも膜を透過し易く、膜分離を
実施することができない。ただし、多孔性膜はその孔径
が膜の表面の開孔部は比較的小さく、内部になると孔径
が拡大しているなど全体的に不均一であるので、それら
の平均的な孔径から考えられる水溶液に対する不透性よ
りも、実際の水溶液に対する不透性は大きいと考えられ
る。本願発明の膜は、該膜の平均孔径に対して、1/10以
下のストークス半径を持ち、かつ該膜に対して実質的に
不透性を示す物質の分離に好ましく用いられる。平均微
細孔半径に対してストークス半径の比が1/10より大きい
場合は分離対象物質である揮発性有機液体成分が水に対
して優先的に透過しがたい。また、本発明において、
「実質的に不透性である」とは、液体の状態では膜に対
して不透性であり、気体の状態では透過することをい
う。本発明では分離対象物質は気化した状態で膜を透過
する方法に使用するため膜は濡れることなく分離対象物
質を分離する。
The micropore diameter of the membrane used in the present invention is 20% or more in average pore diameter,
Preferably not more than 1000 、, especially 300 Å or more, 100
It is preferably 0 ° or less. When the average pore size is smaller than 20 mm, the volatile organic liquid component does not pass through preferentially even in a gaseous state, and when the average pore size is larger than 1000 mm, the pore size distribution naturally exists. The supplied volatile organic liquid easily permeates through the membrane even in a liquid state, so that membrane separation cannot be performed. However, the pore size of the porous membrane is relatively small at the pores on the surface of the membrane, and the pore size is large on the inside. It is considered that the impermeability to an actual aqueous solution is greater than the impermeability to water. The membrane of the present invention is preferably used for separating a substance having a Stokes radius of 1/10 or less with respect to the average pore diameter of the membrane and substantially impermeable to the membrane. If the ratio of the Stokes radius to the average micropore radius is greater than 1/10, the volatile organic liquid component, which is the substance to be separated, does not readily permeate water. In the present invention,
“Substantially impermeable” means that the material is impermeable to the membrane in a liquid state and permeates in a gaseous state. In the present invention, since the substance to be separated is used in a method of permeating the membrane in a vaporized state, the substance to be separated is separated without wetting the membrane.

膜の分離性能を有利に発現するためには、平均孔径の
ほかに体積空孔率がより大きく、膜の内部に比較的大き
い空孔を有することが必要である。体積空孔率は通常20
%以上、好ましくは40%以上で膜の機械的特性を損なわ
ない範囲で高い程有利である。また、透過水量は50〜50
00mlh-1mmHg-1m2、窒素の透過量は0.005〜1.0cm3(ST
P)cm-2s-1cmHg-1の範囲にあることが好ましい。
In order to advantageously exhibit the separation performance of the membrane, it is necessary to have a larger volume porosity in addition to the average pore diameter and to have relatively large pores inside the membrane. Volume porosity is typically 20
% Or more, preferably 40% or more, is advantageous as long as the mechanical properties of the film are not impaired. In addition, the amount of permeated water is 50-50
00mlh -1 mmHg -1 m 2 , Nitrogen permeability is 0.005 to 1.0cm 3 (ST
P) It is preferably in the range of cm −2 s −1 cmHg −1 .

膜の形状については、製膜の過程を考えると、シート
状の膜では支持体を利用するためにポリマ溶液の粘度
等、条件を比較的広い範囲から選ぶことができるのに対
して、中空糸状の膜では支持体を使用できないために、
シート状の膜に比べると製膜の条件がかなり限定され
る。また、同じポリマ溶液から製膜した場合でも、形状
の差にもとづく条件の違いから、得られる膜の強度、分
離性能が大きく異なることがある。アップヒル輸送型膜
分離法においては、膜の形状は、シートの状の膜、中空
糸状の膜等、どのような形態の膜でも用いることができ
るが、実用的見地からは中空糸膜が有利であると考えら
れる。
Regarding the shape of the membrane, considering the process of membrane formation, in the case of a sheet-like membrane, the conditions such as the viscosity of the polymer solution can be selected from a relatively wide range because the support is used, whereas the hollow fiber Since the support cannot be used with the membrane of
The conditions for film formation are considerably limited as compared with sheet-like films. Further, even when the film is formed from the same polymer solution, the strength and separation performance of the obtained film may be significantly different due to the difference in conditions based on the difference in shape. In the uphill transport type membrane separation method, any shape of membrane such as a sheet-like membrane and a hollow fiber membrane can be used, but from a practical viewpoint, a hollow fiber membrane is advantageous. It is considered to be.

シート状の膜は、上述のポリフッ化ビニリデン系ポリ
マとその溶媒および該溶媒より揮発性の高い有機溶媒か
らなる溶液を、固体表面、支持体あるいは多孔性支持膜
の上に一定の厚みで流延、吐出あるいはコーティング
し、一定時間溶媒を蒸発させた後、溶媒を凝固溶媒と置
換して得られる。ここで、固体表面とは、該ポリマ溶液
中の溶媒あるいは置換する溶媒に溶解しない固体の平滑
な表面であり、ガラス板、ポリテトラフルオロエチレン
製の板、金属板等を用いることができる。また、支持体
とは、該ポリマ混合溶液の溶媒あるいは置換する溶媒に
溶解しない実質的に分離性能を有しない膜強度補強材で
あり、不織布、布、金属メッシュなどを用いることがで
きる。さらにまた、多孔性支持膜とは、該ポリマ溶液中
の溶媒あるいは置換する溶媒に溶解しない多孔性膜であ
り、無機の多孔性膜として、多孔性ガラス、多孔性セラ
ミックス等、有機の多孔性膜として、種々のポリマの多
孔性膜を用いることができる。ここで、有機の多孔性支
持膜のポリマとしては、ポリエチレン、ポリプロピレ
ン、ポリテトラフルオロエチレンおよび以上のポリマの
共重合体、ポリアクリロニトリル、ポリアクリル酸、ポ
リアクリル酸エステル、ポリメタクリル酸、ポリメタク
リル酸エステル、ポリアクリルアミド、ポリビニルアル
コールなどのビニルポリマ類とその共重合体およびそれ
らのブレンドポリマ、ポリエステル類、ポリアミド類、
ポリシロキサン類、ポリホスファゼン類、セルロース類
ポリマ等が挙げられる。一方、中空糸状の膜の場合に
は、上述のポリフッ化ビニリデン系ポリマとその溶媒お
よび揮発性の高い溶媒からなる溶液を、環状の口金から
中心部に流体を流しつつ中空状に吐出する方法、中空糸
状支持膜の表面にコーティングし一定時間溶媒を蒸発さ
せた後、溶媒を凝固溶媒と置換する方法等がある。環状
の口金を用いる場合、中心部に流す流体は、液体では、
水、アルコール等の凝固性液体、非相溶性液体、および
その混合液体等、気体としては、空気、窒素、アルゴン
等を用いることができる。中空糸状支持膜とは、ポリマ
溶液中の溶媒あるいは置換する溶媒に溶解しない多孔性
膜であり、無機の多孔性膜として、多孔性ガラス、多孔
性セラミックス等、有機の多孔性膜として、種々のポリ
マの多孔性膜を用いることができる。ここで、多孔性支
持膜のポリマとしては、ポリエチレン、ポリプロピレ
ン、ポリテトラフルオロエチレンおよび以上のポリマの
共重合体、ポリアクリロニトリル、ポリアクリル酸、ポ
リアクリル酸エステル、ポリメタクリル酸、ポリメタク
リル酸エステル、ポリアクリルアミド、ポリビニルアル
コールなどのビニルポリマ類とその共重合体およびそれ
らのブレンドポリマ、ポリエステル類、ポリアミド類、
ポリシロキサン類、ポリホスファゼン類、セルロース類
ポリマ等が挙げられる。
The sheet-like film is formed by casting a solution comprising the above-mentioned polyvinylidene fluoride polymer and its solvent and an organic solvent having a higher volatility than the solvent at a constant thickness on a solid surface, a support or a porous support film. It is obtained by discharging or coating, evaporating the solvent for a certain period of time, and replacing the solvent with a coagulating solvent. Here, the solid surface is a smooth surface of a solid that does not dissolve in the solvent in the polymer solution or the solvent to be replaced, and a glass plate, a plate made of polytetrafluoroethylene, a metal plate, or the like can be used. Further, the support is a membrane strength reinforcing material which does not dissolve in the solvent of the polymer mixed solution or the solvent to be replaced and has substantially no separation performance, and nonwoven fabric, cloth, metal mesh and the like can be used. Furthermore, a porous support membrane is a porous membrane that does not dissolve in a solvent in the polymer solution or a solvent to be replaced, and as an inorganic porous membrane, an organic porous membrane such as porous glass and porous ceramics. For example, porous films of various polymers can be used. Here, as the polymer of the organic porous support membrane, polyethylene, polypropylene, polytetrafluoroethylene and a copolymer of the above polymers, polyacrylonitrile, polyacrylic acid, polyacrylate, polymethacrylic acid, polymethacrylic acid Ester, polyacrylamide, vinyl polymers such as polyvinyl alcohol and their copolymers and their blended polymers, polyesters, polyamides,
Examples include polysiloxanes, polyphosphazenes, and cellulose polymers. On the other hand, in the case of a hollow fiber membrane, a method comprising discharging a solution composed of the above-mentioned polyvinylidene fluoride polymer and its solvent and a highly volatile solvent into a hollow shape while flowing a fluid from an annular base to a central portion, There is a method of coating the surface of the hollow fiber support membrane, evaporating the solvent for a certain period of time, and then replacing the solvent with a coagulating solvent. When an annular base is used, the fluid flowing in the center is a liquid,
As a gas such as a coagulating liquid such as water or alcohol, an incompatible liquid, and a mixed liquid thereof, air, nitrogen, argon, or the like can be used. Hollow fiber support membranes are porous membranes that do not dissolve in the solvent in the polymer solution or the solvent to be replaced, and as inorganic porous membranes, porous glass, porous ceramics, etc. Polymeric porous membranes can be used. Here, as the polymer of the porous support membrane, polyethylene, polypropylene, a copolymer of polytetrafluoroethylene and the above polymer, polyacrylonitrile, polyacrylic acid, polyacrylate, polymethacrylic acid, polymethacrylic ester, Polyacrylamide, vinyl polymers such as polyvinyl alcohol and their copolymers and their blended polymers, polyesters, polyamides,
Examples include polysiloxanes, polyphosphazenes, and cellulose polymers.

凝固溶媒とは、上述の製膜の時のポリマ溶液中の溶媒
と混和可能でかつポリフッ化ビニリデン系ポリマを溶解
せず、上述のポリマ溶液の固体分を析出させる溶媒をい
う。このような溶媒としてはメタノール、エタノール、
プロパノール等のアルコール類、水等、およびこれらど
おしあるいはこれらと他の溶媒との混合溶媒が挙げられ
る。
The coagulation solvent is a solvent that is miscible with the solvent in the polymer solution at the time of the above-described film formation, does not dissolve the polyvinylidene fluoride-based polymer, and precipitates the solid component of the polymer solution. Such solvents include methanol, ethanol,
Examples thereof include alcohols such as propanol, water, and the like, and mixtures of these with other solvents.

多孔構造を好適な状態に保持した乾燥状態の多孔性膜
を調製するには、水と混和する有機溶媒でポリフッ化ビ
ニリデン系ポリマの非溶媒に置換してから乾燥する溶媒
置換乾燥が好ましいが、温和な条件で含水膜を乾燥する
方法で調製しても良い。
In order to prepare a porous membrane in a dry state while maintaining the porous structure in a suitable state, solvent replacement drying in which the organic solvent miscible with water is replaced with a non-solvent of a polyvinylidene fluoride-based polymer and then dried is preferable. It may be prepared by a method of drying the water-containing film under mild conditions.

本発明を適用しうる揮発性有機液体水溶液は、当該水
溶液の気液平衡における気相中の有機液体物質の組成が
液相中の組成より大きい物質に対して、基本的に適用す
ることができる。この様な物質の例としては、メタノー
ル、エタノール、n−プロパノール、iso−プロパノー
ル、n−ブタノール、t−ブタノール、アセトン、テト
ラハイドロフラン、1,4−ジオキサン、メチルアミン、
エチルアミン、アセトニトリル、メチルエチルケトン、
酢酸メチル、酢酸エチル等がある。
A volatile organic liquid aqueous solution to which the present invention can be applied can be basically applied to a substance in which the composition of the organic liquid substance in the gas phase in the gas-liquid equilibrium of the aqueous solution is larger than the composition in the liquid phase. . Examples of such substances include methanol, ethanol, n-propanol, iso-propanol, n-butanol, t-butanol, acetone, tetrahydrofuran, 1,4-dioxane, methylamine,
Ethylamine, acetonitrile, methyl ethyl ketone,
Examples include methyl acetate and ethyl acetate.

本発明を適用し得るこれらの物質の水溶液の濃度は、
本発明の方法の特徴を生かす観点からは比較的低濃度の
領域が好ましく、0.5〜20重量%が適当である。水溶液
濃度の上限は、主として分離対象の水溶液が膜を濡らさ
ない濃度で決まる。これは膜素材ポリマの物理化学的性
質、膜の微細孔径、分離対象の表面張力等が関係し、多
孔質材料の場合には因子が複雑に関係するので、一般的
に特定することは難しい。
The concentrations of aqueous solutions of these substances to which the present invention can be applied are:
From the viewpoint of taking advantage of the features of the method of the present invention, a relatively low concentration region is preferable, and 0.5 to 20% by weight is appropriate. The upper limit of the aqueous solution concentration is determined mainly by the concentration at which the aqueous solution to be separated does not wet the membrane. This is generally difficult to specify because the physicochemical properties of the polymer of the membrane material, the micropore diameter of the membrane, the surface tension of the separation target, and the like are involved.

(実施例) 次に実施例で本発明を説明する。(Example) Next, an Example demonstrates this invention.

なお液−液系の揮発性有機液体水溶液の濃縮法の実験
は、第1図に模式的に示した方法で行った。即ち、供給
液槽1から5%のエタノール水溶液を50℃に調節して膜
モジュール4に供給し循環する。一方、膜の2次側には
15℃に調節した5%のエタノール水溶液を透過液槽5か
ら循環供給する。実験開始後、所定時間毎に供給液槽
(高温側)と透過液槽(低温側)からサンプル液を採
り、その濃度を示差屈折計で測定する。
The experiment of the concentration method of the liquid-liquid type volatile organic liquid aqueous solution was performed by a method schematically shown in FIG. That is, a 5% aqueous ethanol solution is adjusted to 50 ° C. from the supply liquid tank 1 and supplied to the membrane module 4 for circulation. On the other hand, on the secondary side of the membrane
A 5% aqueous ethanol solution adjusted to 15 ° C. is circulated through the permeate tank 5. After the start of the experiment, sample liquid is taken from the supply liquid tank (high temperature side) and the permeate liquid tank (low temperature side) at predetermined time intervals, and the concentration thereof is measured with a differential refractometer.

実験終了後、供給液槽および透過液槽の液重量を測定
する。高温側の濃度は低下し、低温側の濃度は増加す
る。これら高温側および低温側の濃度の経時的変化と液
透過量とから実験初期のエタノールの透過速度を算出し
た。即ち、 C(t)={E(O)-Qe(t)-Σ C(n)S(n)}/EHT(t)
(1) C(t)={E(O)-Qe(t)-Σ C(n)S(n)}/ELT(t)
(2) ここで、C(t)は実験開始後t時間後のエタノール
の濃度で、添字Hは高温側、Lは低温側を示す。C
(n)はn回目のサンプリングの濃度を示す。S(n)
はn回目のサンプリングの量を示す。E(O)、E
(t)はそれぞれ実験開始前と開始後t時間のエタノー
ルの量を示す。EHT(t)、ELT(t)はそれぞれ実験開
始後t時間の高温側、低温側の全液量である。上記の式
を用い、(3)、(4)式の関係を考慮してエタノール
透過速度(Je)および水透過速度(Jw)をカーブフィッ
ティング法で算出し、下記の(5)式でエタノールに対
する分離係数αEtOHを求める。Qe(t)はt時間後のエ
タノールの透過量である。
After completion of the experiment, the liquid weights of the supply liquid tank and the permeate liquid tank are measured. The concentration on the high temperature side decreases and the concentration on the low temperature side increases. The permeation rate of ethanol in the initial stage of the experiment was calculated from the time-dependent changes in the concentration on the high temperature side and the low temperature side and the amount of liquid permeation. That, C H (t) = { E H (O) -Qe (t) -Σ C H (n) S H (n)} / E HT (t)
(1) C L (t) = {E L (O) -Qe (t) -Σ C L (n) S L (n)} / E LT (t)
(2) Here, C (t) is the concentration of ethanol t hours after the start of the experiment, and the suffix H indicates the high temperature side and L indicates the low temperature side. C
(N) indicates the density of the n-th sampling. S (n)
Indicates the amount of the n-th sampling. E (O), E
(T) shows the amount of ethanol before the start of the experiment and t time after the start, respectively. E HT (t) and E LT (t) are the total liquid volume on the high temperature side and the low temperature side at time t after the start of the experiment, respectively. Using the above equations, the ethanol permeation rate (Je) and the water permeation rate (Jw) were calculated by the curve fitting method in consideration of the relations of the equations (3) and (4). Determine the separation coefficient α EtOH . Qe (t) is the amount of permeation of ethanol after t hours.

Qe(t)=A ∫t Je dt (3) Qw(t)=A ∫t Jw dt (4) αEtOH=(Je/Jw)/(CH(t)/{1−CH(t)} (5) また、膜の平均微細孔半径は以下に述べる方法で測定
した。即ち、膜の透水性(Lp)と、溶質の拡散分離性
(Pm)を分離対象物質であるメタノール、エタノール、
プロパノール、ブタノール、アセトン等によって測定
し、次式の関係を使って計算した。
Qe (t) = A ∫ t Je dt (3) Qw (t) = A ∫ t Jw dt (4) α EtOH = (Je / Jw) / (C H (t) / {1-C H (t) } (5) The average pore diameter of the membrane was measured by the method described below, that is, the water permeability (Lp) of the membrane and the diffusive separation property (Pm) of the solute were measured using methanol, ethanol,
It was measured with propanol, butanol, acetone, etc., and calculated using the relationship of the following equation.

Pm=(D/L)(H/ts2) (6) Lp=(H/L){(Rp/(8η)} (7) ここで、Dは溶質の拡散係数、Lは膜厚、Hは含水
率、tsは溶質の曲路率、Rpは平均微細孔半径、ηは水の
粘性である。tsは次式から求めた。
Pm = (D / L) (H / ts 2 ) (6) Lp = (H / L) {(Rp / (8η)} (7) where D is the diffusion coefficient of the solute, L is the film thickness, and H Is the water content, ts is the solute curvature, Rp is the average micropore radius, η is the viscosity of water, and ts was determined from the following equation.

fsw0=RT/D (8) fsw =(RT/Pm−Vs/Lp)(H/L) (9) ts =fsw/fsw0 (10) ここで、Rは気体定数、Tは測定時の絶対温度、Vsは
溶質の部分モル容積である。
fsw 0 = RT / D (8) fsw = (RT / Pm−Vs / Lp) (H / L) (9) ts = fsw / fsw 0 (10) where R is a gas constant, and T is a value at the time of measurement. Absolute temperature, Vs, is the partial molar volume of the solute.

実施例1 ペンウォルト社製ポリフッ化ビニリデンKYNAR460と74
0を混合してポリマ濃度24.5%、110℃での溶液粘度が10
00ポイズになるように調製したジメチルスルホオキサイ
ド(DMSO)を溶媒とするポリマ溶液1000gに、テトラク
ロルエチレン50gを加え紡糸原液とした。このときポリ
マ溶液中の全溶媒に対するテトラクロルエチレンの量は
6.6重量%である。この紡糸原液を、DMSO80%の水溶液
を中空部に注入しつつ、環状中空糸紡糸用口金から紡出
し、45℃の水中で凝固させ、しかるのち水で洗浄して、
含水状態のポリフッ化ビニリデン系中空糸膜を得た。こ
の膜をメタノール、n−ヘキサンに順次浸漬、置換後、
風乾した。中空糸膜の外径は1011μm、内径は750μ
m、体積空孔率は68%であった。
Example 1 Pennwold polyvinylidene fluoride KYNAR460 and 74
0 to give a polymer concentration of 24.5% and a solution viscosity of 10 at 110 ° C.
50 g of tetrachloroethylene was added to 1000 g of a polymer solution using dimethyl sulfoxide (DMSO) as a solvent and prepared to have a poise of 100 poise, to prepare a spinning solution. At this time, the amount of tetrachloroethylene based on the total solvent in the polymer solution is
6.6% by weight. This spinning stock solution is spun from an annular hollow fiber spinneret while pouring an aqueous solution of DMSO 80% into the hollow portion, coagulated in water at 45 ° C., and then washed with water.
A water-containing polyvinylidene fluoride-based hollow fiber membrane was obtained. This membrane was immersed in methanol and n-hexane sequentially, replaced,
Air dried. Outer diameter of hollow fiber membrane is 1011μm, inner diameter is 750μ
m, the volume porosity was 68%.

乾燥後の中空糸をメタノールを介して水に置換した
後、透水性とエタノールの拡散透過性を測定し、平均孔
径(Rp)と曲路率(ts)とを求めた。Rpは497A、tsは2.
21、Rpとストークス半径の比は256であった。また透過
水量は857mlh-1mmHg-1m-2、窒素の透過量は0.054cm3(S
TP)cm-2s-1cmHg-1であった。
After replacing the dried hollow fiber with water via methanol, the water permeability and the diffusion permeability of ethanol were measured, and the average pore diameter (Rp) and the curvature (ts) were determined. Rp is 497A, ts is 2.
21, The ratio of Rp to Stokes radius was 256. The amount of permeated water is 857 mlh -1 mmHg -1 m -2 , and the amount of permeated nitrogen is 0.054 cm 3 (S
TP) cm -2 s -1 cmHg -1 .

この乾燥した中空糸膜を約30cmの長さに切り、14本束
ねてアクリル製ケースに挿入した。このケースは約20cm
のアクリル製パイプの側面に2箇所流体の出入口を設け
た構造で、パイプの両端部が低温側流体、側面部が高温
側流体の出入口となる。中空糸挿入後、ケース両端をエ
ポキシ接着剤でポッティングし、硬化後、両端部を切断
して中空糸膜の開口部を作った。
The dried hollow fiber membrane was cut into a length of about 30 cm, bundled into 14 pieces, and inserted into an acrylic case. This case is about 20cm
In this structure, two inlets and outlets for fluid are provided on the side surface of the acrylic pipe. Both ends of the pipe serve as inlets and outlets for low-temperature side fluid and the side portions serve as inlets and outlets for high-temperature side fluid. After inserting the hollow fiber, both ends of the case were potted with an epoxy adhesive, and after curing, both ends were cut to form an opening of the hollow fiber membrane.

液−液系の揮発性有機液体水溶液の濃縮法の実験は、
エタノール5wt%水溶液を用いて前述の方法で行った。
本実施例では、モジュール入口の高温側および低温側流
体の温度はそれぞれ51.0℃、15.0℃とした。このとき実
験初期のエタノールおよび水の透過速度はそれぞれ0.45
6、0.994kgm-2h-1、また、エタノールに対する分離係数
αEtOHは8.75であった。この結果を、比較例1で示す揮
発性溶媒を加えない普通のポリフッ化ビニリデン中空糸
膜の分離性能と比べると、エタノール、水の透過速度が
それぞれ2.7倍、1.7倍、また分離係数も1.6倍に向上し
ている。
An experiment of a method for concentrating a volatile organic liquid aqueous solution in a liquid-liquid system is as follows.
It carried out by the above-mentioned method using ethanol 5 wt% aqueous solution.
In the present embodiment, the temperatures of the high-temperature side fluid and the low-temperature side fluid at the module inlet were 51.0 ° C. and 15.0 ° C., respectively. At this time, the permeation rates of ethanol and water at the beginning of the experiment were 0.45 respectively.
6, 0.994 kgm -2 h -1 , and the separation factor α EtOH for ethanol was 8.75. Comparing this result with the separation performance of the ordinary polyvinylidene fluoride hollow fiber membrane without adding a volatile solvent shown in Comparative Example 1, the permeation rates of ethanol and water were 2.7 times and 1.7 times, respectively, and the separation factor was 1.6 times. Has improved.

実施例2 実施例1のテトラクロルエチレンの代わりに1,4−ジ
オキサンを用い、他は同一であるポリマ溶液を用いて、
同じ条件でポリフッ化ビニリデン系中空糸膜を作製し、
同様の濃縮法の実験を行ったところ、エタノールおよび
水に対する透過速度が大幅に向上した。
Example 2 Using 1,4-dioxane instead of tetrachloroethylene of Example 1 and using the same other polymer solution,
Under the same conditions, a polyvinylidene fluoride hollow fiber membrane was prepared,
When a similar concentration experiment was performed, the permeation rate for ethanol and water was greatly improved.

実施例3 実施例1のテトラクロルエチレンの混合量を100gと
し、他は同じ条件でポリフッ化ビニリデン系中空糸膜を
作製し、同様の濃縮法の実験を行ったところエタノール
および水に対する透過速度が大幅に向上した。
Example 3 A polyvinylidene fluoride-based hollow fiber membrane was prepared under the same conditions as in Example 1 except that the amount of tetrachloroethylene was 100 g, and a similar concentration experiment was performed. Significantly improved.

比較例1 実施例1においてテトラクロルエチレン等のポリフッ
化ビニリデン系ポリマの溶媒よりも揮発性の高い溶媒を
加えないポリマ溶液を用いて、ポリフッ化ビニリデン系
中空糸膜を作製し、同様に濃縮法の実験を行った。エタ
ノール水溶液の濃度を5wt%、高温側および低温側流体
の温度をそれぞれ49.6℃、14.0℃とした。このとき、エ
タノールおよび水の透過速度はそれぞれ、0.17、0.59kg
m-2h-1、また、分離係数αEtOHは5.42であった。
Comparative Example 1 A polyvinylidene fluoride-based hollow fiber membrane was prepared using a polymer solution in which a solvent having a higher volatility than that of a polyvinylidene fluoride-based polymer such as tetrachloroethylene was added in Example 1, and a concentration method was similarly performed. Was conducted. The concentration of the aqueous ethanol solution was 5 wt%, and the temperatures of the high-temperature side fluid and the low-temperature side fluid were 49.6 ° C. and 14.0 ° C., respectively. At this time, the permeation rates of ethanol and water were 0.17 and 0.59 kg, respectively.
m -2 h -1 , and the separation coefficient α EtOH was 5.42.

(発明の効果) 本発明によれば、揮発性有機液体水溶液から該有機液
体を選択的に濃縮分離する液−液系の新規な膜分離法に
おいて使用し得る、透過性および分離選択性の改善され
た揮発性有機液体水溶液濃縮膜とその製造方法を提供す
ることができる。
(Effects of the Invention) According to the present invention, improved permeability and separation selectivity can be used in a novel liquid-liquid system membrane separation method for selectively concentrating and separating an organic liquid from a volatile organic liquid aqueous solution. And a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例に使用した膜分離実験装置を
模式的に示した図である。1は供給(または1次)液
槽、2は供給液循環ポンプ、3は供給液側熱交換器、4
は膜モジュール、9及び10はそれぞれ供給液側モジュー
ルの入口と出口である。5は透過(または2次)液槽、
6は透過液側熱交換器、7は調圧弁、8は透過液側循環
ポンプ、11および12はそれぞれ透過液側膜モジュールの
入口と出口である。
FIG. 1 is a diagram schematically showing a membrane separation experiment apparatus used in an example of the present invention. 1 is a supply (or primary) liquid tank, 2 is a supply liquid circulation pump, 3 is a supply liquid side heat exchanger,
Is a membrane module, and 9 and 10 are the inlet and outlet of the feed liquid side module, respectively. 5 is a permeate (or secondary) liquid tank,
6 is a permeate-side heat exchanger, 7 is a pressure regulating valve, 8 is a permeate-side circulation pump, and 11 and 12 are an inlet and an outlet of a permeate-side membrane module, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C08L 27:12 (56)参考文献 特開 昭49−126572(JP,A) 特開 昭60−216804(JP,A) 特開 昭64−38103(JP,A) 特開 昭61−21702(JP,A) 特開 昭60−97001(JP,A) 特開 昭62−14905(JP,A) 特表 平2−503323(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 71/34 B01D 61/36 D01F 6/12 C08J 9/28 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C08L 27:12 (56) References JP-A-49-126572 (JP, A) JP-A-60-216804 (JP, A JP-A-64-38103 (JP, A) JP-A-61-21702 (JP, A) JP-A-60-97001 (JP, A) JP-A-62-14905 (JP, A) 503323 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B01D 71/34 B01D 61/36 D01F 6/12 C08J 9/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリフッ化ビニリデン系ポリマとその溶媒
および該溶媒よりも揮発性の高い有機溶媒を含む混合有
機溶媒系のポリマ溶液から製膜することを特徴とする揮
発製成分含有水溶液濃縮用の多孔性分離膜の製造方法。
1. A method for concentrating an aqueous solution containing volatile components, comprising forming a film from a polymer solution of a mixed organic solvent system containing a polyvinylidene fluoride polymer, a solvent thereof and an organic solvent having a higher volatility than the solvent. A method for producing a porous separation membrane.
【請求項2】ポリマ溶液において、揮発性の高い有機溶
媒の割合が、全溶媒量に対して、0.05重量%以上、20重
量%以下であることを特徴とする請求項1記載の多孔性
分離膜の製造方法。
2. The porous separation according to claim 1, wherein the proportion of the highly volatile organic solvent in the polymer solution is 0.05% by weight or more and 20% by weight or less based on the total amount of the solvent. Manufacturing method of membrane.
【請求項3】ポリフッ化ビニリデン系ポリマが、ポリフ
ッ化ビニリデンを少なくとも50重量%含有するものであ
る請求項1または2記載の多孔性分離膜の製造方法。
3. The method according to claim 1, wherein the polyvinylidene fluoride-based polymer contains at least 50% by weight of polyvinylidene fluoride.
JP1130224A 1989-05-25 1989-05-25 Method for producing porous separation membrane Expired - Lifetime JP2890469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130224A JP2890469B2 (en) 1989-05-25 1989-05-25 Method for producing porous separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130224A JP2890469B2 (en) 1989-05-25 1989-05-25 Method for producing porous separation membrane

Publications (2)

Publication Number Publication Date
JPH03118A JPH03118A (en) 1991-01-07
JP2890469B2 true JP2890469B2 (en) 1999-05-17

Family

ID=15029059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130224A Expired - Lifetime JP2890469B2 (en) 1989-05-25 1989-05-25 Method for producing porous separation membrane

Country Status (1)

Country Link
JP (1) JP2890469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122679A1 (en) * 2008-03-31 2009-10-08 十勝テレホンネットワーク株式会社 Dialysis membrane
WO2012004862A1 (en) * 2010-07-07 2012-01-12 株式会社センシングネットワーク Selectively permeable membrane using molecular recognition macromolecules

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599787B2 (en) * 2002-01-24 2010-12-15 東レ株式会社 Method for producing hollow fiber membrane and hollow fiber membrane
JP6048870B2 (en) * 2012-08-27 2016-12-21 独立行政法人国立高等専門学校機構 Method for manufacturing β-type polyvinylidene fluoride film, β-type polyvinylidene fluoride film, piezoelectric sensor provided with β-type polyvinylidene fluoride film, and method for manufacturing piezoelectric sensor
CN114699927A (en) * 2022-03-30 2022-07-05 深圳维度新材料有限公司 Polyvinylidene fluoride filtering membrane and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126572A (en) * 1973-04-09 1974-12-04
JPS60216804A (en) * 1984-04-13 1985-10-30 Teijin Ltd Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122679A1 (en) * 2008-03-31 2009-10-08 十勝テレホンネットワーク株式会社 Dialysis membrane
WO2012004862A1 (en) * 2010-07-07 2012-01-12 株式会社センシングネットワーク Selectively permeable membrane using molecular recognition macromolecules

Also Published As

Publication number Publication date
JPH03118A (en) 1991-01-07

Similar Documents

Publication Publication Date Title
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
US5387378A (en) Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
Uragami Science and technology of separation membranes
Pusch et al. Synthetic membranes—preparation, structure, and application
KR940006394B1 (en) Composite membrane and their manufacture and use
US10946345B2 (en) Microporous polyvinylidene fluoride membrane
AU2015288693A1 (en) Membrane distillation apparatus and hydrophobic porous membrane
Fujii et al. Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes
US4772440A (en) Method for production of porous membrane
Puri Fabrication of hollow fibre gas separation membranes
JP2890469B2 (en) Method for producing porous separation membrane
JP2774103B2 (en) Manufacturing method of double layer film
JPH0613085B2 (en) Method for producing volatile organic liquid concentrate
JP2814536B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
US5320754A (en) Pan composite membranes
JP2814516B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
JP2996304B2 (en) Manufacturing method of separation membrane
JPS61257205A (en) Permselective membrane for alcohol and separation of alcohol using the same
JPS61408A (en) Hollow yarn composite membrane
Koops Dehydration of acetic acid by pervaporation: Material science aspects
JP2646562B2 (en) Method for producing permselective composite hollow fiber membrane
JPH0360725A (en) Aqueous volatile organic liquid solution-concentrating membrane
JPS63315104A (en) Concentration membrane of volatile organic liquid aqueous solution and usage thereof
JPH0515494B2 (en)
JPH0512971B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11