JPS6171820A - Gas permeable membrane - Google Patents
Gas permeable membraneInfo
- Publication number
- JPS6171820A JPS6171820A JP59192004A JP19200484A JPS6171820A JP S6171820 A JPS6171820 A JP S6171820A JP 59192004 A JP59192004 A JP 59192004A JP 19200484 A JP19200484 A JP 19200484A JP S6171820 A JPS6171820 A JP S6171820A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- permeable membrane
- selectivity
- gas permeable
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 22
- 229920000642 polymer Polymers 0.000 claims abstract description 25
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 15
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 125000000217 alkyl group Chemical group 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 125000001188 haloalkyl group Chemical group 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- -1 polybutashev Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CGHIBGNXEGJPQZ-UHFFFAOYSA-N 1-hexyne Chemical group CCCCC#C CGHIBGNXEGJPQZ-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/44—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は混合気体から特定の気体を分離濃縮するのに用
い、安定して愛れた気体選択性と気体透過性?発揮する
気体透過膜に関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention is used to separate and concentrate a specific gas from a mixed gas, and has stable and well-loved gas selectivity and gas permeability. This relates to a gas permeable membrane that exhibits the following properties.
従来例の溝底とその問題点
高分子膜を用いて混合気体から特定の気体を分ma縮す
る方法については、近年数多くの提案がなされてお9、
工業の生産技術としてだけでなく各種化学プロセス、資
源の再利用、医療機器等と広範囲にわた1て応用され、
実用化されている。Conventional groove bottoms and their problems A number of proposals have been made in recent years regarding methods of condensing specific gases from a gas mixture using polymer membranes9.
It is widely applied not only as an industrial production technology but also in various chemical processes, resource reuse, medical devices, etc.
It has been put into practical use.
このような気体透過膜に要求される性能としては気体の
選択率が高いこと、透過性が良いこと、及び長期間の運
用に際して安定であることなどがあげられる。しかしな
がら酸素透過膜を例にとってみると、従来!1(材料と
して知られている高分子には、酸素/窒素の選択率aが
高いものとしてポリカーボネート、ポリキシレンオキサ
イド、ポリ・4eメチルペンテン−1(aW3.5〜5
)等があるが、酸素に対する透過係数は小さく P02
=1o−’〜1o CC*cm/adK*cmHq程
度しカナイ。−方、透過性の良いものとして天然ゴム、
ポリブタシェフ等の合成ゴム、ポリオレフィン、シリコ
−yゴム(F =2x10−9〜6x10−811.
C・cm/c、1玄・cmHg)等があるが、これらの
高分子は選択率σが1.9〜2.0と低く、空気を分離
した場合には、23〜3o%程度にしか酸素濃度を上げ
ることができない。このように気体の選択性と透過性は
互いに相反する関係にあり、両者を同時に改善するべく
、例えばaの高い高分子とF の大きい高分子との共重
合等の努力がなされているが、再現性や薄膜化とい−た
点に問題を残している。また単独で高選択率、高透過性
を追ったものとしてハホリターシャリープチルアセチレ
ン(PTBA)。The performance required of such a gas permeable membrane includes high gas selectivity, good permeability, and stability during long-term operation. However, if we take oxygen permeable membranes as an example, conventional! 1 (macromolecules known as materials include polycarbonate, polyxylene oxide, poly-4e methylpentene-1 (aW3.5 to 5), which have a high oxygen/nitrogen selectivity a.
) etc., but the permeability coefficient for oxygen is small P02
=1o-'~1o CC*cm/adK*cmHq. -On the other hand, natural rubber is used as a material with good permeability.
Synthetic rubber such as polybutashev, polyolefin, silico-y rubber (F = 2x10-9 to 6x10-811.
C cm/c, 1 cm Hg), etc., but these polymers have a low selectivity σ of 1.9 to 2.0, and when air is separated, the selectivity σ is only about 23 to 3%. Unable to increase oxygen concentration. As described above, gas selectivity and permeability are in a contradictory relationship with each other, and efforts are being made to improve both at the same time, such as by copolymerizing a polymer with a high a and a polymer with a high F2. Problems remain in terms of reproducibility and film thinning. In addition, haoritertiary butyl acetylene (PTBA) is used alone to achieve high selectivity and high permeability.
ポリトリメチルシリルプロピン(PMSP ) が昭和
68年の高分子学会で報告されてお沙、PTBAはα中
3.9.Po2中9X10 CC@Crn/Cd ”
渡* CrnHqPMSPはa:1.7.P #4
x10−’CG・cm/cnt・気・Cm1−19とい
う特性が知られている。しかじながら、本発明者らの実
験によれば、上記PMS Pの気体透過特性は不安定で
、多孔質ポリプロピレン(ジュラガード2400 、ポ
リプラスチック社)にPMS Pを含浸させ、嘆厚約1
0 l1mの固体膜を作製し、50 C前後の空気中に
放置したところ、模の酸素透過流量は、初期状態では9
.7X10−’cc 7 sec −C#7あったもの
が、130分後には6.7×1O−3(:、C/東・洲
と約3割減少してしま−た。また、PMSP膜は、上記
多孔質ポリプロピレン支持体との接着性に劣るので、予
めポリジメチルシロキサン系重合体を上記支持体に下塗
りし、その上に水面展開法によって作製したPMSP4
膜を支持させ、これを30 (:mx 3 Q cmの
モジュールに組み、室温で放置したところ、初期状、態
では減圧度−500wHgで気体透過流量1.0Q/m
in 、酸素濃度31%あったものが、1000時間後
には一520mmHqで0.5Q/min 、60%に
変化してしまった。気体透過膜には先述のように長期運
用に際して特性が安定しているということが要求され、
他の吸・脱層式やボンベ利用の方法と異なり、連続使用
が可能であるという長所金入きく生かす為にも、模の気
体透過特性を安定させるということが重要な課題であっ
た。Polytrimethylsilylpropyne (PMSP) was reported at the Polymer Science Society of Japan in 1988, and PTBA was 3.9% in α. 9X10 CC@Crn/Cd in Po2”
*CrnHqPMSP is a:1.7. P #4
The characteristics of x10-'CG, cm/cnt, air, and Cm1-19 are known. However, according to experiments conducted by the present inventors, the gas permeation properties of the above-mentioned PMS P are unstable.
When a solid membrane of 0 l1m was prepared and left in air at around 50 C, the simulated oxygen permeation flow rate was 9 in the initial state.
.. What was 7X10-'cc 7 sec-C#7 decreased by about 30% to 6.7×1O-3 (:, C/Higashi・Su) after 130 minutes. Since the adhesion with the porous polypropylene support is poor, PMSP4 was prepared by undercoating the support with a polydimethylsiloxane polymer in advance and applying a water surface development method on top of the undercoat.
When the membrane was supported and assembled into a module of 30 (: m x 3 Q cm) and left at room temperature, the gas permeation flow rate was 1.0 Q/m at a reduced pressure of -500 wHg in the initial state.
In, the oxygen concentration was 31%, but after 1000 hours, it changed to 60% at -520 mmHq and 0.5 Q/min. As mentioned earlier, gas permeable membranes are required to have stable characteristics during long-term operation.
Unlike other suction/delayering methods or methods that use cylinders, it is possible to use it continuously, which is an advantage. In order to make full use of this advantage, it was important to stabilize the gas permeation properties of the material.
発明の目的
本発明は、以上のような従来の欠点を解消するためにな
されたもので、気体選択性及び気体透過 ・性に憂れ、
かつ長期間上記特性を安定に維持できる、真に実用に適
した高性能の気体透過膜を提供するものである。Purpose of the Invention The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology, and is concerned with gas selectivity and gas permeability.
Moreover, the present invention provides a high-performance gas permeable membrane that is truly suitable for practical use and can stably maintain the above characteristics for a long period of time.
発明の構成
本発明による気体透過膜は、−置換アセチレンポリマー
からなる膜を少くとも一層備え、上記置換アセチレンポ
リマーが1 ran Hg以下の真空中で46C以上の
温度で加熱処理したものである。Structure of the Invention The gas permeable membrane according to the present invention is provided with at least one membrane made of a -substituted acetylene polymer, and the substituted acetylene polymer is heat-treated at a temperature of 46 C or more in a vacuum of 1 ran Hg or less.
本発明者らは、置換アセチレンポリマーが、従来の透過
膜材料に比べ酸素透過特性が10倍以上も大きいことに
注目し、この特性を安定したものにするべく検討1ft
:重ねた結果、上記置換アセチレンポリマーを真空中で
加熱処理すれば若干気体透過係数が下がるものの、選択
性が向上し、以後の特性劣下が防げることを見い出した
。この効果は材料高分子を膜状、特に薄膜にした後に処
理した場合に著しく速やかに現れる。また常圧下では加
熱処理効果の発現が遅いため、減圧状態で、更に詳しく
は1 w Hg以下の真空中で行うことが好ましい。加
熱温度は45C以上が処理時間を短線することかでき、
好ましくは、支持体と変形・変質させない範囲でなるべ
く高温である方が良い。The present inventors noticed that the oxygen permeability of substituted acetylene polymers was more than 10 times greater than that of conventional permeable membrane materials, and conducted an investigation to stabilize this property.
: As a result of repeated experiments, it was found that if the above-mentioned substituted acetylene polymer is heat-treated in a vacuum, although the gas permeability coefficient is slightly lowered, the selectivity is improved and subsequent property deterioration can be prevented. This effect appears extremely quickly when the material polymer is processed after being formed into a film, especially a thin film. Further, since the heat treatment effect is slow to develop under normal pressure, it is preferable to perform the heat treatment under reduced pressure, more specifically in a vacuum of 1 w Hg or less. If the heating temperature is 45C or higher, the processing time can be shortened.
Preferably, the temperature should be as high as possible within a range that does not cause deformation or alteration of the support.
本発明の置換アセチレンポリマーとしては、一般式
(但し、R1はアルキル基または・・ロゲン化アルキル
基またはフェニル基、R2,R3,R4はアルキル基か
らなる)で表わされ、平均分子量が1万〜200万であ
るものが好適である。The substituted acetylene polymer of the present invention is represented by the general formula (wherein R1 is an alkyl group, a rogenated alkyl group, or a phenyl group, and R2, R3, and R4 are alkyl groups) and has an average molecular weight of 10,000. ~2 million is preferred.
実砲例の説明 以下本発明の実砲例について説明する。Explanation of actual gun examples Examples of actual guns of the present invention will be described below.
く実施例1〉
置換アセチレンポリマーとしてポリトリメチルンリルプ
ロピン(PMSP’)’i用い、これ全直径6cm 、
厚さ0.5咽の円板に成型、5x10 rranHq
の減圧下で5時間75Cに維持した後室温まで自然冷却
した。この結果上記PMSPの酸素透過係数は始めのp
。2中8.0X10 CC@ cm/ci−w・cm
Hqから2.4X10 C,G−cm/cr!・Se
c・cmHqに下が−たが、酸素/窒素選択率aは1.
7から3.0に向した。よく知られている材料ポリジノ
チルシロキサン系重合体はF 中6X10−8C(ニー
cml crd ・渡・cmHg 、 ti :2.O
であるから、本実捲例が透過性では4倍選択率では1.
5倍も高い性能が得られる。Example 1 Polytrimethylnrylpropyne (PMSP') was used as a substituted acetylene polymer, with a total diameter of 6 cm,
Molded into a disc with a thickness of 0.5 mm, 5x10 rranHq
The temperature was maintained at 75C for 5 hours under reduced pressure, and then naturally cooled to room temperature. As a result, the oxygen permeability coefficient of the above PMSP is
. 2 inside 8.0X10 CC@cm/ci-w・cm
Hq to 2.4X10 C, G-cm/cr!・Se
ccmHq, but the oxygen/nitrogen selectivity a was 1.
It went from 7 to 3.0. A well-known material, polydinotylsiloxane-based polymer, is F 6
Therefore, when this actual winding example is transparent, the 4 times selectivity is 1.
5 times higher performance can be obtained.
また上記真空加熱処理により、以後の気体透過特性は長
時間放置しても安定している。なお本実捲例では75C
で6時間処理したが、これより低温でも良く例えば65
Cでは9時間以上加熱すれば同様の効果を得ることかで
さる。また、PMSP以外に、置換基の異なる類似講造
をもつポリマーにも同様の効果が認められる。Further, due to the vacuum heat treatment, the subsequent gas permeation properties are stable even if left for a long time. In addition, in this example, it is 75C.
Although the treatment was carried out for 6 hours at
In C, the same effect can be obtained by heating for 9 hours or more. In addition to PMSP, similar effects are also observed in polymers having similar structures with different substituents.
〈実施例2〉
置換アセチレンポリマーとしてポリターンヤリ−ブチル
アセチレノ(PTBA)’に用い、実施例1と同じ条件
で真空加熱処理した。この結果上記PTBAのre素透
過係数は始めのP −=9x1o−9CCa cm
/ cnt −sec ・cm Hqから2.7 X
1O−9CGφcm/cnl −cu −crr(Hg
に下が−Iたが、aは3.8から4.5にまで向上した
。これは未処理のポリキ/レンオキサイドのPo2王2
.6×100C・cm/cM11宴命cmHq、αヶ4
.2に比較しても木実抱例が唆れた特性をもっているこ
とがわかる。<Example 2> Poly-ternary-butylacetyleno (PTBA)' was used as a substituted acetylene polymer, and vacuum heat treatment was performed under the same conditions as in Example 1. As a result, the re elementary permeability coefficient of the above PTBA is the initial P −=9×1o−9CCa cm
/ cnt -sec ・cm Hq to 2.7 X
1O-9CGφcm/cnl -cu -crr(Hg
The score was lower than -I, but a improved from 3.8 to 4.5. This is untreated poliki/ren oxide Po2 King 2
.. 6×100C・cm/cM11 life cmHq, α month 4
.. Even when compared with 2, it can be seen that it has characteristics similar to those of the Kinotsu case.
く実施例3〉
置換アセチレンポリマーとしてPlvrSP k用、こ
れを2wt%ベンゼン溶液にし、水面に展開して薄膜(
厚さ約0.1μm)を作製する。次に多孔質ポリプロピ
レン支持体の表面にポリオルガノシロキサン系重合体を
約0.1μmの厚さに下塗りし、この上に上記PMSP
博dを接層、4 X 10−”馴Hqに減圧した状態で
soCで2時間加熱処理した。Example 3 PlvrSPk was used as a substituted acetylene polymer. This was made into a 2 wt% benzene solution and spread on the water surface to form a thin film (
A thickness of approximately 0.1 μm) is prepared. Next, the surface of the porous polypropylene support is undercoated with a polyorganosiloxane polymer to a thickness of about 0.1 μm, and the above PMSP is applied on top of this.
The sample was heated at SOC for 2 hours under reduced pressure to 4 x 10-'' Hq.
これにより模の酸素透過流量は始めの6X10−’CC
/ crd −secから1.7 X 10−’ CC
/Cnl@secに変化し之が選択率は1.7から3.
0に向上した。As a result, the simulated oxygen permeation flow rate is the initial 6X10-'CC
/crd-sec to 1.7 X 10-' CC
/Cnl@sec, but the selectivity went from 1.7 to 3.
improved to 0.
以上は代表的なものについて示したが本発明の加熱処理
条件としては16Hg以下の真空中で加熱温度としては
45C以上の場合に良い効果が得られた。The above description has been given for typical examples, but good effects were obtained when the heat treatment conditions of the present invention were in a vacuum of 16 Hg or less and the heating temperature was 45 C or more.
発明の効果
以上要するに本発明は置換アセチレンポリマーからなる
膜を少くとも一層備え、上記置換アセチレンポリマーが
、1 mmHg以下の真空中で45C以上の温度で加熱
処理したものであることを特徴とする気体透過膜である
ため、従来の気体透過膜に比べ気体選択性及び気体透過
性に唆れ、かつ長期間上記特性を安定に維持できる真に
実用に適したものである。Effects of the Invention In short, the present invention provides a gas comprising at least one membrane made of a substituted acetylene polymer, the substituted acetylene polymer being heat-treated at a temperature of 45C or more in a vacuum of 1 mmHg or less. Since it is a permeable membrane, it has better gas selectivity and gas permeability than conventional gas permeable membranes, and can stably maintain the above characteristics for a long period of time, making it truly suitable for practical use.
Claims (3)
層備え、上記置換アセチレンポリマーが、1mmHg以
下の真空中で45℃以上の温度で加熱処理したものであ
ることを特徴とする気体透過膜。(1) A gas permeable membrane comprising at least one membrane made of a substituted acetylene polymer, the substituted acetylene polymer being heat-treated at a temperature of 45° C. or higher in a vacuum of 1 mmHg or lower.
後に真空中で加熱処理したものである特許請求の範囲第
1項記載の気体透過膜。(2) The gas permeable membrane according to claim 1, wherein the membrane made of the substituted acetylene polymer is formed and then heat-treated in a vacuum.
基またはフェニル基、R_2、R_3、R_4はアルキ
ル基からなる。)で表わされ、平均分子量が1万〜20
0万である特許請求の範囲第1項記載の気体透過膜。(3) Substituted acetylene polymers are represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. The average molecular weight is 10,000 to 20
00,000,000,000.00,000.00,000.00,000.00,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192004A JPS6171820A (en) | 1984-09-13 | 1984-09-13 | Gas permeable membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192004A JPS6171820A (en) | 1984-09-13 | 1984-09-13 | Gas permeable membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6171820A true JPS6171820A (en) | 1986-04-12 |
Family
ID=16283999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59192004A Pending JPS6171820A (en) | 1984-09-13 | 1984-09-13 | Gas permeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6171820A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6227022A (en) * | 1985-07-29 | 1987-02-05 | Teijin Ltd | Stabilizing method for membrane |
US4859215A (en) * | 1988-05-02 | 1989-08-22 | Air Products And Chemicals, Inc. | Polymeric membrane for gas separation |
US5501722A (en) * | 1992-11-04 | 1996-03-26 | Membrane Technology And Research, Inc. | Natural gas treatment process using PTMSP membrane |
JP2003056860A (en) * | 2001-08-10 | 2003-02-26 | Sanyo Electric Co Ltd | Air conditioning device |
-
1984
- 1984-09-13 JP JP59192004A patent/JPS6171820A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6227022A (en) * | 1985-07-29 | 1987-02-05 | Teijin Ltd | Stabilizing method for membrane |
JPH0378128B2 (en) * | 1985-07-29 | 1991-12-12 | Teijin Ltd | |
US4859215A (en) * | 1988-05-02 | 1989-08-22 | Air Products And Chemicals, Inc. | Polymeric membrane for gas separation |
US5501722A (en) * | 1992-11-04 | 1996-03-26 | Membrane Technology And Research, Inc. | Natural gas treatment process using PTMSP membrane |
JP2003056860A (en) * | 2001-08-10 | 2003-02-26 | Sanyo Electric Co Ltd | Air conditioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0417084B2 (en) | ||
JPS6171820A (en) | Gas permeable membrane | |
JPS5924845B2 (en) | Method for manufacturing gas selective permeability composite membrane | |
JPS594163B2 (en) | Gastou Kasemak | |
US4607088A (en) | Shaped body for gas separation | |
JPS61204008A (en) | Filter having excellent compaction resistance | |
JPS62183837A (en) | Gas permeable membrane | |
JPS61146320A (en) | Gas permeable membrane | |
JPH0365223B2 (en) | ||
JPS6380826A (en) | Selective gas-permeable composite membrane | |
JPH0321331A (en) | Gas permselective membrane and production thereof | |
JPS59166209A (en) | Selective permeable membrane for separating gas | |
JPS61200833A (en) | Carbon dioxide permselective membrane | |
JPS59183802A (en) | Permselective membrane for separation of gas | |
JPH0446172B2 (en) | ||
JP2952685B2 (en) | Separation membrane for liquid separation | |
JPH02126927A (en) | Production of gas separating membrane | |
JPH01123618A (en) | Composite gas separation membrane | |
JPS6115718A (en) | Composite membrane for gas separation | |
JPH02284636A (en) | Selectivity gas permeable membrane and production thereof | |
JPS62110728A (en) | Permselective compound film for gas | |
JPS6388019A (en) | Gas permselective composite membrane | |
JPH0534048B2 (en) | ||
JPS61234911A (en) | Gas permselective membrane | |
JPS6028410A (en) | Production of ultra-thin polymer film |