JPH0347521A - Separation membrane and usage thereof - Google Patents

Separation membrane and usage thereof

Info

Publication number
JPH0347521A
JPH0347521A JP17993189A JP17993189A JPH0347521A JP H0347521 A JPH0347521 A JP H0347521A JP 17993189 A JP17993189 A JP 17993189A JP 17993189 A JP17993189 A JP 17993189A JP H0347521 A JPH0347521 A JP H0347521A
Authority
JP
Japan
Prior art keywords
membrane
separation
liquid
water
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17993189A
Other languages
Japanese (ja)
Other versions
JP2996304B2 (en
Inventor
Masatoshi Aoyama
雅俊 青山
Yoshinari Fujii
能成 藤井
Hidetsugu Iwatani
岩谷 英嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17993189A priority Critical patent/JP2996304B2/en
Publication of JPH0347521A publication Critical patent/JPH0347521A/en
Application granted granted Critical
Publication of JP2996304B2 publication Critical patent/JP2996304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To obtain a separation membrane which can be utilized in a membrane distillation type separation method of a liquid-liquid system and a gas-liquid system and is improved in water-permeability by constituting the separation membrane of a hydrophobic porous membrane wherein hydrophilic substance is stuck on the surface of the fine holes. CONSTITUTION:A separation membrane is constituted by sticking hydrophilic substance (e.g. glycerin) on the surfaces of the fine holes of a hydrophobic porous membrane made of polytetrafluoroethylene, etc. The mean pore diameter of the fine holes is preferably regulated to a range within about 20Angstrom and about 0.1mum. Further the rate of amount of stuck hydrophilic substance for the weight of membrane material is preferably regulated to a range within about 0.01-5wt.%. This separation membrane is utilized in the membrane separation method of a liquid-liquid system wherein water contained in liquid is separated while holding the temp. as driving force of separation. Furthermore this separation membrane is utilized in the membrane separation of a gas-liquid system wherein liquid is supplied to the primary side of this membrane and the secondary side is held in a vapor phase and steam passed through this membrane is cooled and collected. As a result, the separation membrane is obtained which is excellent in water-permeability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、水を組成に持つ種々の液体から水を除去あ
るいは濃縮分離する膜分離法に使用する分離膜とその使
用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a separation membrane used in a membrane separation method for removing or concentrating and separating water from various liquids containing water as a composition, and a method for using the same.

(従来の技術) 超純水は、製薬工業における薬品製造の工程用水、注射
薬用アンプルの洗浄水さらに注射用調製用水、半導体工
場における洗浄水、原子力発電所における複水などに使
用されているが、半導体の集積度の向上など技術発展に
あわせて、より高度に精製された水が必要とされる状況
にある。
(Prior art) Ultrapure water is used as process water for drug manufacturing in the pharmaceutical industry, washing water for ampules for injections, water for preparing injections, washing water in semiconductor factories, double water in nuclear power plants, etc. In line with technological developments such as improvements in the degree of integration of semiconductors, there is a need for more highly purified water.

近年目覚ましく発展してきた膜分離技術は、水処理ある
いは水の製造に関する分野においても広く利用され、上
記の超純水製造技術は逆浸透膜および限外濾過膜の導入
により近年急速な進歩を遂げてきている。
Membrane separation technology, which has developed rapidly in recent years, is widely used in fields related to water treatment and water production, and the above-mentioned ultrapure water production technology has made rapid progress in recent years with the introduction of reverse osmosis membranes and ultrafiltration membranes. ing.

(発明が解決しようとする課題) しかしながら、現在、エレクトロニクス用超純水に対す
る要求スペックは半導体集積密度の飛躍的高度化に対応
して、極めて高度化してきており、従来の方法の展開で
は不充分であるといわれている。他方、原子力発電の複
水処理あるいは注射用調製用水のための超純水製造に対
しては、従来の膜分離法では困難もしくは信頼性に欠け
るという状況にある。すなわち、原子力発電の1次冷却
水に含まれる放射性物質の除去に対しては、逆浸透法あ
るいは、いわゆる従来試みられている膜蒸留法では、ま
だ十分な除去率とはいえず、さらに効率的、経済的な除
去方法が望まれている。注射用調製用水の製造において
は、パイロジエンとよばれる発熱性物質の除去が重要と
なるが、現在検討されている逆浸透膜では、有害な高分
子量の物質は除去されるものの、膜を透過する低分子量
物質が膜を透過後、会合して発熱性物質を形成すること
が指摘されており、加えて、このパイロジエンは検出限
界以下の微量でも人体に影響を及ぼすため、原理的に排
除できる分離法の適用が必要である。
(Problem to be solved by the invention) However, currently, the required specifications for ultrapure water for electronics have become extremely sophisticated in response to the dramatic increase in semiconductor integration density, and the development of conventional methods is insufficient. It is said that On the other hand, conventional membrane separation methods are difficult or unreliable for dual water treatment in nuclear power generation or the production of ultrapure water for water preparation for injections. In other words, for the removal of radioactive substances contained in the primary cooling water of nuclear power plants, the reverse osmosis method or the so-called membrane distillation method that has been attempted in the past cannot be said to have a sufficient removal rate, and even more efficient methods are needed. , an economical removal method is desired. In the production of water for injection, it is important to remove pyrogenic substances called pyrogenes, but reverse osmosis membranes currently being considered remove harmful high-molecular-weight substances, but do not allow them to pass through the membrane. It has been pointed out that low molecular weight substances combine to form pyrogenic substances after passing through the membrane, and in addition, this pyrogen has an effect on the human body even in trace amounts below the detection limit, so separation that can be eliminated in principle is not possible. Application of the law is necessary.

これらの分野における超純水の製造方法に関して、最近
、膜蒸留法あるいは蒸気透過法とよばれる、逆浸透膜お
よび限外濾過膜とは異なる、新しい膜分離技術の適用が
研究されるようになってきた。逆浸透膜あるいは限外濾
過膜は、透過の過程で透過成分が常に液体状態にあり相
変化を伴わない分離法である。一方、膜蒸留法および蒸
気透過法においては、疎水性の微多孔性膜を使用するた
め膜は1次側の液体に濡れることがなく、透過物質は1
次側の液膜界面において蒸発し、膜の微細孔内に気体の
状態で侵入し2次側まで拡散していくと考えられている
。このように膜蒸留法および蒸気透過法は透過の過程で
液体状態から気体状態への相変化を伴うことから、原理
的には原水に含まれる不揮発性物質が膜の2次側へ侵入
するのを完全に防止することが可能であるという特徴を
持っている。
Regarding methods for producing ultrapure water in these fields, research has recently begun on the application of a new membrane separation technology called membrane distillation or vapor permeation, which is different from reverse osmosis membranes and ultrafiltration membranes. It's here. A reverse osmosis membrane or an ultrafiltration membrane is a separation method in which the permeated components are always in a liquid state during the permeation process and do not involve a phase change. On the other hand, in the membrane distillation method and the vapor permeation method, since a hydrophobic microporous membrane is used, the membrane does not get wet with the primary liquid, and the permeated substance is
It is thought that it evaporates at the liquid film interface on the next side, enters the fine pores of the film in a gaseous state, and diffuses to the secondary side. In this way, the membrane distillation method and vapor permeation method involve a phase change from a liquid state to a gas state during the permeation process, so in principle, non-volatile substances contained in raw water can enter the secondary side of the membrane. It has the characteristic that it is possible to completely prevent it.

しかしながら、これまで検討されてきた平均孔径が0.
1から5μmの範囲にあるいわゆる微多孔性膜では、不
揮発性物質がミストとして透過蒸気に同伴し2次側に透
過するため期待通りの除去率を達成することが困難であ
った。本発明者らは、それを考慮して不純物を透過させ
る大孔径の細孔が存在しないような平均孔径の小さい限
外濾過レベルの膜を用いる方法を研究してきたが、水の
透過速度が低くなってしまうという問題点があり、透過
速度を改善する必要があった。
However, the average pore diameter that has been studied so far is 0.
With so-called microporous membranes in the range of 1 to 5 μm, it has been difficult to achieve the expected removal rate because nonvolatile substances accompany the permeated vapor as mist and permeate to the secondary side. Taking this into consideration, the present inventors have researched a method using an ultrafiltration level membrane with a small average pore size that does not have large pores that allow impurities to pass through, but the water permeation rate is low. Therefore, it was necessary to improve the transmission speed.

(課題を解決するための手段) 本発明は、上記の従来技術の欠点を解消するために、下
記の構成を有する。
(Means for Solving the Problems) The present invention has the following configuration in order to eliminate the drawbacks of the above-mentioned prior art.

即ち、親水性物質が微細孔表面に付着した疎水性多孔性
膜からなることを特徴とする分離膜及びその使用方法に
関する。
That is, the present invention relates to a separation membrane characterized by comprising a hydrophobic porous membrane with a hydrophilic substance attached to the surface of micropores, and a method for using the same.

本発明で用いる疎水性多孔性膜の素材ポリマとしては、
例えば、テトラフルオロエチレン、ポリフッ化ビニリデ
ン、ポリプロピレン、ポリスルホン、ポリエーテルスル
ホンとこれらの共重合体、混合物、あるいはポリアクリ
ロニトリルとフッ素系ポリマとの共重合体や混合物、ポ
リ(エチレンテトラフロロエチレン)共重合体などが挙
げられる。また、膜の微細孔径は平均孔径で10Å以上
、5μm以下であることが好ましいが、原水中の溶存物
質の種類と、製造水のスペックによっては、さらに孔径
の小さい膜が本発明の特徴を発揮できる。しかしながら
、平均孔径が小さい場合、親水性物質の水通過に対する
促進効果があっても透過速度が小さ(なるので、特殊な
目的以外には、孔径が20Å以上ある方が好ましい。ま
た孔径が大きいほど透水性は高くなるが、5μm近くな
ると必然的に存在する細孔径分布のために、膜の1次側
に供給する液体は部分的に液体の状態でも膜を透過し易
く、効果的な膜分離を実施することができない場合があ
る。すなわち、平均孔径は20人から0.1μmの範囲
にあることがより好ましい。
The material polymer for the hydrophobic porous membrane used in the present invention includes:
For example, tetrafluoroethylene, polyvinylidene fluoride, polypropylene, polysulfone, polyethersulfone and copolymers and mixtures thereof, copolymers and mixtures of polyacrylonitrile and fluorine-based polymers, and poly(ethylenetetrafluoroethylene) copolymers. Examples include merging. In addition, the average pore size of the membrane is preferably 10 Å or more and 5 μm or less, but depending on the type of dissolved substances in the raw water and the specifications of the manufactured water, a membrane with a smaller pore size may exhibit the characteristics of the present invention. can. However, if the average pore size is small, even if the hydrophilic substance has the effect of promoting water passage, the permeation rate will be small (so that, except for special purposes, it is preferable that the pore size is 20 Å or more. Although the water permeability is high, due to the pore size distribution that inevitably exists when approaching 5 μm, the liquid supplied to the primary side of the membrane easily permeates through the membrane even in a partially liquid state, resulting in effective membrane separation. In other words, it is more preferable that the average pore diameter is in the range of 20 to 0.1 μm.

また、水透過性を向上させるには上記の好適な孔径範囲
で体積空孔率がより大きく、膜の内部に比較的大きい空
孔を有することが必要である。体積空孔率は通常20%
以上、好ましくは40%以上で膜の機械的特性を損なわ
ない範囲で高い程有利である。
Furthermore, in order to improve water permeability, it is necessary to have a larger volume porosity within the above-mentioned preferred pore diameter range and to have relatively large pores inside the membrane. Volume porosity is usually 20%
As mentioned above, it is preferably 40% or more, and as long as the mechanical properties of the membrane are not impaired, the higher the content, the more advantageous.

親水性物質としては、たとえば、グリセリン、ポリエチ
レングリコール、多価アルコールなどのアルコール類、
塩化リチウム、塩化マグネシウムなどの潮解性物質、各
種の多糖類、界面活性剤などが挙げられる。
Examples of hydrophilic substances include alcohols such as glycerin, polyethylene glycol, and polyhydric alcohols;
Examples include deliquescent substances such as lithium chloride and magnesium chloride, various polysaccharides, and surfactants.

親水性物質の付着状態としては、膜微細孔表面が一様に
親水性物質で覆われていることが好ましいが、経験的に
は、微細孔の全表面積の少なくとも30%以上が覆われ
ていれば、水透過性促進の効果が現われると考えられる
。逆に付着物が多くなると、微細孔が閉塞され、透過速
度の著しい低下をもたらすので、付着物の厚みは、平均
孔径の20%以下であることが好ましい。従って、具体
的な付着量としては、膜素材や製膜条件によって、平均
孔径や体積空孔率などに違いがあり、明確には限定でき
ないが、本発明で利用できる限外濾過レベルの膜では、
膜素材重量に対する親水性物質付着量の割合が0,01
から5 w t%の範囲にあることが好ましい。
Regarding the state of adhesion of the hydrophilic substance, it is preferable that the surface of the membrane micropores is uniformly covered with the hydrophilic substance, but empirically, at least 30% or more of the total surface area of the micropores should be covered. For example, it is thought that the effect of promoting water permeability will appear. On the other hand, if the amount of deposits increases, the micropores will be blocked and the permeation rate will be significantly reduced, so the thickness of the deposits is preferably 20% or less of the average pore diameter. Therefore, the specific amount of adhesion cannot be clearly determined because the average pore diameter and volume porosity vary depending on the membrane material and membrane forming conditions, but for the ultrafiltration level membrane that can be used in the present invention, ,
The ratio of the amount of hydrophilic substance attached to the weight of the membrane material is 0.01
Preferably, the amount is in the range from 5 to 5 wt%.

このような膜の微細孔表面への親水性物質の付着方法と
しては、親水性物質を適当な濃度で溶媒に溶解し、その
溶液を膜に含浸、膜微細孔まで侵入させたのち溶媒を蒸
発させて、膜の微細孔表面に親水性物質の薄い層を形成
させる。さらに用途に応じて、その後、膜の外表面に付
着した親水性物質のみを溶媒で洗い流しておけば、親水
性物質は膜微細孔表面にのみ存在することになり、本分
離法の透過機構から考えて、付着させた物質が分離対象
液に溶出することはなく、また膜を濡れにくくすると考
えられる。該溶液の濃度は、膜中での親水性物質の分配
係数や孔径分布の影響や、溶媒の種類によって、溶液濃
度と付着量の厚さの関係が複雑に変化するので、容易に
特定できないが、経験的には、0.01から10wt%
、特に0゜02から2,5wt%の範囲にあることが好
ましいと考えられる。使用する溶媒は膜素材を溶解させ
ないものであればよいが、含浸後、比較的容易に蒸発さ
せることができる揮発性の高いのもが好ましい。
The method of attaching a hydrophilic substance to the surface of the micropores of such a membrane is to dissolve the hydrophilic substance in a solvent at an appropriate concentration, impregnate the membrane with the solution, allow it to penetrate into the membrane's micropores, and then evaporate the solvent. to form a thin layer of hydrophilic substance on the surface of the micropores of the membrane. Furthermore, depending on the application, if only the hydrophilic substances adhering to the outer surface of the membrane are washed away with a solvent, the hydrophilic substances will exist only on the surface of the membrane's micropores, and the permeation mechanism of this separation method will be eliminated. It is thought that the attached substance will not be eluted into the liquid to be separated and will make the membrane difficult to wet. The concentration of the solution cannot be easily determined because the relationship between the concentration of the solution and the thickness of the deposit changes in a complex manner depending on the influence of the distribution coefficient and pore size distribution of the hydrophilic substance in the membrane and the type of solvent. , empirically, from 0.01 to 10 wt%
In particular, it is considered preferable that the content be in the range of 0.02 to 2.5 wt%. The solvent used may be any solvent as long as it does not dissolve the membrane material, but a highly volatile solvent that can be relatively easily evaporated after impregnation is preferred.

[実施例] 次に実施例で本発明を説明する。[Example] Next, the present invention will be explained with examples.

実施例1 気−液系の分離法は第1図に示した方法で行った。すな
わち、供給液槽1に原水を2000cc入れ、熱交換器
3で40℃に加熱したのちモジュール4の1次側に流量
400m1m1n−1で供給する。2次側には窒素を流
量250ccmin’ (25℃)で供給し、2次側圧
力を真空ポンプ19および圧力調節装置8で640mm
Hgに保った。このとき膜を透過して(る蒸気を液体窒
素トラップ6および7で捕集した。膜は平均孔径300
Aのポリフッ化ビニリデン膜を使用し、親水性物質はポ
リエチレングリコールを用いた。
Example 1 The gas-liquid separation method was performed as shown in FIG. That is, 2000 cc of raw water is put into the supply liquid tank 1, heated to 40° C. by the heat exchanger 3, and then supplied to the primary side of the module 4 at a flow rate of 400 ml1m1n-1. Nitrogen is supplied to the secondary side at a flow rate of 250 ccmin' (25°C), and the secondary side pressure is adjusted to 640 mm using the vacuum pump 19 and pressure regulator 8.
Maintained at Hg. At this time, the vapor that permeated through the membrane was collected by liquid nitrogen traps 6 and 7.The membrane had an average pore size of 300
A polyvinylidene fluoride membrane was used, and polyethylene glycol was used as the hydrophilic substance.

含浸に際しては、ポリエチレングリコールの0.1wt
%メタノール溶液を含浸後、風乾したのち真空乾燥して
使用した。
For impregnation, 0.1wt of polyethylene glycol
% methanol solution, air-dried, and then vacuum-dried before use.

原水は水道水とし、3時間透過させたところ、平均の水
透過速度はQ、 2kgm−” h−’、透過水の比抵
抗は18MΩ・Cm1TOCは0. Q3ppmであっ
た。
The raw water was tap water, and when it was allowed to permeate for 3 hours, the average water permeation rate was Q, 2kgm-''h-', and the specific resistance of the permeated water was 18MΩ·Cm1TOC was 0.Q3ppm.

比較例1 実施例1で使用した膜でポリエチレングリコールを付着
させる前の膜を使用して、同様の透過実験を行なったと
ころ、平均の水透過速度は0.10  kgm−2h−
’であった。
Comparative Example 1 A similar permeation experiment was conducted using the membrane used in Example 1 before polyethylene glycol was attached, and the average water permeation rate was 0.10 kgm-2h-
'Met.

実施例2 液−液系分離法の実験は、第2図に模式的に示した方法
で行った。即ち、供給液槽1から原液を2次側液温より
高い温度に調節して膜モジュール4に供給し循環する。
Example 2 An experiment on the liquid-liquid separation method was carried out by the method schematically shown in FIG. That is, the stock solution is adjusted to a temperature higher than the secondary side liquid temperature from the supply liquid tank 1, and is supplied to the membrane module 4 and circulated.

一方、膜の2次側はに原液と同じ液体を透過液槽5から
所定の温度に調節して循環供給する。このとき、1次側
循環液中の水成分は、液膜界面で蒸発し気体状態で、膜
の両側の温度差によって発生する水蒸気圧差を駆動力と
して2次側に透過してくる。
On the other hand, on the secondary side of the membrane, the same liquid as the stock solution is circulated and supplied from the permeate tank 5 at a predetermined temperature. At this time, the water component in the primary side circulating liquid evaporates at the liquid membrane interface and permeates in a gaseous state to the secondary side using the water vapor pressure difference generated by the temperature difference on both sides of the membrane as a driving force.

膜は平均孔径250人のポリフッ化ビニリデン膜を使用
した。親水性物質はグリセリンとし、5.OW1%アセ
トン溶液を含浸、その後、真空乾燥して実験に使用した
The membrane used was a polyvinylidene fluoride membrane with an average pore size of 250 pores. The hydrophilic substance is glycerin; 5. It was impregnated with a 1% OW acetone solution, and then dried under vacuum and used for experiments.

比較例2 実施例2で使用した膜でグリセリンを付着させる前の膜
を使用して、同様の透過実験を行なったところ、平均の
水透過速度は、0. 5  kgm−2h’であった。
Comparative Example 2 A similar permeation experiment was conducted using the membrane used in Example 2 before glycerin was attached, and the average water permeation rate was 0. It was 5 kgm-2h'.

[発明の効果] 本発明によれば、液−液系および気−液系の膜蒸留型分
離法において使用し得る、水透過性の改善された多孔性
膜とその製造方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a porous membrane with improved water permeability that can be used in membrane distillation type separation methods for liquid-liquid systems and gas-liquid systems, and a method for producing the same. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に使用した気−液系の膜分離
実験装置を模式的に示した図である。1は供給液槽、2
は供給液の循環ポンプ、3は供給液の熱交換器、4は膜
モジュール、5は不活性気体の流量調節用ニードル弁、
6.7及び13はコールドトラップである。8は圧力調
節器、19は真空ポンプ、9及び10は供給液の膜モジ
ュールの入口と出口である。12は不活性気体の膜モジ
ュールへの供給口、11は透過蒸気の膜モジユール出口
である。14.15.16.17および18はコックで
ある。 第2図は、本発明の実施例に使用した液−液系膜分離実
験装置を模式的に示した図である。21は供給(または
1次)液槽、22は供給液循環ポンプ、23は供給液側
熱交換器、24は膜モジュール、29及び30はそれぞ
れ供給液側モジュールの入口と出口である。25は透過
(または2次)液槽、26は透過液側熱交換器、27は
調圧弁、28は透過液側循環ポンプ、31および32は
それぞれ透過液側膜モジュールの入口と出口である。
FIG. 1 is a diagram schematically showing a gas-liquid membrane separation experimental apparatus used in an example of the present invention. 1 is a supply liquid tank, 2
3 is a feed liquid circulation pump, 3 is a feed liquid heat exchanger, 4 is a membrane module, 5 is a needle valve for adjusting the flow rate of inert gas,
6.7 and 13 are cold traps. 8 is a pressure regulator, 19 is a vacuum pump, and 9 and 10 are inlets and outlets of the feed liquid to the membrane module. Reference numeral 12 indicates an inlet for supplying inert gas to the membrane module, and reference numeral 11 indicates an outlet for permeated vapor from the membrane module. 14.15.16.17 and 18 are cooks. FIG. 2 is a diagram schematically showing a liquid-liquid membrane separation experimental apparatus used in an example of the present invention. 21 is a supply (or primary) liquid tank, 22 is a feed liquid circulation pump, 23 is a feed liquid side heat exchanger, 24 is a membrane module, and 29 and 30 are the inlet and outlet of the feed liquid side module, respectively. 25 is a permeate (or secondary) liquid tank, 26 is a permeate side heat exchanger, 27 is a pressure regulating valve, 28 is a permeate side circulation pump, and 31 and 32 are the inlet and outlet of the permeate side membrane module, respectively.

Claims (3)

【特許請求の範囲】[Claims] (1)親水性物質が微細孔表面に付着した疎水性多孔性
膜からなることを特徴とする分離膜。
(1) A separation membrane comprising a hydrophobic porous membrane with a hydrophilic substance attached to the surface of micropores.
(2)請求項1記載の分離膜を、温度を分離の駆動力と
して液中の水を分離する液−液系の膜分離法で使用する
ことを特徴とする分離膜の使用方法。
(2) A method of using a separation membrane, characterized in that the separation membrane according to claim 1 is used in a liquid-liquid membrane separation method in which water in a liquid is separated using temperature as a driving force for separation.
(3)請求項1記載の分離膜を、該膜の1次側に液体を
供給し、2次側を気相に保って該膜を透過する水蒸気を
冷却して捕集する気−液系の膜分離法において使用する
ことを特徴とする分離膜の使用方法。
(3) A gas-liquid system in which the separation membrane according to claim 1 is supplied with a liquid to the primary side of the membrane, and the secondary side is maintained in a gas phase to cool and collect water vapor passing through the membrane. A method of using a separation membrane, characterized in that it is used in a membrane separation method.
JP17993189A 1989-07-12 1989-07-12 Manufacturing method of separation membrane Expired - Fee Related JP2996304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17993189A JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17993189A JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Publications (2)

Publication Number Publication Date
JPH0347521A true JPH0347521A (en) 1991-02-28
JP2996304B2 JP2996304B2 (en) 1999-12-27

Family

ID=16074435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17993189A Expired - Fee Related JP2996304B2 (en) 1989-07-12 1989-07-12 Manufacturing method of separation membrane

Country Status (1)

Country Link
JP (1) JP2996304B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794851A1 (en) * 1999-06-11 2000-12-15 Mitsubishi Electric Corp Device for cooling heat-producing unit by water evaporation, for cooling electronic components
WO2009011415A1 (en) * 2007-07-19 2009-01-22 Kurita Water Industries Ltd. Method for improving blocking rate of permeable membrane, blocking rate improved permeable membrane, and permebale membrane treatment method and apparatus
CN103007760A (en) * 2011-09-15 2013-04-03 Bha控股公司 Membrane distillation modules using oleophobically and antimicrobially treated microporous membranes
CN103732311A (en) * 2011-07-29 2014-04-16 Aaa水技术公司 Membrane distillation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806020A (en) * 2012-08-30 2012-12-05 江苏凯米膜科技股份有限公司 Preparation method of high-flux tubular microfiltration membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794851A1 (en) * 1999-06-11 2000-12-15 Mitsubishi Electric Corp Device for cooling heat-producing unit by water evaporation, for cooling electronic components
WO2009011415A1 (en) * 2007-07-19 2009-01-22 Kurita Water Industries Ltd. Method for improving blocking rate of permeable membrane, blocking rate improved permeable membrane, and permebale membrane treatment method and apparatus
JP2009022886A (en) * 2007-07-19 2009-02-05 Kurita Water Ind Ltd Method for improving blocking rate of permeable membrane, blocking rate improved permeable membrane, and permeable membrane treatment method and apparatus
CN103732311A (en) * 2011-07-29 2014-04-16 Aaa水技术公司 Membrane distillation device
CN103007760A (en) * 2011-09-15 2013-04-03 Bha控股公司 Membrane distillation modules using oleophobically and antimicrobially treated microporous membranes

Also Published As

Publication number Publication date
JP2996304B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
AU2019200816B2 (en) Membrane distillation apparatus and hydrophobic porous membrane
Uragami Science and technology of separation membranes
Souhaimi et al. Membrane distillation: principles and applications
AU587407B2 (en) Osmotic concentration by membrane
US5387378A (en) Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
US5130025A (en) Membrane separation and purification of compounds
JP6724124B2 (en) Membrane device having improved forward osmosis performance and solution separation method using the same
WO2006038409A1 (en) Process for producing semipermeable composite membrane
Baker et al. Membrane separation
CN109046025A (en) Selective Separation micro-content organism and the nanofiltration membrane of calcium ions and magnesium ions and preparation method thereof
JPH0347521A (en) Separation membrane and usage thereof
DK156813B (en) A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE
KR20130027787A (en) Polyamide nanofiltration composite membrane and manufacturing method thereof
JP2016147238A (en) Separation membrane having graphene oxide layer
JP2890469B2 (en) Method for producing porous separation membrane
Pinappu Composite membranes for membrane distillation desalination process
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
Meringolo et al. State of the Art and Perspectives in Membranes for Membrane Distillation/Membrane Crystallization
KR102660173B1 (en) Method of manufacturing membrane, membrane and water treatment module
JP2814536B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
JPS61200814A (en) Method for concentrating volatile organic liquid aqueous solution
Wang et al. Effects of membrane-making conditions and shrinkage treatment on morphology and performance of cellulose acetate butyrate membranes
Murugesan Optimization of Nanocomposite Membrane for Membrane Distillation
JPH0360725A (en) Aqueous volatile organic liquid solution-concentrating membrane
CN114749035A (en) Low-pressure large-flux hollow fiber nanofiltration membrane as well as preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees