JPH0512971B2 - - Google Patents

Info

Publication number
JPH0512971B2
JPH0512971B2 JP403687A JP403687A JPH0512971B2 JP H0512971 B2 JPH0512971 B2 JP H0512971B2 JP 403687 A JP403687 A JP 403687A JP 403687 A JP403687 A JP 403687A JP H0512971 B2 JPH0512971 B2 JP H0512971B2
Authority
JP
Japan
Prior art keywords
membrane
aqueous solution
volatile organic
organic liquid
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP403687A
Other languages
Japanese (ja)
Other versions
JPS63175607A (en
Inventor
Yoshinari Fujii
Shoji Kigoshi
Hidetsugu Iwatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP403687A priority Critical patent/JPS63175607A/en
Publication of JPS63175607A publication Critical patent/JPS63175607A/en
Publication of JPH0512971B2 publication Critical patent/JPH0512971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、揮発性有機液体成分をその水溶液か
ら濃縮して分離する膜分離法に使する分離膜とそ
の使用方法およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a separation membrane used in a membrane separation method for concentrating and separating a volatile organic liquid component from an aqueous solution thereof, a method for using the same, and a method for producing the same.

[従来の技術] 近年、膜分離法に関する技術は、逆浸透法、限
外ろ過法、拡散透析法、血液透析法、電気透析
法、ガス分離法、およびパーベーパレーシヨン法
等の技術として目覚ましく発展している。
[Conventional technology] In recent years, technologies related to membrane separation methods have made remarkable progress, such as reverse osmosis, ultrafiltration, diffusion dialysis, hemodialysis, electrodialysis, gas separation, and pervaporation. It is developing.

一般に、反応系あるいは種々のプロセス内で生
成あるいは蓄積してくる有機液体の水溶液を濃縮
しつつ系外に分離して取出すニーズは非常に多
い。しかし、従来の分離技術では低濃度の水溶液
からこの様な成分を効率よく省エネルギー的に分
離することが困難であつた。
Generally, there is a great need to concentrate and separate an aqueous solution of an organic liquid that is generated or accumulated in a reaction system or various processes and take it out of the system. However, with conventional separation techniques, it has been difficult to efficiently separate such components from low-concentration aqueous solutions in an energy-saving manner.

現在注目されているパーベーパレーシヨン法に
おいても、有機液体の水溶液から分離を試みると
ほとんどすべての膜素材は選択的に透過させ、ま
た、大容量の装置を高い真空度に保つ、トラツプ
を低温に保つ等といつたエネルギー多消費型プロ
セスが必要であるといつた問題点があつた。
Even in the pervaporation method, which is currently attracting attention, almost all membrane materials selectively permeate when trying to separate an organic liquid from an aqueous solution. The problem was that an energy-intensive process was required to maintain the temperature.

そこで、温度差を主たる駆動力とする、液−液
系の揮発性有機液体成分を濃縮する疎水性高分子
の多孔質膜を用いたアツプヒル輸送型膜分離方法
が特願昭60−038810号公報により提案されてい
る。
Therefore, Japanese Patent Application No. 60-038810 discloses an uphill transport membrane separation method using a hydrophobic polymer porous membrane that concentrates volatile organic liquid components in a liquid-liquid system, using temperature difference as the main driving force. proposed by.

[発明が解決しようとする問題点] しかしながら、特願昭60−038810号公報に提案
する方法においても、その分離性能は、充分満足
の得られるものではなかつた。
[Problems to be Solved by the Invention] However, even in the method proposed in Japanese Patent Application No. 60-038810, the separation performance was not fully satisfactory.

本発明は、高い分離性能を持つ、揮発性有機液
体水溶液濃縮膜とその使用方法およびその製造方
法を提供することを目的とする。
An object of the present invention is to provide a volatile organic liquid aqueous solution concentration membrane having high separation performance, a method for using the same, and a method for producing the same.

[問題点を解決するための手段] 本発明は、かかる従来技術の欠点を解消するた
めに下記の構成を有する。
[Means for Solving the Problems] The present invention has the following configuration in order to eliminate the drawbacks of the prior art.

すなわち本発明は、 「(1) ポリフツ化ビニリデン系多孔性膜の表面
に、該膜表面の少なくとも一部の開孔部が閉塞
されることなく、ケトン樹脂がコートされてい
ることを特徴とする揮発性有機液体水溶液濃縮
膜。
That is, the present invention is characterized in that ``(1) The surface of a polyvinylidene fluoride-based porous membrane is coated with a ketone resin without blocking at least some of the openings on the surface of the membrane. Volatile organic liquid aqueous solution concentration membrane.

(2) ポリフツ化ビニリデン系多孔性膜の表面に、
該膜表面の少なくとも一部の開孔部が閉塞され
ることなく、ケトン樹脂がコートされている複
合半透膜において、該膜の一次側に該膜の平均
微細孔半径の1/15以下のストークス半径を持
ち、かつ該膜に対して実質的に不透性を示す揮
発性有機液体水溶液を供給し、気化した状態で
膜を透過させることを特徴とする揮発性有機液
体水溶液濃縮膜の使用方法。
(2) On the surface of the polyvinylidene fluoride porous membrane,
In a composite semipermeable membrane in which at least some of the pores on the membrane surface are coated with a ketone resin without being blocked, the primary side of the membrane has a pore size of 1/15 or less of the average micropore radius of the membrane. Use of a volatile organic liquid aqueous solution concentrating membrane characterized by supplying a volatile organic liquid aqueous solution having a Stokes radius and showing substantially impermeability to the membrane, and allowing the volatile organic liquid aqueous solution to pass through the membrane in a vaporized state. Method.

(3) ケトン樹脂のコーテイング液の溶媒と相溶性
を示すポリフツ化ビニリデンの非溶媒を、ポリ
フツ化ビニリデン系多孔性膜に含浸させ、該膜
の表面にケトン樹脂の溶液をコートし、溶媒を
蒸発・揮散させてポリフツ化ビニリデンの表面
の少なくとも一部の開孔部を閉塞させることな
くコートしたことを特徴とする、揮発性有機液
体水溶液濃縮膜の製造方法。」 に関する。
(3) A polyvinylidene fluoride-based porous membrane is impregnated with a polyvinylidene fluoride non-solvent that is compatible with the solvent of the ketone resin coating solution, the ketone resin solution is coated on the surface of the membrane, and the solvent is evaporated. - A method for producing a volatile organic liquid aqueous solution concentration membrane, characterized in that it is coated without clogging at least some of the openings on the surface of polyvinylidene fluoride by volatilization. ” regarding.

本発明で用いるポリフツ化ビニリデン系多孔性
膜は、フツ化ビニリデン単独重合体、または少な
くとも70重量%のフツ化ビニリデンと、トリもし
くはテトラフルオロエチレンとの共重合体からな
る多孔性膜である。
The polyvinylidene fluoride porous membrane used in the present invention is a porous membrane made of a vinylidene fluoride homopolymer or a copolymer of at least 70% by weight of vinylidene fluoride and tri- or tetrafluoroethylene.

本願発明に用いるポリフツ化ビニリデン系多孔
質膜の微細孔半径は平均半径で20Å以上、100Å
以下であることが好ましい。平均半径が20Åより
小さい場合、気体の状態であつても揮発性有機液
体成分が優先的に透過せず、1000Åより大きい場
合、膜の一次側に供給する揮発性有機液体成分
は、液体の状態でも膜を透過し膜分離を実施する
ことができない。
The average radius of the micropores of the polyvinylidene fluoride porous membrane used in the present invention is 20 Å or more and 100 Å
It is preferable that it is below. If the average radius is smaller than 20 Å, the volatile organic liquid component will not preferentially permeate even if it is in a gas state, and if it is larger than 1000 Å, the volatile organic liquid component supplied to the primary side of the membrane will be in the liquid state. However, it cannot pass through a membrane and perform membrane separation.

本願発明の膜は、該膜の平均微細孔径に対し
て、1/15以下のストークス半径を持ち、かつ該膜
に対して実質的に不透性を示す物質の分離に好ま
しく用いられる。平均微細孔径に対してストーク
ス半径の比が、1/15より大きい場合は、分離対象
物質である揮発性有機液体成分が水に対して優先
的に透過しない。該膜に対して実質的に不透性を
示す分離対象物の孔径は、操作条件に於ける該膜
の表面張力、分離対象物質水溶液の表面張力、1
次側と2次側との圧力差等によつて変化し、一概
に規定することが困難である。ただし、多孔性膜
は、その孔径が、膜の表面の開孔部は比較的小さ
く内部になると拡大しているなど全体的に不均一
であるので、それらの平均的な孔径から考えられ
る水溶液に対する不透性よりも、実際の水溶液に
対する不透性は大きいと考えられる。
The membrane of the present invention has a Stokes radius of 1/15 or less of the average micropore diameter of the membrane and is preferably used for separating substances that are substantially impermeable to the membrane. When the ratio of the Stokes radius to the average micropore diameter is larger than 1/15, the volatile organic liquid component, which is the substance to be separated, does not preferentially permeate water. The pore size of the substance to be separated that is substantially impermeable to the membrane is determined by the surface tension of the membrane under operating conditions, the surface tension of the aqueous solution of the substance to be separated, 1
It changes depending on the pressure difference between the next side and the secondary side, and it is difficult to define it unconditionally. However, the pore size of porous membranes is generally non-uniform, with the openings on the surface of the membrane being relatively small and expanding inside. It is thought that the impermeability to actual aqueous solutions is greater than the impermeability.

また本発明において、「実質的に不透性である」
とは、液体の状態では膜に対して不透性であり、
気体の状態では透過することをいう。本発明では
分離対象物質は気化した状態で膜を透過する方法
に使用するため膜は濡れることなく分離対象物質
を分離する。
In the present invention, "substantially opaque"
is impermeable to membranes in its liquid state;
It means that it is permeable in the gaseous state. In the present invention, since the substance to be separated is used in the method of permeating the membrane in a vaporized state, the substance to be separated is separated without the membrane getting wet.

膜の分離性能を有利に発現するためには、平均
孔径のほかに体積空孔率がより大きく、膜の内部
に比較的大きい空孔を有することが好ましい。体
積空孔率は通常20%以上、好ましくは40%以上で
膜の機械的特性を損なわぬ範囲で高い程有利であ
る。
In order to advantageously exhibit the separation performance of the membrane, it is preferable that the membrane has a larger volume porosity in addition to the average pore diameter, and has relatively large pores inside the membrane. The volumetric porosity is usually 20% or more, preferably 40% or more, and it is advantageous to have a higher volume porosity within a range that does not impair the mechanical properties of the membrane.

この様な多孔構造のポリフツ化ビニリデン系多
孔性膜は湿式系、または乾湿式系または、乾式系
等の従来公知の製膜法で作製することができる。
A polyvinylidene fluoride porous membrane having such a porous structure can be produced by a conventionally known film forming method such as a wet system, a wet-dry system, or a dry system.

多孔構造を好適な状態に保持した乾燥状態のポ
リフツ化ビニリデン系多孔性膜を調製するには、
水と混和する有機溶媒でフツ化ビニリデン系ポリ
マの非溶媒に置換してから乾燥する方法が好まし
い。
To prepare a dry polyvinylidene fluoride porous membrane that maintains a suitable porous structure,
A preferred method is to replace the non-solvent of the vinylidene fluoride polymer with an organic solvent that is miscible with water and then dry it.

膜の形状は、どのような形状であつても、本発
明の効果を何等制約するものではないが、実用的
見地からは中空糸膜が有利である。
Any shape of the membrane does not limit the effects of the present invention in any way, but hollow fiber membranes are advantageous from a practical standpoint.

コートする表面は平膜の場合には表面の状態に
よつて分離性能の発現に影響が出ることが考えら
れるが、ポリフツ化ビニリデン系ポリマ単独の膜
であればいずれの面でもよい。不織布またはタフ
タ等の基材膜上に製膜されたポリフツ化ビニリデ
ン系多孔性膜の場合には勿論ポリフツ化ビニリデ
ン膜表面にコートする。中空糸膜の場合には、中
空糸の内表面と外表面と2つの場合が考えられ
る。この場合は中空糸膜の使用方法によつていず
れかの面にコートすれば良いが、液−液系の温度
差を駆動力とする揮発性有機液体水溶液濃縮方法
に使用する場合、ケトン樹脂をコートした面を1
次側(供給液側)に向けるのが分離性能を改善す
るのに効果的である。とくに、実用的見地からと
性能改善効果とから中空糸の内表面にコートする
方法がよい。
If the surface to be coated is a flat membrane, the state of the surface may affect the separation performance, but any surface may be used as long as it is a membrane made solely of vinylidene fluoride polymer. In the case of a polyvinylidene fluoride porous film formed on a base film such as nonwoven fabric or taffeta, the surface of the polyvinylidene fluoride film is of course coated. In the case of a hollow fiber membrane, there are two possible cases: the inner surface and the outer surface of the hollow fiber. In this case, depending on how the hollow fiber membrane is used, either side may be coated, but when used in a method for concentrating a volatile organic liquid aqueous solution in which the driving force is the temperature difference in the liquid-liquid system, ketone resin may be coated on either side. 1 coated side
Directing it to the next side (feed liquid side) is effective for improving separation performance. In particular, from a practical standpoint and performance improvement effect, a method of coating the inner surface of the hollow fibers is preferred.

コーテイングに用いるケトン樹脂としては、ア
セトフエノンとホルマリンとを重合したポリマ、
シクロヘキサノンとホルマリンとを重合したポリ
マ、メチルエチルケトンとホルマリンとを重合し
たポリマ、メチルイソブチルケトンとホルマリン
とを重合したポリマ、あるいはこれらのポリマを
変性したポリマなどを使用することができる。本
発明の効果を発現する機構は明らかでないが、要
するに水分子に対して反発し揮発性有機液体成分
の分子に対しては親和性を有する事がひとつの必
要条件の一つであり、ポリフツ化ビニリデン膜に
対してその表面の細孔の開孔部を閉塞することな
くコートできるような親和性を有することがもう
一つの必要条件のようである。したがつて、エタ
ノールなどの揮発性有機液体成分に親和性を有す
る他の官能基やフツ素原子を有するアルキル基な
どが導入されていてもよい。
The ketone resin used for coating is a polymer made by polymerizing acetophenone and formalin,
A polymer obtained by polymerizing cyclohexanone and formalin, a polymer obtained by polymerizing methyl ethyl ketone and formalin, a polymer obtained by polymerizing methyl isobutyl ketone and formalin, or a polymer obtained by modifying these polymers can be used. Although the mechanism by which the effects of the present invention are exerted is not clear, one of the necessary conditions is that it is repellent to water molecules and has an affinity for molecules of volatile organic liquid components. Another prerequisite seems to be that the vinylidene membrane has such affinity that it can be coated without blocking the pores on its surface. Therefore, other functional groups having affinity for volatile organic liquid components such as ethanol, alkyl groups having a fluorine atom, etc. may be introduced.

ポリフツ化ビニリデン系多孔性膜の膜表面の開
孔部を閉塞させずに顆粒状でケトン樹脂をコート
する方法は以下のような方法で実施することがで
きる。すなわち、ポリフツ化ビニリデンの多孔膜
にコーテイング溶液の溶媒と相溶性を示すポリフ
ツ化ビニリデンの非溶媒を含浸させ、しかるのち
ケトン樹脂ポリマのコーテイング液を所定量コー
トし、その溶媒を蒸発・揮散させる。ポリフツ化
ビニリデンの多孔膜に含浸させる溶媒は極性の強
い溶媒が好ましく、しかもコーテイングに用いる
ケトン樹脂ポリマの非溶媒がさらによい。特に好
ましくはメタノール、エタノール、プロパノール
などの1価の低級アルコール、アセトニトリル、
エチレングリコールジメチルエーテル、エチレン
グリコールジエチルエーテル、もしくはこれらの
混合溶媒などがよい。該含浸溶媒が沸点が高く揮
発性が低い場合にはコーテイング液の溶媒を蒸発
させたのち、含浸溶媒と混和する該ケトン樹脂ポ
リマの非溶媒に、コーテイング後ある程度蒸発・
揮散させてから、膜を浸漬してもよい。勿論、ケ
トン樹脂とその溶媒の性質によつては乾燥状態の
膜または含水状態の直接コートすることもでき
る。ケトン樹脂のコーテイング液に用いる溶媒と
しては、通常のケトン樹脂の溶媒すなわち、ハロ
ゲン化炭化水素、芳香属炭化水素、ケトン類、ア
ルコール類等、テトラハイドロフラン、ジオキサ
ン、デイメチルホルムアミド等も好ましく用いら
れるが、フツ化ビニリデン系ポリマの性状、含浸
溶媒の性質、ケトン樹脂ポリマの性質等を良く考
慮して選定することが必要である。中空糸膜の内
表面にコートする場合には中空糸の内側および/
または外側から含浸溶媒を含浸させた後、中空糸
の内側に窒素気流または空気流などの不活性気体
を通じて過剰の含浸溶媒を除いてから、コーテイ
ング液を中空糸の内部に充填し数秒から数分後
に、上述と同様に活性気体を通じてコーテイング
液の溶媒を蒸発・揮散させることにより本願発明
の揮発性有機液体濃縮膜を作製することができ
る。蒸発・揮散後のコートされたケトン樹脂ポリ
マの乾燥・固着は必要に応じて所定の温度で行う
ことができる。ただし、ポリフツ化ビニリデン系
多孔性膜の細孔構造が著しく変化し、分離対象物
質の透過性が低下するような高い温度の処理は避
けるべきである。
A method of coating a ketone resin in granular form without clogging the openings on the membrane surface of a polyvinylidene fluoride porous membrane can be carried out by the following method. That is, a porous membrane of polyvinylidene fluoride is impregnated with a polyvinylidene fluoride non-solvent that is compatible with the solvent of the coating solution, and then a predetermined amount of a ketone resin polymer coating solution is coated, and the solvent is evaporated and volatilized. The solvent with which the polyvinylidene fluoride porous membrane is impregnated is preferably a highly polar solvent, and more preferably a non-solvent for the ketone resin polymer used for coating. Particularly preferred are monohydric lower alcohols such as methanol, ethanol, and propanol, acetonitrile,
Ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof is preferable. If the impregnation solvent has a high boiling point and low volatility, after evaporating the solvent of the coating liquid, the non-solvent of the ketone resin polymer that is miscible with the impregnation solvent is added to the non-solvent of the ketone resin polymer to some extent after coating.
After volatilization, the membrane may be immersed. Of course, depending on the properties of the ketone resin and its solvent, it is also possible to coat the membrane directly in a dry state or in a wet state. As the solvent used in the ketone resin coating solution, ordinary ketone resin solvents, such as halogenated hydrocarbons, aromatic hydrocarbons, ketones, alcohols, tetrahydrofuran, dioxane, dimethylformamide, etc., are also preferably used. However, it is necessary to carefully consider the properties of the vinylidene fluoride-based polymer, the properties of the impregnating solvent, the properties of the ketone resin polymer, etc. when making a selection. When coating the inner surface of the hollow fiber membrane, the inner surface of the hollow fiber and/or
Alternatively, after impregnating the impregnating solvent from the outside, remove the excess impregnating solvent by passing an inert gas such as a nitrogen stream or air stream inside the hollow fiber, and then fill the coating liquid inside the hollow fiber for several seconds to several minutes. Thereafter, the volatile organic liquid concentration film of the present invention can be produced by evaporating and volatilizing the solvent of the coating liquid through active gas in the same manner as described above. After evaporation and volatilization, the coated ketone resin polymer can be dried and fixed at a predetermined temperature if necessary. However, treatment at high temperatures that would significantly change the pore structure of the polyvinylidene fluoride porous membrane and reduce the permeability of the substance to be separated should be avoided.

第1図は本発明に使用し得る多孔性のポリフツ
化ビニリデン系の膜の断面の写真である。膜の表
面から裏面に連通する多数の細孔とボイドが存在
する。第2図は該ポリフツ化ビニリデン系膜の表
面の形態の写真である。表面に製膜方向に並んだ
スリツト状の開孔部が多数存在する。第3A図、
第3B図はケトン樹脂をコートした膜の表面の形
態を示した写真である。コートされたケトン樹脂
は、ポリフツ化ビニリデン系膜の表面の細孔の回
りのフイブリル状のフツ化ビニリデン系ポリマの
上に微少な顆粒状となつて累積しており、表面の
細孔を閉塞していない。このような形態は高分解
能の走査型電子顕微鏡によつて観察することがで
きる。第1図、第2図、第3図は、該顕微鏡によ
るものであるが、第1図は、約500倍の倍率に、
第2図と第3A図とは約2000倍の倍率に相当す
る。第3B図は、約50000倍に相当する。また、
膜表面のコートされたケトン樹脂ポリマの存在は
ESCAまたはSIMS、UV、IR等の表面分析法で
確認できる。簡単には、コーテイング前後の膜の
重量の増加量を測定することによつても確認でき
る。あるいは、ケトン樹脂ポリマをコートした膜
の表面の開孔部が閉塞されていないことは、該膜
の通気性を測定することによつて確認される。こ
の方法によれば通気性の低下の度合いから膜表面
にポリマがコートされていることが確められる。
本願発明で好適な性能を示したケトン樹脂のコー
ト膜の窒素の通気性は、ほぼ0.1〜5.0×10-2cm3
(STP)m-2s-1cmHg-1の範囲にあり、とくに高
い性能を示したコーテイング膜は0.5〜3.0×10-2
cm3(STP)m-2s-1cmHg-1の範囲にあつた。
FIG. 1 is a photograph of a cross section of a porous polyvinylidene fluoride membrane that can be used in the present invention. There are many pores and voids that communicate from the front side of the membrane to the back side. FIG. 2 is a photograph of the surface morphology of the polyvinylidene fluoride film. There are many slit-like openings arranged in the film forming direction on the surface. Figure 3A,
FIG. 3B is a photograph showing the morphology of the surface of the membrane coated with ketone resin. The coated ketone resin accumulates in the form of minute granules on the fibrillar vinylidene fluoride polymer around the pores on the surface of the polyvinylidene fluoride membrane, and blocks the surface pores. Not yet. Such morphology can be observed using a high-resolution scanning electron microscope. Figures 1, 2, and 3 are taken using the microscope;
Figures 2 and 3A correspond to approximately 2000x magnification. Figure 3B corresponds to approximately 50,000 times. Also,
The presence of coated ketone resin polymer on the membrane surface
It can be confirmed by surface analysis methods such as ESCA, SIMS, UV, and IR. This can be easily confirmed by measuring the increase in weight of the membrane before and after coating. Alternatively, it is confirmed that the pores on the surface of the membrane coated with the ketone resin polymer are not blocked by measuring the air permeability of the membrane. According to this method, it can be confirmed that the membrane surface is coated with a polymer based on the degree of decrease in air permeability.
The nitrogen permeability of the ketone resin coating film that showed suitable performance in the present invention is approximately 0.1 to 5.0 × 10 -2 cm 3
(STP) is in the range of m -2 s -1 cmHg -1 , and the coating film that showed particularly high performance is 0.5 to 3.0 × 10 -2
cm 3 (STP) m -2 s -1 cmHg -1 .

ポリフツ化ビニリデン系多孔性膜の平均微細孔
半径は以下に述べる方法で測定する。即ち、膜の
透水性(Lp)と、溶質の拡散透過性(Pm)を分
離対象物質であるメタノール、エタノール、プロ
パノール、ブタノール、アセノン、等によつて測
定し次式の関係を使つて計算して求る。
The average micropore radius of the polyvinylidene fluoride porous membrane is measured by the method described below. That is, the water permeability (Lp) of the membrane and the diffusive permeability (Pm) of the solute are measured using the separation target substances such as methanol, ethanol, propanol, butanol, acetone, etc., and calculated using the relationship shown in the following equation. I ask.

Pm=(D/L)・(H/ts2) (1) Lp=(H/L)・{Rp2/(8η)} (2) ここで、D:溶質の拡散係数、L:膜厚、H:
含水率、ts:溶質の曲路率、Rp:平均微細孔半
径、η:水の粘性である。tsは次の式から計算す
る。
Pm=(D/L)・(H/ts 2 ) (1) Lp=(H/L)・{Rp 2 /(8η)} (2) Where, D: Diffusion coefficient of solute, L: Film thickness ,H:
water content, ts: tortuosity of solute, Rp: average micropore radius, η: viscosity of water. ts is calculated from the following formula.

fsw0=RT/D (3) fsw=(RT/Pm−Vs/Lp)・(H/L) (4) ts=fsw/f゜sw (5) Rは気体定数、Tは測定時の温度(K)、Vsは溶
質の部分モル容積である。
fsw 0 = RT/D (3) fsw = (RT/Pm-Vs/Lp)・(H/L) (4) ts=fsw/f゜sw (5) R is the gas constant, T is the temperature at the time of measurement (K), Vs is the partial molar volume of solute.

コーテイング層の形成は上述の平均孔径と曲路
率の測定でも確めることができる。すなわち、コ
ーテイングにより膜表面の開孔部が狭められると
平均孔径の変化は小さくとも、曲路率は大きく変
化する。
Formation of the coating layer can also be confirmed by measuring the average pore diameter and tortuosity described above. That is, when the pores on the membrane surface are narrowed by coating, the curvature ratio changes greatly even if the change in the average pore diameter is small.

本発明を適用しうる揮発性有機液体水溶液は、
当該水溶液の気液平衡における気相中の有機液体
物質の組成が液相中の組成より大きい物質に対し
ては、基本的に適用することができる。この様な
物質の例としては、メタノール、エタノール、n
−プロパノール、iso−プロパノール、n−ブタ
ノール、t−ブタノール、t−ブタノール、アセ
トン、テトラハイドロフラン、1,4−ジオキサ
ン、メチルアミン、エチルアミン、アセトニトリ
ル、エチルメチルケトン、酢酸メチル、酢酸エチ
ル等がある。
The volatile organic liquid aqueous solution to which the present invention can be applied is
This method can basically be applied to substances in which the composition of the organic liquid substance in the gas phase in the vapor-liquid equilibrium of the aqueous solution is greater than the composition in the liquid phase. Examples of such substances include methanol, ethanol, n
-propanol, iso-propanol, n-butanol, t-butanol, t-butanol, acetone, tetrahydrofuran, 1,4-dioxane, methylamine, ethylamine, acetonitrile, ethyl methyl ketone, methyl acetate, ethyl acetate, etc. .

本発明を適用しうるこれらの物質の水溶液の濃
度は、本発明の方法の特徴を生かす観点からは比
較的低濃度の領域が好ましく、0.5〜20重量%が
適当である。水溶液濃度の上限は、主として分離
対象の水溶液が膜を濡らさない濃度で決まる。こ
れは膜素材ポリマの物理化学的性質、膜の微細孔
径、分離対象溶液の表面張力等が関係し、更に操
作圧の影響もあるので一概に限定することができ
ない。
The concentration of the aqueous solution of these substances to which the present invention can be applied is preferably in a relatively low concentration range from the viewpoint of taking advantage of the characteristics of the method of the present invention, and is suitably in the range of 0.5 to 20% by weight. The upper limit of the aqueous solution concentration is mainly determined by the concentration at which the aqueous solution to be separated does not wet the membrane. This is related to the physicochemical properties of the membrane material polymer, the micropore diameter of the membrane, the surface tension of the solution to be separated, etc., and is also affected by the operating pressure, so it cannot be definitively determined.

[実施例] 次に実施例により更に詳細に説明するが、本発
明はこれらに限定されるものではない。
[Example] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

なお液−液系の揮発性有機液体水溶液の濃縮法
の実験は、第4図に模式的に示した方法で行つ
た。即ち、供給液槽1から5%のエタノール水溶
液を50℃に調節して膜モジユール4に供給し、循
環する。一方、膜の2次側には15℃に調節した5
%のエタノール水溶液を透過液槽から循環供給す
る。実験の開始後、所定時間毎に供給液槽(高温
側)と透過液槽(低温側)からサンプル液を採り
その濃度をガスクロマトグラフイまたは示差屈折
計で測定する。実験終了後、供給液槽および透過
液槽の液重量を測定する。高温側の濃度は低下
し、低温側の濃度は増加する。これらの高温側お
よび低温側の濃度の経時的変化と液の透過量とか
ら実験初期のエタノールの分離係数および水およ
びエタノールの透過速度をを算出した。すなわ
ち、 CH(t)={EH(O)−Qe(t)−ΣCH(n) ・SH(n)}/EHT(t) (6) CL(t)={EL(O)+Qe(t)−ΣCL(n) ・SL(n)}/ELT(t) (7) ここで、C(t)は実験開始後t時間後のエタノー
ルの濃度で、添字Hは高温側を、Lは低温側を示
す。C(n)はn回目のサンプリングの濃度を表す。
S(n)はn回目のサンプリングの量を示している。
E(O)、E(t)はそれぞれ実験開始開始前とt時間後
のエタノールの量を表す。EHT(t)、ELT(t)実験開始
t時間後のそれぞれ高温側と低温側の溶液の全量
である。上の式を利用し、次の関係を考慮してエ
タノール透過速度(Je)および水の透過速度
(Jw)をカーブフイツテイング法で算出し、下記
の(10)式でエタノールに対する分離係数αEtOHを求
める。Qe(t)はt時間後のエタノールの透過量で
ある。
The experiment for concentrating a liquid-liquid volatile organic liquid aqueous solution was carried out by the method schematically shown in FIG. That is, a 5% aqueous ethanol solution is adjusted to 50° C. from the supply liquid tank 1 and supplied to the membrane module 4, where it is circulated. On the other hand, on the secondary side of the membrane,
% ethanol aqueous solution is circulated and supplied from the permeate tank. After the start of the experiment, sample liquids are taken from the supply liquid tank (high temperature side) and the permeate liquid tank (low temperature side) at predetermined intervals, and their concentrations are measured using gas chromatography or a differential refractometer. After the experiment is completed, measure the weight of the liquid in the feed liquid tank and permeate liquid tank. The concentration on the high temperature side decreases and the concentration on the low temperature side increases. The separation coefficient of ethanol and the permeation rate of water and ethanol at the initial stage of the experiment were calculated from the changes over time in the concentrations on the high and low temperature sides and the permeation amount of the liquid. That is, C H (t)={E H (O)−Qe(t)−ΣC H (n) ・S H (n)}/E HT (t) (6) C L (t)={E L (O)+Qe(t)−ΣC L (n) ・S L (n)}/E LT (t) (7) Here, C(t) is the concentration of ethanol t hours after the start of the experiment, and the subscript H indicates a high temperature side, and L indicates a low temperature side. C(n) represents the concentration of the nth sampling.
S(n) indicates the amount of n-th sampling.
E(O) and E(t) represent the amount of ethanol before the start of the experiment and after t time, respectively. E HT (t) and E LT (t) are the total amounts of solution on the high temperature side and low temperature side, respectively, after t hours from the start of the experiment. Using the above formula, calculate the ethanol permeation rate (Je) and water permeation rate (Jw) by the curve fitting method, taking into account the following relationship, and calculate the separation coefficient α for ethanol using the following formula (10). Find EtOH . Qe(t) is the amount of ethanol permeated after t time.

Qe(t)=A∫tJedt (8) Qw(t)=A∫tJwdt (9) αEtOH=(Je/Jw)/(CH(t)/ {1−CH(t)} (10) エタノール以外の溶質に対しても全く同様であ
る。
Qe(t)=A∫ t Jedt (8) Qw(t)=A∫ t Jwdt (9) α EtOH = (Je/Jw)/(C H (t)/ {1−C H (t)} ( 10) The same applies to solutes other than ethanol.

実施例 1 ペンウオルト社製ポリフツ化ビニリデン
KYNAR460と740とを混合してポリマ濃度29%、
110℃での溶液粘度1000ポイズになるように調整
したジメチルスルホキサイド(DMSO)を主溶
媒とする紡糸原液を、DMSO80%の水溶液を中
空部に注入して、環状中空糸紡糸用口金から紡出
し、45℃の水中で凝固させ、しかるのち水で洗浄
して、含水状態のポリフツ化ビニリデン中空糸膜
を得た。この膜を試薬1級のエタノールに浸せき
した1昼夜放置後、風乾した。中空糸膜の外径は
1037μm、内径は738μm体積空孔率は0.717であつ
た。乾燥後の中空糸膜をメタノールを介して水に
置換した後、透水性とメタノール、エタノール、
n−ブタノール、アセトン等の拡散透過性を測定
し、平均孔径(Rp)とそれぞれの曲路率(ts)
求めた。Rpは230Å、tsはそれぞれ2.75、2.88、
2.66、2.63であつた。
Example 1 Polyvinylidene fluoride manufactured by Pennwalt
Mix KYNAR460 and 740 to obtain a polymer concentration of 29%.
A spinning stock solution containing dimethyl sulfoxide (DMSO) as the main solvent, adjusted to have a solution viscosity of 1000 poise at 110°C, is injected into the hollow part with an aqueous solution of 80% DMSO, and then spun from a circular hollow fiber spinning nozzle. The membrane was taken out, coagulated in water at 45°C, and then washed with water to obtain a polyvinylidene fluoride hollow fiber membrane in a water-containing state. This membrane was immersed in reagent grade 1 ethanol, left for one day and night, and then air-dried. The outer diameter of the hollow fiber membrane is
The inner diameter was 1037 μm, the inner diameter was 738 μm, and the volume porosity was 0.717. After replacing the dried hollow fiber membrane with water via methanol, the water permeability and methanol, ethanol,
Measure the diffusion permeability of n-butanol, acetone, etc., and calculate the average pore diameter (Rp) and each tortuosity (ts).
I asked for it. Rp is 230Å, ts is 2.75 and 2.88, respectively.
It was 2.66 and 2.63.

この乾燥した中空糸膜を約40cmの長さに切り、
十数本を束ねて両端をエポキシ接着剤でポツテイ
ングし、硬化後中空糸束の開口端を作製するため
切断し、両端がエポキシ接着剤でポツテイングさ
れた中空糸束を作製した。この中空糸束の内側に
メタノールを充填し再びメタノールで含浸させ
た。含浸後、中空糸内部の過剰のメタノールを窒
素ガスで押出し、約数秒から数分窒素ガスを通じ
て余分のメタノールを蒸発させて除いた。次い
で、水添して変性したアセトフエノン系ケトン樹
脂をエタノールに1重量%になるように溶かした
コーテイング液を中空糸の内側に充填し、約数秒
から数分放置した後窒素ガスを通じて溶媒を蒸発
させ、しかるのち、室温で真空乾燥した。このコ
ーテイング処理した中空糸を14本、アクリル製の
パイプで作製した低温側溶液の入口ノズルと出口
ノズルを有するケースに挿入し、ケース両端でポ
テイングして実験用膜モジユールを作製した。同
様に、コーテイング処理をしていない中空糸の膜
モジユールも作製して比較例の実験に供した。液
−液系の揮発性有機液体水溶液の濃縮法の実験
は、エタノールの5%水溶液を用いて前述の方法
で行なつた。
Cut this dried hollow fiber membrane into a length of about 40 cm.
Ten or more fibers were bundled and both ends potted with epoxy adhesive, and after curing, the hollow fiber bundle was cut to create an open end of the hollow fiber bundle, and both ends were potted with epoxy adhesive to create a hollow fiber bundle. The inside of this hollow fiber bundle was filled with methanol and impregnated with methanol again. After impregnation, excess methanol inside the hollow fiber was extruded with nitrogen gas, and the excess methanol was removed by evaporating the nitrogen gas through the fiber for about several seconds to several minutes. Next, a coating solution in which hydrogenated and modified acetophenone ketone resin is dissolved in ethanol to a concentration of 1% by weight is filled inside the hollow fiber, and after being left for about several seconds to several minutes, the solvent is evaporated by passing nitrogen gas. , and then dried under vacuum at room temperature. Fourteen coated hollow fibers were inserted into a case made of acrylic pipes that had an inlet nozzle and an outlet nozzle for the low-temperature solution, and potted at both ends of the case to produce an experimental membrane module. Similarly, a hollow fiber membrane module that had not been coated was also prepared and used in comparative experiments. Experiments on the method of concentrating a liquid-liquid volatile organic liquid aqueous solution were carried out in the manner described above using a 5% aqueous solution of ethanol.

本実施例の場合、モジユール入口の高温側溶液
温度は50.0℃℃、低温側の入口の溶液温度は16.0
℃で、実験初期のエタノールの透過速度は0.14Kg
m−2h-1で、水の透過速度は0.26Kgm-2h-1エタノ
ールに対する分離係数αEtOHは9.7であつた。これ
に対して比較例では同一の条件に対して実験初期
のエタノールの透過速度は0.24Kgm-2h-1で、水
の透過速度は0.88Kgm-2h-1、エタノールに対す
る分離係数αは5.1であつた。比較例に対して、
本実験例の方が同一の濃度の供給液に対して2次
側をより高い濃度にすることができる。
In the case of this example, the solution temperature on the high temperature side at the module inlet is 50.0°C, and the solution temperature at the low temperature side inlet is 16.0°C.
℃, the permeation rate of ethanol at the beginning of the experiment was 0.14Kg
m- 2 h -1 , the water permeation rate was 0.26 Kg m -2 h -1 , and the separation coefficient α EtOH for ethanol was 9.7. On the other hand, in the comparative example, under the same conditions, the ethanol permeation rate at the initial stage of the experiment was 0.24 Kgm -2 h -1 , the water permeation rate was 0.88 Kgm -2 h -1 , and the separation coefficient α for ethanol was 5.1. It was hot. For the comparative example,
In this experimental example, the secondary side can be made to have a higher concentration with respect to the supply liquid having the same concentration.

なお、未処理の比較例の中空糸膜の窒素ガスの
通気性は2.40×10-2ml((STP)cm-2S-1cmHg-1
で、実施例の中空糸膜では0.73(単位同上)であ
り、コーテイングにより膜表面の開孔部が閉塞さ
れていないことが確められた。また、この膜の内
表面のケトン樹脂の存在の確認はUVスペクトル
の測定によつて確められた。第3A図、第3B図
の写真は本実施例の高分解能走査型電子顕微鏡の
写真である。
The nitrogen gas permeability of the untreated comparative hollow fiber membrane is 2.40×10 -2 ml ((STP) cm -2 S -1 cmHg -1
In the case of the hollow fiber membrane of the example, it was 0.73 (unit: same as above), and it was confirmed that the openings on the membrane surface were not blocked by the coating. Furthermore, the presence of ketone resin on the inner surface of this film was confirmed by UV spectrum measurement. The photographs in FIGS. 3A and 3B are high-resolution scanning electron microscope photographs of this example.

実施例 2 実施例1と同様に紡糸したテトラフルオロエチ
レン30重量%を含むフツ化ビニリデン共重合体か
らなる、外径1040μm、内径729μm、体積空孔率
0.733の中空糸14本を用いて膜モジユールを作製
した。一方はコーテイングせずに比較例とし、他
方は乾燥状態の中空糸の内側にアセトフエノン系
ケトン樹をトルエンに溶解したコーテイング液を
充填し、しかるのち窒素気流で過剰の溶液を除去
し溶媒を蒸発させ、中空糸内の表面にコートし
た。
Example 2 Made of vinylidene fluoride copolymer containing 30% by weight of tetrafluoroethylene spun in the same manner as in Example 1, outer diameter 1040 μm, inner diameter 729 μm, volumetric porosity.
A membrane module was fabricated using 14 0.733 hollow fibers. One was used as a comparative example without coating, and the other was filled with a coating solution in which an acetophenone ketone tree was dissolved in toluene inside the dry hollow fiber, and then the excess solution was removed with a nitrogen stream and the solvent was evaporated. , coated on the inside surface of the hollow fiber.

実施例1と同一の条件で膜の性能を評価したと
ころ、本実施例では、エタノールの透過速度が
0.24Kgm-2h-1、水の透過速度が0.39Kgm-2h-1
αEtOHは8.3であるのにたいして、比較例はそれぞ
れ、0.21、0.66、5.9であり、ケトン樹脂のコーテ
イングの効果が明らかに認められた。
When the performance of the membrane was evaluated under the same conditions as in Example 1, it was found that in this example, the permeation rate of ethanol was
0.24Kgm -2 h -1 , water permeation rate is 0.39Kgm -2 h -1 ,
While α EtOH was 8.3, the comparative examples had values of 0.21, 0.66, and 5.9, respectively, and the effect of the ketone resin coating was clearly observed.

実施例 3 実施例1に使用した膜モジユールを使つて、2
%のアセトン水溶液で膜の分離性能を上述と同様
の温度条件で評価した。その結果、本実施例では
アセトンの透過速度が0.094Kgm-2h-1、水の透過
速度が0.048Kgm-2h-1、αACTNは103.0であつた。
比較例の膜モジユールではアセトンの透過速度が
0.47Kgm-2h-1、水の透過速度が0.41Kgm-2h-1
αACTNは55.7で、本実施例がアセトン水溶液に対
しても有効であつた。
Example 3 Using the membrane module used in Example 1, 2
% acetone aqueous solution under the same temperature conditions as described above. As a result, in this example, the acetone permeation rate was 0.094 Kgm -2 h -1 , the water permeation rate was 0.048 Kgm -2 h -1 , and α ACTN was 103.0.
In the membrane module of the comparative example, the acetone permeation rate was
0.47Kgm -2 h -1 , water permeation rate is 0.41Kgm -2 h -1 ,
α ACTN was 55.7, indicating that this example was also effective for acetone aqueous solutions.

[発明の効果] 本発明によれば、揮発性有機液体水溶液から該
有機液体を選択的に濃縮分離する液−液系の膜分
離法において使用しうる、分離性能の改善された
分離膜とその使用方法およびその製造方法を提供
することができる。
[Effects of the Invention] According to the present invention, there is provided a separation membrane with improved separation performance that can be used in a liquid-liquid membrane separation method for selectively concentrating and separating an organic liquid from an aqueous solution of a volatile organic liquid. Methods of use and methods of manufacturing the same can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明に好適に使用しうる、繊維の
断面形状の写真である。第2図は第1図の繊維の
表面形状を示す写真である。第3A図は、本発明
の実施例1の繊維の表面形状の写真である。第3
B図は、第3A図を更に高倍率で示した繊維の表
面形状の写真である。第4図は、本発明の実施例
に使用した膜分離実験装置を模式的に示した図で
ある。1は供給(または1次)液槽、2は供給液
側循環ポンプ、3は供給液側熱交換器、4は膜モ
ジユール、9および10はそれぞれ供給液側膜モ
ジユールの入口と出口である。5は透過(または
2次)液槽、6は透過液側熱交換器、7は調圧
弁、8は透過液側循環ポンプ、11および12は
それぞれ透過液側膜モジユールの入口と出口であ
る。
FIG. 1 is a photograph of the cross-sectional shape of a fiber that can be suitably used in the present invention. FIG. 2 is a photograph showing the surface shape of the fiber shown in FIG. FIG. 3A is a photograph of the surface shape of the fiber of Example 1 of the present invention. Third
Figure B is a photograph of the surface shape of the fiber showing Figure 3A at a higher magnification. FIG. 4 is a diagram schematically showing a membrane separation experimental apparatus used in an example of the present invention. 1 is a feed (or primary) liquid tank, 2 is a circulation pump on the feed liquid side, 3 is a heat exchanger on the feed liquid side, 4 is a membrane module, and 9 and 10 are the inlet and outlet of the membrane module on the feed liquid side, respectively. 5 is a permeate (or secondary) liquid tank, 6 is a permeate side heat exchanger, 7 is a pressure regulating valve, 8 is a permeate side circulation pump, and 11 and 12 are the inlet and outlet of the permeate side membrane module, respectively.

Claims (1)

【特許請求の範囲】 1 ポリフツ化ビニリデン系多孔性膜の表面に、
該膜表面の少なくとも一部の開孔部が閉塞される
ことなく、ケトン樹脂がコートされていることを
特徴とする揮発性有機液体水溶液濃縮膜。 2 ポリフツ化ビニリデン系多孔性膜が、中空糸
膜であり、その内表面にケトン樹脂がコートされ
ていることを特徴とする特許請求の範囲第1項記
載の揮発性有機液体水溶液濃縮膜。 3 ケトン樹脂が顆粒状でコーテイングされるて
いることを特徴とする特許請求の範囲第1項記載
の揮発性有機液体水溶液濃縮膜。 4 ポリフツ化ビニリデン系多孔性膜の表面に、
該膜表面の少なくとも一部の開孔部が閉塞される
ことなく、ケトン樹脂がコートされている複合半
透膜において、該膜の一次側に該膜の平均微細孔
半径の1/15以下のストークス半径を持ち、かつ該
膜に対して実質的に不透性を示す揮発性有機液体
水溶液を供給し、気化した状態で膜を透過させる
ことを特徴とする揮発性有機液体水溶液濃縮膜の
使用方法。 5 ケトン樹脂のコーテイング液の溶媒と相溶性
を示すポリフツ化ビニリデンの非溶媒を、ポリフ
ツ化ビニリデン系多孔性膜に含浸させ、該膜の表
面にケトン樹脂の溶液をコートし、溶媒を蒸発・
揮散させてポリフツ化ビニリデンの表面の少なく
とも一部の開孔部を閉塞させることなくコートし
たことを特徴とする、揮発性有機液体水溶液濃縮
膜の製造方法。
[Claims] 1. On the surface of a polyvinylidene fluoride porous membrane,
A volatile organic liquid aqueous solution concentration membrane characterized in that at least some of the openings on the surface of the membrane are coated with a ketone resin without being blocked. 2. The volatile organic liquid aqueous solution concentration membrane according to claim 1, wherein the polyvinylidene fluoride porous membrane is a hollow fiber membrane whose inner surface is coated with a ketone resin. 3. The volatile organic liquid aqueous solution concentration membrane according to claim 1, characterized in that the ketone resin is coated in the form of granules. 4 On the surface of the polyvinylidene fluoride porous membrane,
In a composite semipermeable membrane in which at least some of the pores on the membrane surface are coated with a ketone resin without being blocked, the primary side of the membrane has a pore size of 1/15 or less of the average micropore radius of the membrane. Use of a volatile organic liquid aqueous solution concentrating membrane characterized by supplying a volatile organic liquid aqueous solution having a Stokes radius and showing substantially impermeability to the membrane, and allowing the volatile organic liquid aqueous solution to pass through the membrane in a vaporized state. Method. 5 A polyvinylidene fluoride-based porous membrane is impregnated with a polyvinylidene fluoride non-solvent that is compatible with the solvent of the ketone resin coating solution, the ketone resin solution is coated on the surface of the membrane, and the solvent is evaporated.
A method for producing a volatile organic liquid aqueous solution concentration membrane, characterized in that the membrane is coated without clogging at least some of the openings on the surface of polyvinylidene fluoride by volatilization.
JP403687A 1987-01-13 1987-01-13 Membrane for concentrating aqueous solution of volatile organic liquid, use and preparation thereof Granted JPS63175607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP403687A JPS63175607A (en) 1987-01-13 1987-01-13 Membrane for concentrating aqueous solution of volatile organic liquid, use and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP403687A JPS63175607A (en) 1987-01-13 1987-01-13 Membrane for concentrating aqueous solution of volatile organic liquid, use and preparation thereof

Publications (2)

Publication Number Publication Date
JPS63175607A JPS63175607A (en) 1988-07-20
JPH0512971B2 true JPH0512971B2 (en) 1993-02-19

Family

ID=11573733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP403687A Granted JPS63175607A (en) 1987-01-13 1987-01-13 Membrane for concentrating aqueous solution of volatile organic liquid, use and preparation thereof

Country Status (1)

Country Link
JP (1) JPS63175607A (en)

Also Published As

Publication number Publication date
JPS63175607A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
EP2231313B1 (en) Multizone polymer membrane and dialyzer
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
Khayet Membranes and theoretical modeling of membrane distillation: A review
EP0294725B1 (en) Process for making highly permeable coated composite hollow fiber membranes
Fujii et al. Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes
WO1986002575A1 (en) Permselective hollow yarn membrane, method of producing the same, method of separating plasma components, and plasma component separator
JPH0613085B2 (en) Method for producing volatile organic liquid concentrate
JP2890469B2 (en) Method for producing porous separation membrane
JP2774103B2 (en) Manufacturing method of double layer film
JPH0512971B2 (en)
JPH0515494B2 (en)
NL9102151A (en) SPINNING ASYMMETRICAL HOLLOW FIBER MEMBRANES WITH A DENSE, NON-POROUS TOP LAYER AND A POROUS LAYER, RESP. WITH BOTH A POROUS TOP COAT AND A POROUS TOP COAT.
JP2814536B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
US5320754A (en) Pan composite membranes
CN111201078B (en) Water treatment separation membrane, water treatment module comprising same, and manufacturing method thereof
JPH0515495B2 (en)
JP2996304B2 (en) Manufacturing method of separation membrane
JP2814516B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
JPS61408A (en) Hollow yarn composite membrane
JPS61257205A (en) Permselective membrane for alcohol and separation of alcohol using the same
JPH0360725A (en) Aqueous volatile organic liquid solution-concentrating membrane
JPH0554370B2 (en)
JPH0254135B2 (en)
JPS61200804A (en) Membrane and method for separating aprotic organic liquid and aqueous solution

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term