JP2996304B2 - Manufacturing method of separation membrane - Google Patents

Manufacturing method of separation membrane

Info

Publication number
JP2996304B2
JP2996304B2 JP17993189A JP17993189A JP2996304B2 JP 2996304 B2 JP2996304 B2 JP 2996304B2 JP 17993189 A JP17993189 A JP 17993189A JP 17993189 A JP17993189 A JP 17993189A JP 2996304 B2 JP2996304 B2 JP 2996304B2
Authority
JP
Japan
Prior art keywords
membrane
water
liquid
hydrophilic substance
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17993189A
Other languages
Japanese (ja)
Other versions
JPH0347521A (en
Inventor
雅俊 青山
能成 藤井
英嗣 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17993189A priority Critical patent/JP2996304B2/en
Publication of JPH0347521A publication Critical patent/JPH0347521A/en
Application granted granted Critical
Publication of JP2996304B2 publication Critical patent/JP2996304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、水を組成に持つ種々の液体から水を除去
あるいは濃縮分離する膜分離法に使用する分離膜とその
使用方法に関する。
Description: TECHNICAL FIELD The present invention relates to a separation membrane used for a membrane separation method for removing or concentrating and separating water from various liquids having water as a composition, and a method for using the same.

(従来の技術) 超純水は、製薬工業における薬品製造の工程用水、注
射薬用アンプルの洗浄水さらに注射用調製用水、半導体
工場における洗浄水、原子力発電所における複水などに
使用されているが、半導体の集積度の向上など技術発展
にあわせて、より高度に精製された水が必要とされる状
況にある。
(Prior art) Ultrapure water is used in the pharmaceutical industry for process water in the manufacture of chemicals, for washing ampoule for injectable drugs, as well as for preparation for injection, washing water in semiconductor factories, and double water in nuclear power plants. There is a need for more highly purified water in accordance with technological developments such as improvement in the degree of integration of semiconductors.

近年目覚ましく発展してきた膜分離技術は、水処理あ
るいは水の製造に関する分野においても広く利用され、
上記の超純水製造技術は逆浸透膜および限外濾過膜の導
入により近年急速な進歩を遂げてきている。
Membrane separation technology, which has been remarkably developed in recent years, is widely used in the field of water treatment or water production,
The above ultrapure water production technology has made rapid progress in recent years with the introduction of reverse osmosis membranes and ultrafiltration membranes.

(発明が解決しようとする課題) しかしながら、現在、エレクトロニクス用超純水に対
する要求スペックは半導体集積密度の飛躍的高度化に対
応して、極めて高度化してきており、従来の方法の展開
では不充分であるといわれている。他方、原子力発電の
複水処理あるいは注射用調製用水のための超純水製造に
対しては、従来の膜分離法では困難もしくは信頼性に欠
けるという状況にある。すなわち、原子力発電の1次冷
却水に含まれる放射性物質の除去に対しては、逆浸透法
あるいは、いわゆる従来試みられている膜蒸留法では、
まだ十分な除去率とはいえず、さらに効率的、経済的な
除去方法が望まれている。注射用調製用水の製造におい
ては、パイロジェンとよばれる発熱性物質の除去が重要
となるが、現在検討されている逆浸透膜では、有害な高
分子量の物質は除去されるものの、膜を透過する低分子
量物質が膜を透過後、会合して発熱性物質を形成するこ
とが指摘されており、加えて、このパイロジェンは検出
限界以下の微量でも人体に影響を及ぼすため、原理的に
排除できる分離法の適用が必要である。
(Problems to be Solved by the Invention) However, at present, the specifications required for ultrapure water for electronics have become extremely sophisticated in response to the dramatic increase in the density of integrated semiconductors, and the development of conventional methods is insufficient. It is said to be. On the other hand, the conventional membrane separation method is difficult or unreliable for double water treatment of nuclear power generation or production of ultrapure water for preparation water for injection. In other words, for the removal of radioactive substances contained in the primary cooling water of nuclear power generation, the reverse osmosis method or the so-called membrane distillation method which has been conventionally tried is used.
The removal rate is not yet sufficient, and a more efficient and economical removal method is desired. In the production of water for injection preparation, it is important to remove pyrogens, which are currently being studied.Reverse osmosis membranes that are currently under study remove harmful high molecular weight substances but penetrate the membrane. It has been pointed out that low-molecular-weight substances associate with each other and form exothermic substances after they permeate the membrane.In addition, this pyrogen affects the human body even in trace amounts below the detection limit, so separation that can be eliminated in principle It is necessary to apply the law.

これらの分野における超純水の製造方法に関して、最
近、膜蒸留法あるいは蒸気透過法とよばれる、逆浸透膜
および限外濾過膜とは異なる、新しい膜分離技術の適用
が研究されるようになってきた。逆浸透膜あるいは限外
濾過膜は、透過の過程で透過成分が常に液体状態にあり
相変化を伴わない分離法である。一方、膜蒸留法におい
ては、疎水性の微多孔性膜を使用するため膜は1次側の
液体に濡れることがなく、透過物質は1次側の液膜界面
において蒸発し、膜の微細孔内に気体の状態で侵入し2
次側まで拡散していくと考えられている。このように膜
蒸留法は透過の過程で液体状態から気体状態への相変化
を伴うことから、原理的には原水に含まれる不揮発性物
質が膜の2次側へ侵入するのを完全に防止することが可
能であるという特徴を持っている。
With regard to the method of producing ultrapure water in these fields, recently, the application of a new membrane separation technology called a membrane distillation method or a vapor permeation method, which is different from the reverse osmosis membrane and the ultrafiltration membrane, has been studied. Have been. Reverse osmosis membranes or ultrafiltration membranes are separation methods in which the permeated component is always in a liquid state during the permeation process and does not involve a phase change. On the other hand, in the membrane distillation method, since a hydrophobic microporous membrane is used, the membrane does not wet with the liquid on the primary side, and the permeated substance evaporates at the interface of the liquid membrane on the primary side, and the fine pores of the membrane are formed. In the gaseous state into
It is thought to spread to the next side. In this way, membrane distillation involves a phase change from the liquid state to the gaseous state during the permeation process, and in principle, completely prevents non-volatile substances contained in raw water from entering the secondary side of the membrane. It has the feature that it is possible to do.

しかしながら、これまで検討されてきた平均孔径が0.
1から5μmの範囲にあるいわゆる微多孔性膜では、不
揮発性物質がミストとして透過蒸気に同伴し2次側に透
過するため期待通りの除去率を達成することが困難であ
った。本発明者らは、それを考慮して不純物を透過させ
る大孔径の細孔が存在しないような平均孔径の小さい限
外濾過レベルの膜を用いる方法を研究してきたが、水の
透過速度が低くなってしまうという問題点があり、透過
速度を改善する必要があった。
However, the average pore size studied so far is 0.
In a so-called microporous film having a thickness in the range of 1 to 5 μm, it is difficult to achieve the expected removal rate because the non-volatile substance is permeated to the secondary side together with the permeated vapor as mist. The present inventors have studied a method using a membrane having an ultrafiltration level having a small average pore size such that there are no large pores through which impurities can pass in consideration of this, but the water permeation rate is low. However, there is a problem in that the transmission speed has to be improved.

(課題を解決するための手段) 本発明は、上記の従来技術の欠点を解消するために、
下記の構成を有する。
(Means for Solving the Problems) The present invention has been made in order to solve the above-mentioned drawbacks of the prior art.
It has the following configuration.

即ち、親水性物質が微細孔を構成する膜内部の微細孔
内表面に付着している構造を有する、水を膜蒸留するた
めの分離膜の製造方法であって、親水性物質の溶液を疎
水性多孔質膜に含浸、付着させ、該膜の表面に付着した
親水性物質を溶媒で洗い流すことを特徴とする分離膜の
製造方法に関する。
That is, a method for producing a separation membrane for membrane distillation of water having a structure in which a hydrophilic substance is attached to the inner surface of micropores inside the membrane constituting the micropores, wherein the solution of the hydrophilic substance is made hydrophobic. The present invention relates to a method for producing a separation membrane, comprising impregnating and adhering to a porous membrane, and washing away a hydrophilic substance attached to the surface of the membrane with a solvent.

本発明に用いる阻水性多孔性膜の素材ポリマとして
は、例えば、テトラフルオロエチレン、ポリフッ化ビニ
リデン、ポリプロピレン、ポリスルホン、ポリエーテル
スルホンとこれらの共重合体、混合物、あるいはポリア
クリロニトリルとフッ素系ポリマとの共重合体や混合
物、ポリ(エチレンテトラフロロエチレン)共重合体な
どが挙げられる。また、膜の微細孔径は平均孔径で10Å
以上、5μm以下であることが好ましいが、原水中の溶
存物質の種類と、製造水のスペックによっては、さらに
孔径の小さい膜が本発明の特徴を発揮できる。しかしな
がら、平均孔径が小さい場合、親水性物質の水透過に対
する促進効果があっても透過速度が小さくなるので、特
殊な目的以外には、孔径が20Å以上ある方が好ましい。
また孔径が大きいほど透水性は高くなるが、5μm近く
なると必然的に存在する細孔径分布のために、膜の1次
側に供給する液体は部分的に液体の状態でも膜を透過し
易く、効果的な膜分離を実施することができない場合が
ある。すなわち、平均孔径は20Åから0.1μmの範囲に
あることがより好ましい。
As the material polymer of the water-blocking porous membrane used in the present invention, for example, tetrafluoroethylene, polyvinylidene fluoride, polypropylene, polysulfone, a copolymer thereof, a mixture thereof, or a mixture of polyacrylonitrile and a fluorine-based polymer Copolymers and mixtures, poly (ethylenetetrafluoroethylene) copolymers and the like can be mentioned. Further, the average pore diameter of the membrane was 10 mm.
As described above, the thickness is preferably 5 μm or less, but depending on the type of the dissolved substance in the raw water and the specifications of the production water, a membrane having a smaller pore diameter can exhibit the features of the present invention. However, when the average pore size is small, the permeation speed is reduced even if the hydrophilic substance has an effect of promoting water permeation. Therefore, the pore size is preferably 20 mm or more for a purpose other than a special purpose.
Also, the larger the pore size, the higher the water permeability. However, due to the pore size distribution that is inevitable when the pore size is close to 5 μm, the liquid supplied to the primary side of the membrane easily permeates through the membrane even in a partially liquid state, In some cases, effective membrane separation cannot be performed. That is, the average pore diameter is more preferably in the range of 20 ° to 0.1 μm.

また、水透過性を向上させるには上記の好適な孔径範
囲で体積空孔率がより大きく、膜の内部に比較的大きい
空孔を有することが必要である。体積空孔率は通常20%
以上、好ましくは40%以上で膜の機械的特性を損なわな
い範囲で高い程有利である。
Further, in order to improve water permeability, it is necessary to have a larger volume porosity in the above-mentioned preferred pore size range and to have relatively large pores inside the membrane. Volume porosity is typically 20%
Above, preferably 40% or more, it is more advantageous as long as the mechanical properties of the film are not impaired.

親水性物質としては、たとえば、グリセリン、ポリエ
チレングリコール、多価アルコールなどのアルコール
類、塩化リチウム、塩化マグネシウムなどの潮解性物
質、各種の多糖類、界面活性剤などが挙げられる。
Examples of the hydrophilic substance include glycerin, polyethylene glycol, alcohols such as polyhydric alcohols, deliquescent substances such as lithium chloride and magnesium chloride, various polysaccharides, and surfactants.

親水性物質の付着状態としては、膜微細孔表面が一様
に親水性物質で覆われていることが好ましいが、経験的
には、微細孔の全表面積の少なくとも30%以上が覆われ
ていれば、水透過性促進の効果が現われると考えられ
る。逆に付着物が多くなると、微細孔が閉塞され、透過
速度の著しい低下をもたらすので、付着物の厚みは、平
均孔径の20%以下であることが好ましい。従って、具体
的な付着量としては、膜素材や製膜条件によって、平均
孔径や体積空孔率などに違いがあり、明確には限定でで
きないが、本発明に利用できる限外過レベルの膜で
は、膜素材重量に対する親水性物質付着量の割合が0.01
から5wt%の範囲にあることが好ましい。
As the state of adhesion of the hydrophilic substance, it is preferable that the surface of the membrane micropores is uniformly covered with the hydrophilic substance, but empirically, at least 30% or more of the total surface area of the micropores is covered. For example, it is considered that the effect of promoting water permeability appears. Conversely, if the amount of deposits increases, the micropores are closed, resulting in a significant decrease in the permeation rate. Therefore, the thickness of the deposits is preferably 20% or less of the average pore diameter. Therefore, as the specific amount of deposition, there is a difference in the average pore diameter and volume porosity, etc., depending on the film material and the film forming conditions, and it is not clearly limited, but an ultra-high level film that can be used in the present invention. The ratio of the amount of the attached hydrophilic substance to the weight of the membrane material is 0.01
To 5 wt%.

このような膜の微細孔表面への親水性物質の付着方向
としては、親水性物質を適当な濃度で溶媒に溶解し、そ
の溶液を膜に含浸、膜微細孔まで侵入されたのち溶媒を
蒸発させて、膜の微細孔表面に親水性物質の薄い層を形
成させる。その後、膜の外表面に付着した親水性物質の
みを溶媒で洗い流しておけば、親水性物質は膜微細孔表
面に存在することになり、本分離法の透過機構から考え
て、付着させた物質が分離対象液に溶出することはな
く、また膜を濡れにくくすると考えられる。該溶液の濃
度は、膜中での親水性物質の分配係数や孔径分布の影響
や、溶媒の種類によって、溶液濃度と付着量の厚さの関
係が複雑に変化するので、容易に特定できないが、経験
的には、0.01から10wt%、特に0.02から2.5wt%の範囲
にあることが好ましいと考えられる。使用する溶媒は膜
素材を溶解させないものであればよいが、含浸後、比較
的容易に蒸発させることができる揮発性の高いのもが好
ましい。
As for the direction of attachment of the hydrophilic substance to the surface of the micropores of such a membrane, the hydrophilic substance is dissolved in a solvent at an appropriate concentration, the solution is impregnated into the membrane, the solvent penetrates into the membrane micropores, and the solvent evaporates. This forms a thin layer of a hydrophilic substance on the surface of the micropores of the membrane. After that, if only the hydrophilic substance adhering to the outer surface of the membrane is washed away with the solvent, the hydrophilic substance will be present on the surface of the membrane micropores. Is not eluted in the liquid to be separated, and it is considered that the membrane is hardly wetted. Although the concentration of the solution cannot be easily specified because the relationship between the solution concentration and the thickness of the attached amount varies depending on the influence of the distribution coefficient and pore size distribution of the hydrophilic substance in the membrane and the type of the solvent, it is difficult. Empirically, it is considered that it is preferably in the range of 0.01 to 10% by weight, particularly 0.02 to 2.5% by weight. The solvent used may be any solvent that does not dissolve the film material, but preferably has high volatility that can be relatively easily evaporated after impregnation.

[参考例] 参考例1 気−液系の分離法は第1図に示した方法で行った。す
なわち、供給液槽1に原水を2000cc入れ、熱交換器3で
40℃に加熱したのちモジュール4の1次側に流量400mlm
in-1で供給する。2次側には窒素を流量250ccmin-1(25
℃)で供給し、2次側圧力を真空ポンプ19および圧力調
節装置8で640mmHgに保った。このとき膜を透過してく
る蒸気を液体窒素トラップ6および7で捕集した。膜は
平均孔径300Åのポリフッ化ビニリデン膜を使用し、親
水性物質はポリエチレングリコールを用いた。含浸に際
しては、ポリエチレングリコールの0.1wt%メタノール
溶液を含浸後、風乾したのち真空乾燥して使用した。
Reference Example Reference Example 1 The gas-liquid separation method was performed by the method shown in FIG. That is, 2000 cc of raw water is put into the supply liquid tank 1 and the heat exchanger 3
After heating to 40 ° C, flow rate 400mlm on the primary side of module 4
Supply in -1 . Nitrogen is supplied to the secondary side at a flow rate of 250 cc min -1 (25
° C), and the secondary pressure was maintained at 640 mmHg by the vacuum pump 19 and the pressure regulator 8. At this time, the vapor permeating the membrane was collected by the liquid nitrogen traps 6 and 7. The membrane used was a polyvinylidene fluoride membrane having an average pore diameter of 300 mm, and the hydrophilic substance used was polyethylene glycol. For the impregnation, a 0.1 wt% methanol solution of polyethylene glycol was impregnated, air-dried, and then vacuum-dried before use.

原水は水道水とし、3時間透過させたところ、平均の
水透過速度は0.2kgm-2h-1、透過水の比抵抗は18MΩ・c
m、TOCは0.03ppmであった。
Raw water was tap water and permeated for 3 hours. The average water permeation rate was 0.2 kgm -2 h -1 and the specific resistance of permeated water was 18 MΩ · c.
m and TOC were 0.03 ppm.

比較例1 参考例1で使用した膜でポリエチレングリコールを付
着させる前の膜を使用して、同様の透過実験を行なった
ところ、平均の水透過速度は0.10kgm-2h-2であった。
Comparative Example 1 A similar permeation experiment was carried out using the membrane used in Reference Example 1 before attaching polyethylene glycol, and the average water permeation rate was 0.10 kgm -2 h -2 .

参考例2 液−液系分離法の実験は、第2図に模式的に示した方
法で行った。即ち、供給液槽1から原液を2次側液温よ
り高い温度に調節して膜モジュール4に供給し循環す
る。一方、膜の2次側には原液と同じ液体を透過液槽5
から所定の温度を調節して循環供給する。このとき、1
次側循環液中の水成分は、液膜界面で蒸発し気体状態
で、膜の両側の温度差によって発生する水蒸気圧差を駆
動力として2次側に透過してくる。
Reference Example 2 The experiment of the liquid-liquid separation method was performed by a method schematically shown in FIG. That is, the undiluted liquid is adjusted from the supply liquid tank 1 to a temperature higher than the secondary liquid temperature, and is supplied to the membrane module 4 and circulated. On the other hand, on the secondary side of the membrane, the same liquid as the stock solution
And circulates and supplies a predetermined temperature. At this time, 1
The water component in the secondary-side circulating liquid evaporates at the liquid film interface and is in a gaseous state, and is transmitted to the secondary side by using a steam pressure difference generated by a temperature difference between both sides of the film as a driving force.

膜は平均孔径250Åのポリフッ化ビニリデン膜を使用
した。親水性物質はグリセリンとし、5.0wt%アセトン
溶液を含浸、その後、真空乾燥して実験に使用した。
The membrane used was a polyvinylidene fluoride membrane having an average pore diameter of 250 mm. The hydrophilic substance was glycerin, impregnated with a 5.0 wt% acetone solution, and then dried under vacuum and used for the experiment.

4時間透過させたところ、平均の水透過速度は1.5kgm
-2h-1であった。
After permeation for 4 hours, the average water permeation speed is 1.5kgm
-2 h -1 .

比較例2 参考例2で使用した膜でグリセリンを付着させる前の
膜を使用して、同様の透過実験を行なったところ、平均
の水透過速度は、0.5kgm-2h-1であった。
Comparative Example 2 A similar permeation experiment was performed using the membrane used in Reference Example 2 before attaching glycerin, and the average water permeation rate was 0.5 kgm -2 h -1 .

[発明の効果] 本発明によれば、液−液系および気−液系の膜蒸留型
分離法において使用し得る、水透過性の改善された多孔
性膜とその製造方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a porous membrane having improved water permeability and a method for producing the same, which can be used in liquid-liquid and gas-liquid membrane distillation separation methods. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の参考例に使用した気−液系の膜分離
実験装置を模式的に示した図である。1は供給液槽、2
は供給液の循環ポンプ、3は供給液の熱交換器、4は膜
モジュール、5は不活性気体の流量調節用ニードル弁、
6、7及び13はコールドトラップである。8は圧力調節
器、19は真空ポンプ、9及び10は供給液の膜モジュール
の入口と出口である。12は不活性気体の膜モジュールへ
の供給口、11は透過蒸気の膜モジュール出口である。1
4、15、16、17および18はコックである。 第2図は、本明の参考例に使用した液−液系膜分離実験
装置を模式的に示した図である。21は供給(または1
次)液槽、22は供給液循環ポンプ、23は供給液側熱交換
器、24は膜モジュール、29及び30はそれぞれ供給液側モ
ジュールの入口と出口である。25は透過(または2次)
液槽、26は透過液側熱交換器、27は調圧弁、28は透過液
側循環ポンプ、31および32はそれぞれ透過液側膜モジュ
ールの入口と出口である。
FIG. 1 is a view schematically showing a gas-liquid type membrane separation experiment apparatus used in a reference example of the present invention. 1 is a supply liquid tank, 2
Is a supply liquid circulation pump, 3 is a supply liquid heat exchanger, 4 is a membrane module, 5 is a needle valve for adjusting the flow rate of the inert gas,
6, 7 and 13 are cold traps. 8 is a pressure regulator, 19 is a vacuum pump, 9 and 10 are the inlet and outlet of the feed liquid membrane module. Reference numeral 12 denotes a supply port of the inert gas to the membrane module, and reference numeral 11 denotes an outlet of the permeated vapor. 1
4, 15, 16, 17 and 18 are cocks. FIG. 2 is a view schematically showing a liquid-liquid type membrane separation experiment apparatus used in the reference example of the present invention. 21 is supply (or 1
Next) a liquid tank, 22 is a supply liquid circulation pump, 23 is a supply liquid side heat exchanger, 24 is a membrane module, and 29 and 30 are an inlet and an outlet of the supply liquid side module, respectively. 25 is transparent (or secondary)
A liquid tank, 26 is a permeate-side heat exchanger, 27 is a pressure regulating valve, 28 is a permeate-side circulation pump, and 31 and 32 are an inlet and an outlet of a permeate-side membrane module, respectively.

フロントページの続き (56)参考文献 特開 昭53−80378(JP,A) 特開 昭62−19207(JP,A) 特開 昭63−7806(JP,A) 特開 昭62−171712(JP,A)Continuation of front page (56) References JP-A-53-80378 (JP, A) JP-A-62-19207 (JP, A) JP-A-63-7806 (JP, A) JP-A-62-171712 (JP) , A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】親水性物質が微細孔を構成する膜内部の微
細孔内表面に付着している構造を有する、水を膜蒸留す
るための分離膜の製造方法であって、親水性物質の溶液
を疎水性多孔質膜に含浸、付着させ、該膜の表面に付着
した親水性物質を溶媒で洗い流すことを特徴とする分離
膜の製造方法。
1. A method for producing a separation membrane for membrane-distilling water, comprising a structure in which a hydrophilic substance is attached to the inner surface of a micropore inside a membrane constituting a micropore, comprising the steps of: A method for producing a separation membrane, comprising impregnating and adhering a solution to a hydrophobic porous membrane and washing away a hydrophilic substance adhering to the surface of the membrane with a solvent.
【請求項2】親水性物質がアルコール、潮解性物質、多
糖類および界面活性剤の少なくとも1種以上である請求
項1記載の分離膜の製造方法。
2. The method according to claim 1, wherein the hydrophilic substance is at least one of an alcohol, a deliquescent substance, a polysaccharide and a surfactant.
JP17993189A 1989-07-12 1989-07-12 Manufacturing method of separation membrane Expired - Fee Related JP2996304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17993189A JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17993189A JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Publications (2)

Publication Number Publication Date
JPH0347521A JPH0347521A (en) 1991-02-28
JP2996304B2 true JP2996304B2 (en) 1999-12-27

Family

ID=16074435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17993189A Expired - Fee Related JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Country Status (1)

Country Link
JP (1) JP2996304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806020A (en) * 2012-08-30 2012-12-05 江苏凯米膜科技股份有限公司 Preparation method of high-flux tubular microfiltration membrane

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353774A (en) * 1999-06-11 2000-12-19 Mitsubishi Electric Corp Water evaporating-type heating body cooling device
JP2009022886A (en) * 2007-07-19 2009-02-05 Kurita Water Ind Ltd Method for improving blocking rate of permeable membrane, blocking rate improved permeable membrane, and permeable membrane treatment method and apparatus
DE102011108909B4 (en) * 2011-07-29 2017-08-31 Major Bravo Limited Membrane distillation apparatus
US8801933B2 (en) * 2011-09-15 2014-08-12 Bha Altair, Llc Membrane distillation modules using oleophobically and antimicrobially treated microporous membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806020A (en) * 2012-08-30 2012-12-05 江苏凯米膜科技股份有限公司 Preparation method of high-flux tubular microfiltration membrane

Also Published As

Publication number Publication date
JPH0347521A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
US5387378A (en) Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
US11148102B2 (en) Thin film composite membrane with nano-sized bubbles having enhanced membrane permeability, preparation methods and uses thereof
WO2006038409A1 (en) Process for producing semipermeable composite membrane
EP1007194A1 (en) Polyion complex separation membrane with a double structure
JP2996304B2 (en) Manufacturing method of separation membrane
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
US4877533A (en) Separation of water from organic fluids
CN114259878A (en) Nanofiltration membrane with adjustable aperture and high flux and preparation method thereof
Choi et al. The characteristics of a PAA-PSf composite membrane for separation of water-ethanol mixtures through pervaporation
DK156813B (en) A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE
Uragami et al. Studies on syntheses and permeabilities of special polymer membranes. II. Permeation characteristics of cellulose nitrate membranes
JPH0510104B2 (en)
GB2174619A (en) Composite separation membranes
JP2890469B2 (en) Method for producing porous separation membrane
CN111201078B (en) Water treatment separation membrane, water treatment module comprising same, and manufacturing method thereof
Hwang et al. Structural control of polysulfone membrane by using dimethylacetamide and water-pressure for water treatment
Ohya et al. Reverse osmosis characteristics of cellulose acetate butyrate membranes
JPH057049B2 (en)
CN114699918B (en) Reverse osmosis membrane and preparation method thereof
JPH0254135B2 (en)
US20220212956A1 (en) Methods for water extraction
WO2021153486A1 (en) Method for filtering oil
JP2814536B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees