JPS5959213A - Porous support membrane and composite membrane using same - Google Patents

Porous support membrane and composite membrane using same

Info

Publication number
JPS5959213A
JPS5959213A JP16749482A JP16749482A JPS5959213A JP S5959213 A JPS5959213 A JP S5959213A JP 16749482 A JP16749482 A JP 16749482A JP 16749482 A JP16749482 A JP 16749482A JP S5959213 A JPS5959213 A JP S5959213A
Authority
JP
Japan
Prior art keywords
membrane
porous support
support membrane
aromatic polyamide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16749482A
Other languages
Japanese (ja)
Inventor
Fumio Ueda
文雄 上田
Ko Mori
森 興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16749482A priority Critical patent/JPS5959213A/en
Publication of JPS5959213A publication Critical patent/JPS5959213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a porous support membrane excellent in heat resistance and mechanical strength, constituted so as not to have fine pores having a pore size of 1mum or more on either one of the surfaces of a membrane mainly formed of an aromatic polyamide. CONSTITUTION:As aromatic polyamide, for example, one shown by the general formula is dissolved in an amide solvent to form a solution which is, in turn, immersed in a coagulation bath to be coagulated after discharged from a nozzle and the product is washed with water, subjected to heat treatment and dried to be preserved in water. As the amide solvent, N, N-dimethylacetamide is used and the concn. thereof is adjusted to 3-35wt%. As the coagulation bath, water is used and, as a support membrane, ones with various configurations are used according to its application. The thickness of the thin membrane is 0.01-10mum and there is no pores having a pore size of 1mum or more on either one of the surfaces thereof. The air permeation amount thereof is within a range of 1-1X 10<-6> cc(STP)/cm<2>.sec.cmHg at 20 deg.C.

Description

【発明の詳細な説明】 本発明は多孔質支持膜に関し、更に詳しくは選択透過性
を有する薄膜および該薄膜を支持するだめの支持膜から
王として構成される選択性透過膜に使用される芳香族ポ
リアミドからなる多孔質支持膜及びそれを用いた複合化
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous support membrane, and more particularly to an aromatic permeable membrane used in a selectively permeable membrane which is composed of a thin membrane having selective permselectivity and a support membrane that supports the thin membrane. The present invention relates to a porous support membrane made of a group polyamide and a composite membrane using the same.

近年、省資源、省エネルギーおよび有価物回収の観点か
ら、膜を用いた分離方法が急速に実用化されるに至った
。例、えば海水の淡水化、プロセス水からの有価物の回
収、血液からの血漿の分離等の液体系の分離、空気中の
酸素濃度を高めた酸素富化空気の製造、ヘリウムガスの
回収等の気体系の分離をあげることができ、それぞれの
分野において膜分離法の有用性が実証されつ\ある。
In recent years, separation methods using membranes have rapidly come into practical use from the viewpoints of resource conservation, energy conservation, and recovery of valuable materials. For example, desalination of seawater, recovery of valuables from process water, separation of liquid systems such as separation of plasma from blood, production of oxygen-enriched air with increased oxygen concentration in the air, recovery of helium gas, etc. The usefulness of membrane separation methods is being demonstrated in each field.

かかる分離に用いられる選択性透過膜は膜構造の観点か
ら大別すると次の2つに大別される。
Selective permeable membranes used for such separation can be broadly classified into the following two types from the viewpoint of membrane structure.

すなわち、(ト)選択透過性を有するスキン層および多
孔質構造を有するポーラス層に連続的に変化し、膜全体
が同一膜素材からなるいわゆる非対称膜、CB)選択透
過性を有する薄膜およびそれを支持するための多孔質支
持膜から基本的に構成され、一般には薄膜および多孔質
支持膜が異なる膜累月から構成されるいわゆる複合化膜
である。
That is, (G) a so-called asymmetric membrane in which the skin layer having permselectivity and a porous layer having a porous structure are continuously changed and the entire membrane is made of the same membrane material; CB) a thin membrane having permselectivity and its It basically consists of a porous support membrane for support, and is generally a so-called composite membrane in which the thin membrane and the porous support membrane are composed of different membrane layers.

前記囚の非対称膜は非対称構造を形成させるための特殊
な製膜法を必要とするところから、優れた選択透過性を
有する膜素材であっても、製膜法がなく実用に供し得な
いと云う欠点を有していた。また細孔が連続的に変化し
ている為に、実用に際して加圧等の使用条件下で力学的
変形を受は易いという欠点も有していた。
The asymmetric membrane mentioned above requires a special film-forming method to form an asymmetric structure, so even if the membrane material has excellent permselectivity, there is no film-forming method and it cannot be put to practical use. It had the following drawbacks. Furthermore, since the pores are continuously changing, it also has the disadvantage that it is easily subject to mechanical deformation under usage conditions such as pressurization in practical use.

かかる欠点を改善するために(B)の複合化膜が提案さ
れている。複合化膜は非対称膜のもつ前記の欠点を改善
すると同時に、薄膜の膜厚を可能な限り薄くして透過性
能の向上が図れるところから、最近ようやく実用に供せ
られる様になってきた。複合化膜の例としては、例えば
多孔質支持膜上に水溶性のポリエチレンイミンからなる
薄膜を形成させ、該薄膜を界面架橋及び熱処理すること
によシ得られる複合化膜(特開昭49−133282号
公報参照)、ポリエチレンイミノの代わりにポリエピア
ミンを用いた複合化膜(特開昭52−40486号公報
参照)、多孔質支持膜の上で芳香族アミンを芳香族ポリ
酸ノ・ライドで架橋せしめてなる複合化膜(特開昭55
−147106号公報参照)、多孔質膜上でモノマーを
プラズマ照射により重合架橋した複合化膜等の液相糸の
分離を主体とした複合化膜、多孔質支持膜とメチルペン
テン重合体又はオルガノポリノロキサン−ポリカーボネ
ート共重合体からなる薄膜を積層して一体化した複合化
膜(%開昭51−89564号及び特開昭54−408
68号公報参照)等の気相分離を生体とした複合化膜が
従来提案されてきた。かかる複合化膜に用いられる多孔
質支持膜の累月としてはポリスルホンポリエーテルスル
ホン、ポリエチレン、ポリプロピレン。
In order to improve this drawback, a composite film (B) has been proposed. Composite membranes have only recently come into practical use because they improve the above-mentioned drawbacks of asymmetric membranes and at the same time improve permeation performance by making the thickness of the membrane as thin as possible. Examples of composite membranes include composite membranes obtained by forming a thin film made of water-soluble polyethyleneimine on a porous support membrane, and subjecting the thin film to interfacial crosslinking and heat treatment (Japanese Patent Application Laid-Open No. 49-1999). 133282), composite membrane using polyepiamine instead of polyethyleneimino (see JP-A-52-40486), cross-linking of aromatic amine with aromatic polyacid no-ride on a porous support membrane. Composite membrane made of at least
-147106), composite membranes mainly for separation of liquid phase fibers, such as composite membranes in which monomers are polymerized and cross-linked by plasma irradiation on porous membranes, porous support membranes and methylpentene polymers or organopolymer Composite film made by laminating and integrating thin films made of noroxane-polycarbonate copolymer (% 1989-89564 and 1988-408)
Composite membranes using biological gas phase separation, such as (see Publication No. 68), have been proposed in the past. Porous support membranes used in such composite membranes include polysulfone, polyethersulfone, polyethylene, and polypropylene.

セルローズ・エステル、ポリカーボネート等が知られて
いる。
Cellulose ester, polycarbonate, etc. are known.

前記の例の如き選択透過性を有する薄膜を支持するため
の多孔質支持膜としては、薄膜を選択的に透過してくる
物質が多孔質支持膜を透過する際に実質的に抵抗を与え
ない程度に多孔質構造なっていること、薄膜と適度の親
和性を有すること、実際の使用条件下における圧力、温
度等により変形を受けにくいと七等が条件として挙げら
れる。
As a porous support membrane for supporting a thin membrane having permselectivity as in the above example, a substance that selectively permeates through the thin membrane does not substantially provide resistance when permeating through the porous support membrane. Conditions include having a moderately porous structure, having a moderate affinity with thin films, and being resistant to deformation due to pressure, temperature, etc. under actual usage conditions.

一層ガス分離法、浸透気化法、逆浸透法などにおいて、
高温条件下において操作し得る支持膜の開発が要求され
ている。しかし従来知られた支持膜は耐熱性が充分とは
云えず、高温条件下で使用するには限界があった。
In the single-layer gas separation method, pervaporation method, reverse osmosis method, etc.
There is a need to develop support membranes that can operate under high temperature conditions. However, conventionally known support films do not have sufficient heat resistance, and there is a limit to their use under high temperature conditions.

そこで本発明者らは、か\る状況に鑑み、耐熱性及び機
械的強度の優れた支持膜の開発を目的として研究を進め
た結果本発明に到達した。
In view of the above situation, the present inventors conducted research aimed at developing a support film with excellent heat resistance and mechanical strength, and as a result, they arrived at the present invention.

すなわち、本発明は芳香族ポリアミドから王として形成
された膜であり、該膜のいずれか一方の表面には1μm
以上の孔径を有する細孔を実質的に有せず且つ20°C
における空気の透過量が1〜1×1a′6東(S T 
P )/crl See ・cyn HPの範囲にある
ことを特徴とする多孔質支持膜であシ、またか\る多孔
質支持膜及び選択的気体透過性を有する薄膜又はか\る
多孔質支持膜及び逆浸透性を有する薄膜より形成された
複合化膜に関する。
That is, the present invention is a membrane formed from aromatic polyamide as a layer, and one surface of the membrane has a thickness of 1 μm.
substantially free of pores with a pore diameter of more than 20°C
The amount of air permeation at 1~1×1a'6 East (ST
P )/crl See ・cyn A porous support membrane characterized in that HP is within the range of and a composite membrane formed from a thin membrane having reverse osmosis properties.

芳香族ポリアミドとしては、例えば特公昭35−143
99号公報、*公開52−39719号公報に記載され
た方法例より製造される重合体を用いることができる。
As the aromatic polyamide, for example, Japanese Patent Publication No. 35-143
Polymers produced by methods described in Japanese Patent No. 99 and *Publication No. 52-39719 can be used.

これらのうち、好ましい例としては下記一般式(1) で表わされる繰返し単位を有するものである。Among these, a preferable example is the following general formula (1) It has a repeating unit represented by

より好ましいものとしては、Ar (及び/又はAr2
としてづを20モルチ以上含むポリアミド、又けAr)
及び/又はAr2として−o−Y−Qを7.5モル係合
むポリアミドである。
More preferably, Ar (and/or Ar2
Polyamide containing 20 molt or more of Todozu, straddle Ar)
and/or a polyamide containing 7.5 moles of -o-Y-Q as Ar2.

特に好ましい芳香族ポリアミドとしては、ポリメタンエ
ニレンイン7タラミド及び前記式(1)かこれらと÷、
ツとの混合物であり、またAr2が(Y及び/又はaで
ある芳香族ポリアミドが挙げられる。
Particularly preferred aromatic polyamides include polymethaneenylene 7-thalamide and the formula (1), or these ÷
and aromatic polyamides in which Ar2 is (Y and/or a).

一般に支持膜の選択透過性を有する薄膜を形成させる表
面には、薄膜が圧力等により破壊するのを防止するため
大きな孔径の孔がないことが必要である。したがってそ
の表面には1μm以上、好ましくはO,Sμm以上、特
に好ましくは0.2μm以上の孔径を有する細孔が実質
的にないことが望ましい。
In general, the surface of the support membrane on which the permselective thin film is formed must be free of large pores in order to prevent the thin film from being destroyed by pressure or the like. Therefore, it is desirable that the surface is substantially free of pores having a pore diameter of 1 μm or more, preferably 0.S μm or more, particularly preferably 0.2 μm or more.

また、該支持膜は20 ’Oにおける空気の透過11 
i: 1〜I X 1 (r’ a:(s’rp)、”
i−sec−cmHFの範囲、好ましくは0.5〜1 
x 10″Ql: (S TP)/era ・see 
−cmHFの範囲にあることが望ましい。透過量が1(
1)(STP ) 7d・sec・cysllPを超え
るといずれかの表面に1μm以上の孔径を有さない膜を
得ることは難しく、またI X 1 (f6Q:(ST
P)7m・sec・cmHFより小さいと透過量が小さ
すき゛、表面上に形成された選択透過性を有する薄膜の
性能を十分発現させることが困難である。
Moreover, the support membrane has an air permeation rate of 11 at 20'O.
i: 1~I X 1 (r' a: (s'rp),"
i-sec-cmHF range, preferably 0.5 to 1
x 10″Ql: (S TP)/era ・see
-cmHF range is desirable. The amount of transmission is 1 (
1) (STP) If the diameter exceeds 7d・sec・cysllP, it is difficult to obtain a membrane that does not have a pore size of 1 μm or more on any surface, and I
P) If it is smaller than 7 m·sec·cmHF, the amount of permeation will be small, and it will be difficult to fully realize the performance of the permselective thin film formed on the surface.

本発明の目的とする多孔質支持膜を製造するには、前記
芳香族ポリアミドを後述するような溶媒に溶解させ、か
くして得られた溶液より製膜し、凝固液に浸漬する方法
が挙げられる。
In order to produce the porous support membrane that is the object of the present invention, there is a method in which the aromatic polyamide is dissolved in a solvent as described below, a membrane is formed from the solution thus obtained, and the membrane is immersed in a coagulating liquid.

前記溶液中の芳香族ポリアミドの濃度としては3〜35
1Lii%、よシ好ましくは4〜3 +1重を係である
The concentration of aromatic polyamide in the solution is 3 to 35
1 Lii%, preferably 4 to 3+1 weights.

該ポリアミドの溶媒としては、60’Oにおいて該ポリ
アミドを3重量%以上、好ましくは5重を係溶解しうる
アミド系溶媒が用いられる。
As the solvent for the polyamide, an amide solvent capable of dissolving 3% by weight or more, preferably 5 times, of the polyamide at 60'O is used.

この具体例としてl″i′N、N−ジメチルアセトアミ
ド、N−メチル−2−ピロリドン、  N、N−ジメチ
ルホルムアミド、ジメチルスルホキ/ド、デトラメチル
尿素、ヘキサメチルホスホルアミド。
Specific examples include l''i'N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N,N-dimethylformamide, dimethylsulfoxide, detramethylurea, and hexamethylphosphoramide.

N−メチル−2−ピペリドン、  N、N−ジメチルエ
チレン尿素、N−メチルカグO2クタム、N−アセチル
ピロリジン、N、N−ジエチルアセトアミド、 N、N
−ジメチルプロピオン酸アミド及びこれらの混合物が挙
けられる。特に好ましくは、N、N−ジメチルアセトア
ミド、N−メチル−2−ピロリド/である。
N-Methyl-2-piperidone, N,N-dimethylethyleneurea, N-methylcaguO2cutam, N-acetylpyrrolidine, N,N-diethylacetamide, N,N
-dimethylpropionic acid amide and mixtures thereof. Particularly preferred are N,N-dimethylacetamide and N-methyl-2-pyrrolido.

またポリアミド溶液中にポリマーの溶解度及び膜の多孔
度、構造等を制御する目的で各種の塩、有機物、水等を
添加してもよい。
Furthermore, various salts, organic substances, water, etc. may be added to the polyamide solution for the purpose of controlling the solubility of the polymer and the porosity and structure of the membrane.

芳香族ポリアミドの成型法としては従来より多くの方法
が開示されている。例えばポリメタフェニレンイソフタ
ルアミドより王として彦るポリマーの紡糸では、通常ポ
リマー濃度15〜25重i%のN−メチル−2−ピロリ
ドンの溶液をノズルより吐出し、凝固浴に浸漬して、熱
処理延伸により結晶化させる工程を経る。凝固浴として
は凝固速度を遅くして均一に凝固させるために、高濃度
の無機塩水溶液を用いることが知られている。
Many methods have been disclosed for molding aromatic polyamides. For example, when spinning a polymer that is more popular than polymetaphenylene isophthalamide, a solution of N-methyl-2-pyrrolidone with a polymer concentration of 15 to 25% by weight is usually discharged from a nozzle, immersed in a coagulation bath, and then heat-treated and stretched. It goes through a process of crystallization. It is known that a highly concentrated inorganic salt aqueous solution is used as a coagulation bath in order to slow down the coagulation rate and achieve uniform coagulation.

本発明の多孔質支持膜はこのような製造方法には限定さ
れないが、芳香族ポリアミドを前記溶媒に溶解した後、
公知の方法により平膜、中空糸又は管状膜に吐出製膜す
る。吐出製膜後直ちに凝固浴に浸漬し、凝固せしめた後
水洗し、必要に応じ熱処理および乾燥して水中に保存す
る。
Although the porous support membrane of the present invention is not limited to such a manufacturing method, after dissolving the aromatic polyamide in the solvent,
A flat membrane, hollow fiber or tubular membrane is discharged and formed by a known method. Immediately after the discharge film is formed, it is immersed in a coagulation bath, solidified, washed with water, heat treated and dried if necessary, and stored in water.

溶媒中のポリアミドの濃度は3〜35重i%、好ましく
け4〜30重量係重量−られる。ポリアミドの濃度が少
ない程よシ多孔質の膜が得られ20℃における空気の透
過速度も大きくなるが、一方最犬孔径も大きくなって、
ピンホール等の欠陥も生じやすいので、使用目的に応じ
て選択する必要がある。また平均孔径を拡大する目的で
非溶剤を溶媒中に添加させて用いることができる。例え
ば、水、1価アルコール、多価アルコール、アセトン、
メチルエチルケトン。
The concentration of polyamide in the solvent is 3-35% by weight, preferably 4-30% by weight. The lower the concentration of polyamide, the more porous the membrane can be obtained and the higher the air permeation rate at 20°C, but on the other hand, the maximum pore diameter will also be larger.
Since defects such as pinholes are likely to occur, it is necessary to select a material according to the purpose of use. Furthermore, a non-solvent can be added to the solvent for the purpose of enlarging the average pore diameter. For example, water, monohydric alcohol, polyhydric alcohol, acetone,
Methyl ethyl ketone.

ホルムアミド等が好ましく用いられる。添加量は非溶剤
の種類によって異なるか、全ドープ量に対して10%〜
40重量係が好ましく用いられる。
Formamide and the like are preferably used. The amount added varies depending on the type of non-solvent, or is 10% to the total amount of dope.
40 weight ratio is preferably used.

また該ポリアミドの溶解性を向上させるため、1価また
は2価陽イオン金酋の塩の少なくとも1種を用いること
ができるっこの塩の具体例としては、前記アミド系溶媒
に60°Cにおいて05重量以上溶解しうるもので、例
えば・・ロゲン化水素酸、臭化水素酸及びヨウ化水素酸
、硝酸、硫酸、チオンアン酸等のアルカリ金属塩。
In addition, in order to improve the solubility of the polyamide, at least one salt of monovalent or divalent cation gold can be used. As a specific example of this salt, it is possible to use 0.5 ml of salt in the amide solvent at 60°C. Substances that can dissolve more than their weight, such as alkali metal salts such as hydrologonic acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, thioanic acid, etc.

アルカリ土類金属塩及びアンモニウム塩の1種又は2種
以上、具体的には、例えば、塩化リチウム、硝酸リチウ
ム、ヨウ化ナトリウム、塩化カルンウム、硝酸カリウム
、硝酸ナトリウム。
One or more of alkaline earth metal salts and ammonium salts, specifically, for example, lithium chloride, lithium nitrate, sodium iodide, carunium chloride, potassium nitrate, and sodium nitrate.

硝醸マグネ/ウム、臭化リチウム、チオシアン酸カリウ
ム、臭化ア/モニウム、硝酸アンモニウム、チオシアン
酸アンモニウム等が挙げられるが、より好ましくは、前
記溶媒に対する溶解度が比較的高い塩化リチウム、硝酸
リチウム。
Examples include nitromagnetic acid, lithium bromide, potassium thiocyanate, ammonium bromide, ammonium nitrate, ammonium thiocyanate, and more preferably lithium chloride and lithium nitrate, which have relatively high solubility in the above-mentioned solvents.

塩化カルシウム、塩化マグネシウム、硝酸カルシウム等
が用いられる。これらの塩は1種又は2種以上でも用い
ることができる。
Calcium chloride, magnesium chloride, calcium nitrate, etc. are used. These salts can be used alone or in combination of two or more.

凝固浴としては水が好ましく用いられるが、更に平均孔
径を調節する目的で少量の無機塩(1〜10重量%)、
又は前記ポリアミドの溶媒を含有した水溶液も用いるこ
とができる。前記の紡糸の成型法と比べる凝固浴として
水が好ましく用いられる点が大きく異なっている。
Water is preferably used as the coagulation bath, but a small amount of inorganic salt (1 to 10% by weight),
Alternatively, an aqueous solution containing a solvent for the polyamide can also be used. A major difference from the above-mentioned spinning forming method is that water is preferably used as a coagulation bath.

本発明の支持膜の形態としてはその使用目的に応じ、平
膜、チューブラ−膜、中空糸膜等の形態で製膜し得る。
The supporting membrane of the present invention may be formed in the form of a flat membrane, a tubular membrane, a hollow fiber membrane, etc. depending on the purpose of use.

1だ、例えば不織布等の他の基材の上に製膜してもよい
1, the film may be formed on other substrates such as non-woven fabrics.

本発明によれば、全芳香族ポリアミドからなる膜である
ため耐熱性、耐溶剤性膜の強度に優れた複合化膜用支持
膜として用いることができる。
According to the present invention, since the film is made of wholly aromatic polyamide, it can be used as a support film for a composite film that has excellent heat resistance and solvent resistance.

該ポリアミド支持膜上に選択透過性を有する薄膜を形成
させる方法としては、従来公知の方法が用いられ、例え
ば前記した膜面上における界面重合法、コーティング法
、水面展開した薄膜を支持膜上にすくい上げる方法、膜
面でのプラズマ重合法、紫外線照射型合法等通常薄膜を
形成させる方法はいずれでも用いられる。
Conventionally known methods are used to form a thin film having selective permselectivity on the polyamide support membrane, such as the above-mentioned interfacial polymerization method on the membrane surface, coating method, and coating a thin film spread on the water surface on the support membrane. Any method for forming a thin film can be used, such as a scooping method, a plasma polymerization method on the film surface, and an ultraviolet irradiation method.

また該選択透過性を有する薄膜の厚みは通常0.01〜
10μm1好ましくは0.02〜5μmである。0.0
1μm以下の場合には欠陥のない膜が得にくく、10μ
m以上の場合には透過量が/J\さくなシ好ましくない
。かくして得られた複合化膜は窒素と酸素の混合気体よ
りの酸素の選択的透過、ヘリウム等希ガスの濃縮分離等
の気相の分離および逆浸透法による液相の分離に好まし
く用いられる。又有機液体混合物、有機液体混合物から
の液体の選択的分離に用いられる。
In addition, the thickness of the thin film having permselectivity is usually 0.01~
10 μm, preferably 0.02 to 5 μm. 0.0
If it is less than 1 μm, it is difficult to obtain a defect-free film;
If it is more than m, the amount of permeation will be /J\, which is not preferable. The composite membrane thus obtained is preferably used for gas phase separation such as selective permeation of oxygen from a mixed gas of nitrogen and oxygen, concentration separation of rare gases such as helium, and liquid phase separation by reverse osmosis. It is also used for organic liquid mixtures and selective separation of liquids from organic liquid mixtures.

以下実施例を用いて詳細に説明するが、本発明はこれら
に限定されるものではない。
The present invention will be described in detail below using Examples, but the present invention is not limited thereto.

なお以下の実施例においてパ部”は重量部を表わす。In the following examples, "parts" represent parts by weight.

実施例1 ポリアミド(帝人■製0onex ) 15部をジメチ
ルアセトアミド85部に溶解させた。この溶液をガラス
板上に厚み0.3 [で流延させた後250の水中に浸
漬し凝固させ、厚さ115μmのポリアミド膜を得た。
Example 1 15 parts of polyamide (0onex manufactured by Teijin ■) were dissolved in 85 parts of dimethylacetamide. This solution was cast onto a glass plate to a thickness of 0.3 [mu]m, and then immersed in 250 ml of water to solidify, to obtain a polyamide film with a thickness of 115 μm.

この膜の乾燥時の20°Cにおける空気の透過量は5.
2 X I Cf” CxO,(8TP)肩secαH
9であり、ASTM I”316の方法による表面の最
大孔径は0,3μ−であった。この膜を水49.5部、
エタノール495部、ビス(アミノプロピル)テトラメ
チルジシロキサン1部の混合液中に3分間浸漬したのち
引き出し、垂直にして室温にて10分間ドレインした。
The amount of air permeation through this membrane at 20°C when dry is 5.
2 X I Cf” CxO, (8TP) Shoulder secαH
9, and the maximum pore size of the surface according to the method of ASTM I"316 was 0.3 μ-. This membrane was mixed with 49.5 parts of water,
After being immersed in a mixed solution of 495 parts of ethanol and 1 part of bis(aminopropyl)tetramethyldisiloxane for 3 minutes, it was pulled out, held vertically, and drained for 10 minutes at room temperature.

更にこの膜をジフェニルメ“タンジイソシアネートの1
.0重量%n−ヘキサン溶液中に3分間浸漬し複合化膜
を得た。
Furthermore, this film was coated with one of diphenylmetane diisocyanate.
.. A composite film was obtained by immersing it in a 0% by weight n-hexane solution for 3 minutes.

この膜を用い25°0において理化精機工業■製製科研
式気体透過率測定器を用いて気体透過速度を測定したと
ころ、酸素透過速度2.8 X 10−5工(S’l’
P)A++LseccmI92.窒素に対する酸素の透
過性の比は55であった。
When the gas permeation rate of this membrane was measured at 25°0 using a Rika Seiki Kogyo Co., Ltd. gas permeability meter, the oxygen permeation rate was 2.8 x 10-5 mm (S'l'
P) A++LseccmI92. The oxygen to nitrogen permeability ratio was 55.

実施例2 3.4′−ンアミノジフェニルエーテル10.72Mと
パラフエニレ/ジアミン5.79部とをN−メチル−2
−ピロリドン500部にチッ素気流下に溶解し、0°C
に冷却した後激しく攪拌しながらテレフタル酸クロリド
の粉末21.74部を速やかに添加した。この混合溶液
は発熱によって温度が上昇するとともに粘度も増大した
。約5時間後に酸化カルシウムを加えて副生塩酸を中和
した。〃・くして得られた重合体のηinhは3.20
であった。
Example 2 10.72 M of 3.4'-aminodiphenyl ether and 5.79 parts of paraphenylene/diamine were combined with N-methyl-2
- Dissolved in 500 parts of pyrrolidone under a nitrogen stream and heated to 0°C.
After the mixture was cooled to , 21.74 parts of terephthalyl chloride powder was immediately added with vigorous stirring. The temperature of this mixed solution increased due to heat generation, and the viscosity also increased. After about 5 hours, calcium oxide was added to neutralize the by-product hydrochloric acid. 〃・ηinh of the obtained polymer is 3.20
Met.

この重合体5部をN−メチル−2−ピロリドン95部に
溶解させた後、この溶液をダクロン(Dacron )
製不織布(目付量13597m’ )上に0.2聰の厚
みで流延し、直ちに25°Cの水中に浸漬し凝固させる
ことにより不織布補強ポリアミド膜を得た。この膜の2
0′Cにおける空気の透過量は2 X 10−3代(S
TP)lcr!・secσH9であり、最大孔径は0.
15μmであった。この膜をパラフェニレンジアミンの
1.0重量%水溶液中に3分間浸漬したのち、室温にて
垂直にして10分間ドレインした。この膜をトリメシン
酸クロリドの0.5重量%n−ヘキサン中に30秒間浸
漬し複合化膜を得た。この膜を通常の逆浸透セルを用い
25’Oにおいて0.5重量%のNaCl水溶液を原液
とし、圧力’40 KGJ/m’(Jにて性能を測定し
た。この膜の性能は3117m”hr +排除率は98
.7係であった。
After dissolving 5 parts of this polymer in 95 parts of N-methyl-2-pyrrolidone, the solution was dissolved in Dacron.
A nonwoven fabric-reinforced polyamide membrane was obtained by casting on a nonwoven fabric (area weight: 13,597 m') to a thickness of 0.2 thick, and immediately immersing it in water at 25°C to coagulate it. 2 of this membrane
The amount of air permeation at 0'C is 2 x 10-3 (S
TP) lcr!・secσH9, and the maximum pore diameter is 0.
It was 15 μm. This membrane was immersed in a 1.0% by weight aqueous solution of paraphenylenediamine for 3 minutes, and then drained vertically for 10 minutes at room temperature. This membrane was immersed in n-hexane containing 0.5% by weight of trimesic acid chloride for 30 seconds to obtain a composite membrane. The performance of this membrane was measured at a pressure of 40 KGJ/m (J) using a normal reverse osmosis cell at 25'O with a 0.5% by weight NaCl aqueous solution as a stock solution.The performance of this membrane was 3117 m"hr. +Exclusion rate is 98
.. I was in Section 7.

実施例3 ンクロヘキセン90.25fl[lにヘクロへキモニル
ヒドロバーオキサイド4.フ5部を溶解した溶媒にポリ
4−メチルペンテン−1(三井石油化学■製TPX D
X−810) 5.0重量部を溶解した溶液を調製した
Example 3 90.25 fl[l] of cyclohexene and 4. Poly4-methylpentene-1 (TPX D manufactured by Mitsui Petrochemical Co., Ltd.) was added to a solvent in which 5 parts of
A solution containing 5.0 parts by weight of X-810) was prepared.

この溶液を25゛0に保持し、水の表面から約10m上
方の面積2*!lIの開口から10’Cの該水の表面−
に−滴滴下した。この液滴は水面上に拡張し、膜を形成
した。この膜2枚を実施例1で用いたポリアミド膜上に
すくい上げた。この複合化膜の乾燥時の酸素透過速度は
2.9 X 10”cc (S T P )/crl・
3e(鑵1(Fであった。また、酸素透過係と窒素透過
係数の比は3.5であった。
This solution is held at 25゛0 and an area of about 10 m above the surface of the water is 2*! The surface of the water at 10'C from the opening of lI -
- Dropwise. This droplet expanded on the water surface and formed a film. Two of these membranes were scooped up onto the polyamide membrane used in Example 1. The oxygen permeation rate of this composite membrane when dry is 2.9 x 10”cc (S T P )/crl・
3e (F). Also, the ratio of oxygen permeability coefficient to nitrogen permeability coefficient was 3.5.

Claims (1)

【特許請求の範囲】 1 芳香族ポリアミドから王として形成された膜であり
、該膜のいずれか一方の表面には1μm以上の孔径を有
する細孔を実質的に有せず且つ20°0における空気の
透過量が1〜1×10−6CC(STP)/*・sec
・CrnHYの範囲内にあることを特徴とする多孔質支
持膜。 2 該芳香族ポリアミドが、アミド系溶媒に60°0に
おいて3重量%以上溶解し得るものである第1項記載の
多孔質支持膜。 3 該芳香族ポリアミドがポリメタノエニレンイソフタ
ラミドである第1項記載の多孔質支持膜。 4、 該芳香族ポリアミドが下記一般式(1)で表わさ
れる繰返し単位を有し且つ全芳香族基の7.5モルチ以
上が−Q−Y−C5である重合体であることを特徴とす
る第1項記載の多孔質支持膜。 S、  (Z)第1項記載の多孔質支持膜及び(2)選
択的気体透過性を有する薄膜より形成された気体透過用
複合膜。 6(1)第1項記載の多孔質支持膜及び(2)逆浸透性
を有する薄膜より形成された逆浸透用複合膜。
[Scope of Claims] 1. A membrane made of aromatic polyamide, substantially free of pores with a pore diameter of 1 μm or more on either surface of the membrane, and having a pore diameter of 1 μm or more and Air permeation amount is 1 to 1 x 10-6 CC (STP)/*・sec
- A porous support membrane characterized by being within the range of CrnHY. 2. The porous support membrane according to item 1, wherein the aromatic polyamide can be dissolved in an amide solvent in an amount of 3% by weight or more at 60°0. 3. The porous support membrane according to item 1, wherein the aromatic polyamide is polymethanoenylene isophthalamide. 4. The aromatic polyamide is a polymer having a repeating unit represented by the following general formula (1) and in which 7.5 moles or more of all aromatic groups are -Q-Y-C5. The porous support membrane according to item 1. S, (Z) A composite membrane for gas permeation formed from the porous support membrane according to item 1 and (2) a thin film having selective gas permeability. 6(1) A composite membrane for reverse osmosis formed from the porous support membrane according to item 1 and (2) a thin membrane having reverse osmosis properties.
JP16749482A 1982-09-28 1982-09-28 Porous support membrane and composite membrane using same Pending JPS5959213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16749482A JPS5959213A (en) 1982-09-28 1982-09-28 Porous support membrane and composite membrane using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16749482A JPS5959213A (en) 1982-09-28 1982-09-28 Porous support membrane and composite membrane using same

Publications (1)

Publication Number Publication Date
JPS5959213A true JPS5959213A (en) 1984-04-05

Family

ID=15850715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16749482A Pending JPS5959213A (en) 1982-09-28 1982-09-28 Porous support membrane and composite membrane using same

Country Status (1)

Country Link
JP (1) JPS5959213A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406362B1 (en) * 1998-10-30 2004-02-14 주식회사 포스코 A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
JP2013545593A (en) * 2010-09-30 2013-12-26 ポリフェラ・インコーポレイテッド Thin film composite membrane for forward osmosis and method for producing the same
US9216391B2 (en) 2011-03-25 2015-12-22 Porifera, Inc. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation
US9227360B2 (en) 2011-10-17 2016-01-05 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US9636635B2 (en) 2012-12-21 2017-05-02 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
KR20180124151A (en) * 2011-04-01 2018-11-20 도레이 카부시키가이샤 Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
US10384169B2 (en) 2014-10-31 2019-08-20 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
WO2019187870A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Permselective membrane and method for producing same, and water treatment method
JP2019171360A (en) * 2018-03-29 2019-10-10 栗田工業株式会社 Selective permeable membrane, production method of the same and water treatment method
US11383208B2 (en) 2017-12-26 2022-07-12 Toray Industries, Inc. Gas separation membrane, gas separation membrane element, and gas separation method
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406362B1 (en) * 1998-10-30 2004-02-14 주식회사 포스코 A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
JP2013545593A (en) * 2010-09-30 2013-12-26 ポリフェラ・インコーポレイテッド Thin film composite membrane for forward osmosis and method for producing the same
KR20140040065A (en) * 2010-09-30 2014-04-02 포리페라 인코포레이티드 Thin film composite membranes for forward osmosis, and their preparation methods
JP2017039130A (en) * 2010-09-30 2017-02-23 ポリフェラ・インコーポレイテッド Thin film composite film for forward osmosis, and manufacturing method thereof
US9216391B2 (en) 2011-03-25 2015-12-22 Porifera, Inc. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation
KR20180124151A (en) * 2011-04-01 2018-11-20 도레이 카부시키가이샤 Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
US9227360B2 (en) 2011-10-17 2016-01-05 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US9636635B2 (en) 2012-12-21 2017-05-02 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US11759751B2 (en) 2012-12-21 2023-09-19 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US10464023B2 (en) 2012-12-21 2019-11-05 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US11090611B2 (en) 2012-12-21 2021-08-17 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
US12005396B2 (en) 2013-03-15 2024-06-11 Porifera, Inc. Advancements in osmotically driven membrane systems including multi-stage purification
US10500544B2 (en) 2013-03-15 2019-12-10 Porifera, Inc. Advancements in osmotically driven membrane systems including multi-stage purification
US10384169B2 (en) 2014-10-31 2019-08-20 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
US11383208B2 (en) 2017-12-26 2022-07-12 Toray Industries, Inc. Gas separation membrane, gas separation membrane element, and gas separation method
JP2019171360A (en) * 2018-03-29 2019-10-10 栗田工業株式会社 Selective permeable membrane, production method of the same and water treatment method
WO2019187870A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Permselective membrane and method for producing same, and water treatment method

Similar Documents

Publication Publication Date Title
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
CA1151020A (en) Reverse osmosis composite fiber membrane
WO2011069050A1 (en) High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes
JPS5959213A (en) Porous support membrane and composite membrane using same
CN104619403A (en) Composite semipermeable membrane
JP6444382B2 (en) Polymer membrane materials based on 1234yf and 1234ze, membrane preparation and use thereof
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JPS5831204B2 (en) polysulfone semipermeable membrane
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
CN112619443A (en) Composite reverse osmosis membrane and preparation method thereof
JP2002177750A (en) Multiple-unit semipermeable membrane and manufacturing method thereof
US8960448B2 (en) Thin film composite osmosis membranes
EP3897933A1 (en) Porous membranes for high pressure filtration
EP3897930A1 (en) Porous membranes for high pressure filtration
JP2701357B2 (en) Casting dope for film formation
Qiblawey et al. Development of novel thin film composite reverse osmosis membranes for desalination
JP7511558B2 (en) Porous membranes for high pressure filtration
Jayaweera et al. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
JPS6151928B2 (en)
JPS6110724Y2 (en)
GB2075416A (en) Reverse osmosis composite hollow fiber membrane
JPS6219209A (en) Preparation of polysulfone base film
JPS59209611A (en) Hollow yarn like membrane and preparation thereof
JPH06346A (en) Composite semipermeable membrane and spiral-type separation membrane device