JPH02284636A - Selectivity gas permeable membrane and production thereof - Google Patents

Selectivity gas permeable membrane and production thereof

Info

Publication number
JPH02284636A
JPH02284636A JP10877889A JP10877889A JPH02284636A JP H02284636 A JPH02284636 A JP H02284636A JP 10877889 A JP10877889 A JP 10877889A JP 10877889 A JP10877889 A JP 10877889A JP H02284636 A JPH02284636 A JP H02284636A
Authority
JP
Japan
Prior art keywords
membrane
high molecular
cross
gas
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10877889A
Other languages
Japanese (ja)
Inventor
Yasuo Namita
靖夫 波田
Kenkichi Takahashi
高橋 堅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP10877889A priority Critical patent/JPH02284636A/en
Publication of JPH02284636A publication Critical patent/JPH02284636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To simply produce a membrane having superior separating performance and permeability by coating the inner wall of each pore in a porous membrane with a layer of the cross-linked product of a high molecular compd. having <=50 deg.C glass transition temp. CONSTITUTION:A cross-linkable high molecular compd. having <=50 deg.C glass transition temp. or a precursor thereof is impregnated into a porous membrane made of an org. material such as nitrocellulose, polysulfone or 6-nylon, an inorg. material such as barium titanate or alumina or a metal such as stainless steel or copper by brush coating, spray coating or other method. The cross- linkable high molecular compd. may be soft high molecular rubber, elastomer, soft gel or tacky matter, etc. Cross-linking treatment is then carried out by the conventional method such as vulcanization or heating and the unreacted compd. is removed by extraction with a solvent such as hydrocarbons or carbon tetrachloride. A membrane having superior separating performance and permeability is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い分離性能を有する気体分離用として好適
な新規な気体透過膜及びその製造方法に関するものであ
る。さらに詳しくいえば、本発明は、各種化学製造工業
において発生する混合ガスの分離、水処理、廃棄物処理
に伴う浄化、微生物工業、医療設備における清浄化など
に広く利用し得る、特殊な多孔質構造によりその分離性
能を向上させた新規な選択性気体透過膜及びその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel gas permeable membrane suitable for gas separation having high separation performance and a method for manufacturing the same. More specifically, the present invention provides a special porous material that can be widely used for separation of mixed gases generated in various chemical manufacturing industries, water treatment, purification associated with waste treatment, microbial industry, cleaning in medical equipment, etc. The present invention relates to a novel selective gas permeable membrane with improved separation performance due to its structure, and a method for manufacturing the same.

従来の技術 気体混合物から特定の気体を選択的に分離する方法と1
7ては、ガスクロマトグラフィー、液体洗浄法、吸着法
、液化分離法など種々な手法が用いられているが、エネ
ルギーの低減、設備の簡略化という見地から近年、高分
子膜を利用した分離法が注目されるようになってきた。
Prior Art Method for selectively separating a specific gas from a gas mixture and 1
Various methods such as gas chromatography, liquid washing method, adsorption method, and liquefaction separation method are used for this purpose, but in recent years separation methods using polymer membranes have been developed from the viewpoint of energy reduction and equipment simplification. has started to attract attention.

この高分子膜は、それを構成する素材の種類、透過され
るガスの種類などにより透過性能が異なり、この気体分
離は、これらの透過性能の差を利用して行われる。そし
て、一般に、高い透過性能を有する高分子膜は分離性能
が低く、高い分離性能を有する高分子膜は透過性能が低
いため、透過性能と分離性能の両方とも満足しうる高分
子膜は、これまで見出されていなかった。
The permeation performance of this polymer membrane varies depending on the type of material composing it, the type of gas permeated, etc., and gas separation is performed by utilizing the difference in these permeation performances. In general, polymer membranes with high permeation performance have low separation performance, and polymer membranes with high separation performance have low permeation performance, so polymer membranes that can satisfy both permeation performance and separation performance are: had not been discovered until now.

すなわち、これまで高分子膜については、均質なち布膜
から成るものとして、例えばポリシロギサンとポリカー
ボネート、ポリウレタン、スチレン系樹脂のような高分
子との共重合膜(特開昭48−64199号公報、特開
昭58−163403号公報、特開昭58−14926
号公報)やポリシロキサンとポリフェニレンオキシド、
縮合系高分子化合物とのブレンド膜(特開昭58−95
538号公報、特開昭59−203603号公報)が知
られているが、これらは分離性能はよいとしても透過性
能が不十分である。またクヌーセン流れを利用して気体
分離を行う多孔質膜も知られているが、このものの分離
係数は、気体分子の分子量の平方根の差に比例するため
、分離されるべき物質の分子量が大きく異なることが必
要であるにもかかわらず、一般に気体分子の分子量の差
は小さく、その平方根の差はさらに小さくなるので、実
用上十分な分離を行うことができない。
That is, until now, polymer membranes have been treated as homogeneous cloth membranes, for example, copolymer membranes of polysilane and polymers such as polycarbonate, polyurethane, and styrene resin (Japanese Patent Laid-Open No. 48-64199, JP-A-58-163403, JP-A-58-14926
(No. Publication), polysiloxane and polyphenylene oxide,
Blend membrane with condensation polymer compound (JP-A-58-95
No. 538, Japanese Unexamined Patent Publication No. 59-203603) are known, but although these have good separation performance, their permeation performance is insufficient. Porous membranes that use Knudsen flow to separate gases are also known, but the separation coefficient of these membranes is proportional to the square root difference in the molecular weights of gas molecules, so the molecular weights of the substances to be separated differ greatly. Although this is necessary, the difference in the molecular weights of gas molecules is generally small, and the difference in their square roots is even smaller, so it is impossible to perform a practically sufficient separation.

他方、多孔質支持体上に薄い均質膜を担持させたものと
しては、多孔質支持体表面にポリスルホン、ポリアクリ
ロニトリル、ポリイミドのようなポリマーを溶液として
塗布し乾燥させたもの(特公昭59−3201号公報、
特開昭57−209608号公報、特開昭59−553
13号公報)、ポリマーの非水溶液を水面上に展開させ
て薄膜を形成させ、これを多孔質支持体表面に付着させ
たもの(特開昭5814928号公報、特開昭58−9
2430号公報、特開昭60175507号公報)、多
孔質支持体上で、前駆体を架橋又は重合させたもの(特
開昭57−105203号公報、特開昭59−4980
2号公報、特開昭59−59222号公報)などが提案
されているが、これらは薄膜にピンホールを生じたり、
調製方法が煩雑であったり、細孔の閉塞を生じたり、透
過性と分離性のバランスの調整が困難であるなどの欠点
があり、必ずしも満足しうる結果は得られていない。さ
らに、ピンホールの生成や細孔の閉塞を防止するために
、あらかじめ細孔にシリコーンオイルを含浸させ、片面
のみプラズマ重合により薄膜を形成させたのち、シリコ
ーンオイルを抽出除去して製造する方法も提案されてい
るが(特公昭59−24843号公報)、工程が煩雑で
あり、工業的方法としては不適当である。
On the other hand, a thin homogeneous membrane supported on a porous support is obtained by applying a solution of a polymer such as polysulfone, polyacrylonitrile, or polyimide to the surface of the porous support and drying it (Japanese Patent Publication No. 59-3201). No. Publication,
JP-A-57-209608, JP-A-59-553
13), a non-aqueous solution of a polymer is spread on the water surface to form a thin film, and this is attached to the surface of a porous support (JP-A-5814928, JP-A-58-9).
2430, JP-A-60175507), cross-linked or polymerized precursors on a porous support (JP-A-57-105203, JP-A-59-4980)
2, Japanese Patent Application Laid-open No. 59-59222), but these methods may cause pinholes in the thin film,
They have drawbacks such as complicated preparation methods, clogging of pores, and difficulty in adjusting the balance between permeability and separability, and therefore, satisfactory results have not always been obtained. Furthermore, in order to prevent the formation of pinholes and pore blockage, there is a method in which the pores are impregnated with silicone oil in advance, a thin film is formed by plasma polymerization on one side only, and then the silicone oil is extracted and removed. Although it has been proposed (Japanese Patent Publication No. 59-24843), the steps are complicated and it is inappropriate as an industrial method.

このように、これまで工業的に生産可能で、かつバラン
スのとれた分離性能と透過性能を有する気体分離膜はま
だ得られていないのが実状である。
As described above, the reality is that a gas separation membrane that is industrially producible and has well-balanced separation performance and permeation performance has not yet been obtained.

発明が解決しようとする課題 本発明は、簡単な方法で製造することができ、かつ前記
したような欠点を克服した、優れた分離性能と透過性能
を示す新規な気体分離膜を提供することを目的としてな
されtこものである。
Problems to be Solved by the Invention The present invention aims to provide a novel gas separation membrane that can be manufactured by a simple method, overcomes the above-mentioned drawbacks, and exhibits excellent separation performance and permeation performance. It was done for a purpose.

課題を解決するための手段 本発明者らは、分離性能及び透過性能のいずれにおいて
も従来のものよりも優れており、しかも容易に製造しう
る気体分離膜を開発するために、鋭意研究を重ねた結果
、多孔質膜の細孔内に所要の気体に対する選択性を高め
る高分子物質を充てんして分離性を向上させると共に、
充てん部分の一部に気体が容易に通過できる空隙を設け
て透過性を保持させること、すなわち細孔内壁に高分子
物質層を被覆させることによりその目的を達成しうろこ
とを見い出し、この知見に基づいて本発明をなすに至っ
た。
Means for Solving the Problems The present inventors have conducted extensive research in order to develop a gas separation membrane that is superior to conventional membranes in both separation performance and permeation performance, and that can be easily manufactured. As a result, the pores of the porous membrane are filled with a polymeric substance that increases selectivity for the required gas, improving separation performance, and
We discovered that this goal could be achieved by creating a void in a part of the filled part that allows gas to easily pass through to maintain permeability, that is, by coating the inner wall of the pore with a layer of polymeric material. Based on these findings, the present invention has been completed.

すなわち、本発明は、各細孔内壁が50℃以下のガラス
転移温度をもつ高分子化合物の架橋化物の層で被覆され
た多孔質膜から成る選択性気体透過膜を提供するもので
ある。
That is, the present invention provides a selective gas permeable membrane comprising a porous membrane in which the inner walls of each pore are coated with a layer of a crosslinked polymer compound having a glass transition temperature of 50° C. or lower.

このような選択性気体透過膜は、多孔質膜に50℃以下
のガラス転移温度をもつ架橋性高分子化合物又はその前
駆体を含浸させたのち、架橋化処理を行い、次いで未反
応物を溶剤抽出により除去することによって製造するこ
とができる。
Such selective gas permeable membranes are produced by impregnating a porous membrane with a crosslinkable polymer compound or its precursor having a glass transition temperature of 50°C or less, then crosslinking the membrane, and removing unreacted substances with a solvent. It can be produced by removing it by extraction.

この際、各細孔内には気体通過の通路となる空隙が形成
されるように、架橋化処理及び溶剤抽出の条件を適切に
選ぶ必要がある。
At this time, it is necessary to appropriately select the conditions for crosslinking treatment and solvent extraction so that voids serving as gas passages are formed in each pore.

本発明で用いる多孔質膜の材質には、特に制限はなく有
機物質、無機物質、金属のいずれでもよい。また、自己
支持性を有しない多孔質膜は、支持体上に担持して用い
ることもできる。多孔質膜の材料として用いられる有機
物質の例としては、ニトロセルロース、酢酸セルロース
、再生セルロース、ポリスルホン、ポリエーテルスルホ
ン、ナイロン6、ナイロン66、ポリ塩化ビニル、アク
リル系樹脂、ポリオレフィン、フン素81脂なトラ、無
機物質の例としては、チタン酸バリウム、チタン酸カリ
ウム、アルミナ、ガラスなどを、また金属の例としては
、ステンレス鋼、銅、金、スズなどをそれぞれ挙げるこ
とができる。
The material of the porous membrane used in the present invention is not particularly limited and may be any of organic substances, inorganic substances, and metals. Furthermore, a porous membrane that does not have self-supporting properties can also be used by supporting it on a support. Examples of organic substances used as materials for porous membranes include nitrocellulose, cellulose acetate, regenerated cellulose, polysulfone, polyethersulfone, nylon 6, nylon 66, polyvinyl chloride, acrylic resin, polyolefin, and fluorine 81 resin. Examples of inorganic substances include barium titanate, potassium titanate, alumina, glass, etc., and examples of metals include stainless steel, copper, gold, tin, etc.

この多孔質膜としては、細孔の孔径が0.01−10μ
m1好ましくは0.1〜5μmのものが適当である。
This porous membrane has a pore diameter of 0.01-10μ.
m1 is preferably 0.1 to 5 μm.

これが0.01pm未満では気体の透過性が不十分であ
るし、また10μm以上では気体の選択分離性が低下す
る。
If it is less than 0.01 pm, the gas permeability is insufficient, and if it is 10 μm or more, the selective separation of gases is reduced.

多孔質膜の形状については特に制限はなく、平膜、管状
膜、中空糸膜など任意の形状のものを使用目的に応じ適
宜選択して用いることができる。
There is no particular restriction on the shape of the porous membrane, and any shape such as a flat membrane, tubular membrane, or hollow fiber membrane can be selected and used as appropriate depending on the purpose of use.

次に、この多孔質膜の細孔内壁を被覆するために用いら
れる高分子化合物は、架橋可能なガラス転移温度50℃
以下のものであれば、どのようなものであってもよい。
Next, the polymer compound used to coat the inner walls of the pores of this porous membrane has a glass transition temperature of 50° C.
Any of the following may be used.

ガラス転移温度が50℃よりも高いものは、柔軟性を欠
き、十分な分離性能を示さない。このガラス転移温度5
0℃以下の高分子化合物の中には、軟質高分子、ゴム、
エラストマー、軟質ゲル、粘着物質などが含まれる。本
発明で用いられる高分子化合物又はその前駆体の例とし
ては、天然ゴム、インプレンゴム、ブタジェンゴム、ス
チレン−ブタジェンゴム、ブチルゴム、クロロプレンゴ
ム、ニトリルゴムなどの固形ゴム、液状ブタジェンゴム
、液状インプレンゴム、液状ニトリルゴムなどの液状ゴ
ム、末端官能基を有するポリウレタン、ウレタンプレポ
リマー、低分子量アクリル酸エステルポリマー又はオリ
ゴマ、末端官能基を有するポリエーテル、脂肪族ポリチ
オエーテル、シロキサン系ポリマー及びその前駆体、ポ
リビニルアルコール、エチレン−酢酸ビニルコポリマー
、ビニルエーテル及びそのポリマーを挙げることができ
る。
Those with a glass transition temperature higher than 50°C lack flexibility and do not exhibit sufficient separation performance. This glass transition temperature 5
Among the polymer compounds below 0℃, there are soft polymers, rubber,
Includes elastomers, soft gels, adhesive substances, etc. Examples of the polymer compound or its precursor used in the present invention include solid rubbers such as natural rubber, imprene rubber, butadiene rubber, styrene-butadiene rubber, butyl rubber, chloroprene rubber, and nitrile rubber, liquid butadiene rubber, liquid imprene rubber, and liquid nitrile rubber. Liquid rubber such as rubber, polyurethane with a terminal functional group, urethane prepolymer, low molecular weight acrylic acid ester polymer or oligomer, polyether with a terminal functional group, aliphatic polythioether, siloxane polymer and its precursor, polyvinyl alcohol, Mention may be made of ethylene-vinyl acetate copolymers, vinyl ethers and polymers thereof.

これらの高分子化合物は、そのままで、あるいは溶液状
で多孔質膜に含浸させる。この含浸は、刷毛塗り、スプ
レー塗装、流展法、ローラ塗装、遠心塗装、ドクターナ
イフ塗装、浸せき法など通常使用されている方法によっ
て行うことができる。
These polymer compounds are impregnated into the porous membrane as they are or in the form of a solution. This impregnation can be carried out by commonly used methods such as brush coating, spray coating, spreading method, roller coating, centrifugal coating, doctor knife coating, and dipping method.

このようにして、細孔内に含浸された高分子化合物は、
次いで架橋処理に付されるが、この架橋化は、通常用い
られている方法、例えば加硫、加熱、紫外線照射、電子
線照射、ラジカル重合開始剤の添加による重合、架橋剤
との反応などによって行うことができる。
In this way, the polymer compound impregnated into the pores is
Next, crosslinking is carried out by commonly used methods such as vulcanization, heating, ultraviolet irradiation, electron beam irradiation, polymerization by adding a radical polymerization initiator, and reaction with a crosslinking agent. It can be carried out.

この架橋化処理は、処理後に架橋化物層が細孔内壁に十
分に形成され、かつ気体通過のための空隙が残るように
して行うことが必要である。すなわち、架橋化に続いて
行う溶剤抽出において、含浸された高分子化合物の10
〜90重量%、好ましくは30〜70重量%が抽出され
る程度の架橋度まで架橋化することが必要である。これ
よりも架橋が進行すると気体通過のための空隙が狭くな
って透過性能がそこなわれるし、またこれ以下の架橋で
は、十分な分離性能をもたらす被覆が形成されない。
This crosslinking treatment must be carried out in such a way that a crosslinked material layer is sufficiently formed on the inner walls of the pores after the treatment, and voids for gas passage remain. That is, in the solvent extraction subsequent to crosslinking, 10% of the impregnated polymer compound
It is necessary to crosslink to a degree that ~90% by weight is extracted, preferably 30-70% by weight. If the crosslinking progresses further than this, the pores for gas passage become narrower and the permeation performance is impaired, and if the crosslinking progresses further than this, a coating that provides sufficient separation performance will not be formed.

架橋化処理後の抽出は、多孔質膜及び架橋化物を溶解せ
ず、未架橋の高分子化合物のみを溶解する溶剤を用いて
行うことができる。このような溶剤トシては、トルエン
、ベンゼン、キシレン、ンクロヘギザン、ヘキサンのよ
うな炭化水素類、四塩化炭素、塩化メチレン、テトラク
ロルエタン、クロロホルム、クロルベンゼンのようなハ
ロゲン化炭化水素類、テトラヒドロフラン、ジオキサン
のような環状エーテル類などがある。
Extraction after the crosslinking treatment can be performed using a solvent that does not dissolve the porous membrane or the crosslinked product, but dissolves only the uncrosslinked polymer compound. Such solvents include hydrocarbons such as toluene, benzene, xylene, cyclohexane, hexane, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, tetrachloroethane, chloroform, chlorobenzene, tetrahydrofuran, Examples include cyclic ethers such as dioxane.

発明の効果 本発明によると分離性能及び透過性能の優れた気体透過
膜が得られ、かつ分離する気体の種類に応じて、多孔質
膜内壁に形成する被覆層の素材を変えることができるの
で、高い選択性を得ることができるという利点がある。
Effects of the Invention According to the present invention, a gas permeable membrane with excellent separation performance and permeation performance can be obtained, and the material of the coating layer formed on the inner wall of the porous membrane can be changed depending on the type of gas to be separated. It has the advantage that high selectivity can be obtained.

実施例 次に実施例により本発明をさらに詳細に説明する。各例
中のPO2は酸素ガスの透過係数(c+++3・cm/
crR2・sec−CIIIHg)であり1、αは窒素
ガスに対する酸素ガスの透過係数の比PO2/PN2で
ある。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. PO2 in each example is the permeability coefficient of oxygen gas (c+++3・cm/
crR2·sec-CIIIHg) is 1, and α is the ratio PO2/PN2 of the permeability coefficient of oxygen gas to nitrogen gas.

実施例1 ニトロセルロース多孔質メンプラン(孔u0.8μm)
に天然ゴムと前記ゴムに対し1重量%の過酸化ベンゾイ
ルをクロロホルムに溶解した溶液(30重量%)を塗布
し、室温で放置して溶剤を除去した。この操作を2回繰
り返した後、スペーサーに挟み、80℃で30分加熱し
た。次いで、90℃、30分トルエンで未架橋物の抽出
地理を行い、乾燥□した。生成物のガス透過性能は次の
とおりであった。
Example 1 Nitrocellulose porous membrane (pore u0.8 μm)
A solution (30% by weight) prepared by dissolving 1% by weight of benzoyl peroxide in chloroform was applied to natural rubber and the above rubber, and the solvent was removed by leaving to stand at room temperature. After repeating this operation twice, it was sandwiched between spacers and heated at 80° C. for 30 minutes. Next, the uncrosslinked product was extracted with toluene at 90°C for 30 minutes and dried. The gas permeability of the product was as follows.

反応後 PO□−1,20xlo−″ 、r−2,50 抽出後 PO□= 9.50x 10−’ff=2.4
0 実施例2 ポリスルホン多孔質メンプラン(孔径0.1pm)に液
状ポリブタジェン(分子量−2000)、トルエンジイ
ソシア不一ト(3重量%)を含浸させ、スペーサーで挟
んだ状態で、70℃にて3時間反応させた。その後、室
温で1時間、n−ヘキサンにより未架橋物の抽出処理を
行い、乾燥した。生成物のガス透過性能は次のとおりで
あった。
After reaction PO□-1,20xlo-'', r-2,50 After extraction PO□=9.50x 10-'ff=2.4
0 Example 2 A porous polysulfone membrane (pore size 0.1 pm) was impregnated with liquid polybutadiene (molecular weight -2000) and toluene diisocyanate (3% by weight), and the membrane was sandwiched between spacers at 70°C. The reaction was allowed to proceed for 3 hours. Thereafter, uncrosslinked substances were extracted with n-hexane at room temperature for 1 hour, and then dried. The gas permeability of the product was as follows.

反応後 PO2−1,50x 10−’α−3,10 抽出後 PO,= 1.lOX 10−’α−2.70 実施例3 ポリ塩化ビニルメンプラン(孔径0.8μm)J:、ポ
リニレチングリコール(分子量−3000) 、l−ル
エンジイソシアネート(1重量%)、グリセリン(1重
量%)を含浸させ、スペーサーで挟んで70℃12時間
加熱反応させた。生成物は熱水(90℃)中に1時間浸
せきして未架橋物を抽出処理し、乾燥した。生成物のガ
ス透過性能は次のとおりであった。
After reaction PO2-1,50x 10-'α-3,10 After extraction PO,=1. lOX 10-'α-2.70 Example 3 Polyvinyl chloride membrane (pore size: 0.8 μm) %), sandwiched between spacers, and heated to react at 70°C for 12 hours. The product was immersed in hot water (90°C) for 1 hour to extract uncrosslinked substances, and then dried. The gas permeability of the product was as follows.

反応後 poz = 8.00 X 10− ’ ”α
= 2.80 抽出後 PO2−1,lOX 10−”a=2.70 実施例4 アクリル系ポリマー多孔質メンプラン(孔径0.8μm
)にブチルアクリレート、液状ポリブタジェン(15重
量%)、ベンゾフェノン(0,51!1%)を含浸させ
た。これを石英ガラススペーサーで挟み、紫外線を30
分照射し、反応させた。その後、85℃で15分未架橋
物の抽出処理を行った。生成物のガス透過性能は次のと
おりであった。
After reaction poz = 8.00 X 10-' ”α
= 2.80 After extraction PO2-1,lOX 10-”a=2.70 Example 4 Acrylic polymer porous membrane (pore size 0.8 μm
) was impregnated with butyl acrylate, liquid polybutadiene (15% by weight) and benzophenone (0.51!1%). This is sandwiched between quartz glass spacers, and ultraviolet rays are
It was irradiated for 1 minute to react. Thereafter, an uncrosslinked product was extracted at 85° C. for 15 minutes. The gas permeability of the product was as follows.

反応後 po2=8.lOx 1O−1t′a−3,0
0 抽出後 po2−5.70x 10−”α−2,50 実施例5 ナイロン66の多孔質メンブレン(孔径1.2μm)に
NKエステルM−90G(新中村化学工業(株)製)、
ポリエチレングリコールメタクリレートと過酸化ベンゾ
イル(1重量%)を含浸させ、スペーサーで挟んだ状態
で70℃12時間反応させた。
After reaction po2=8. lOx 1O-1t'a-3,0
0 After extraction po2-5.70x 10-”α-2,50 Example 5 NK ester M-90G (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) was applied to a porous membrane of nylon 66 (pore diameter 1.2 μm).
It was impregnated with polyethylene glycol methacrylate and benzoyl peroxide (1% by weight), and reacted at 70°C for 12 hours while being sandwiched between spacers.

生成物は85℃でトルエンにより未架橋物を抽出処理し
、乾燥させた。生成物のガス透過性能は次のとおりであ
った。
The uncrosslinked product was extracted with toluene at 85°C and dried. The gas permeability of the product was as follows.

反応後 PO2−4,lOX 10−”α−3,20 抽出後 PO2−4,40X 10−’α−3,00 実施例6 酢酸セルロースメンプラン(孔径1.0μm)にスチレ
ン−ブタジェンゴム、過酸化ベンゾイル(1重量%)の
トルエン溶液(25重量%)を含浸し、溶剤を除いた後
、スペーサーで挟んだ状態で80℃% 1時間加熱反応
させた。次いで、トルエンにより未架橋物の抽出処理を
室温で1時間行った。
After reaction PO2-4,1OX 10-'α-3,20 After extraction PO2-4,40X 10-'α-3,00 Example 6 Cellulose acetate membrane (pore size 1.0 μm), styrene-butadiene rubber, peroxide After impregnating with a toluene solution (25% by weight) of benzoyl (1% by weight) and removing the solvent, the reaction was heated at 80°C for 1 hour while sandwiched between spacers.Next, uncrosslinked products were extracted with toluene. was carried out for 1 hour at room temperature.

生成物のガス透過性能は次のとおりであった。The gas permeability of the product was as follows.

反応後 POz= 1.50x 10−’ff−2.6
0 抽出後 PO2−4,10x 10−’α−2,30 実施例7 チタン酸バリウム多孔質メンプラン(本州製紙(株)製
)を用い、液状ポリブタジェン(分子量=2000)、
トルエンジイソシアネート(3重量%)を含浸させ、ス
ペーサーで挟んだ状態で、70℃13時間反応させた。
After reaction POz= 1.50x 10-'ff-2.6
0 After extraction PO2-4,10x 10-'α-2,30 Example 7 Using barium titanate porous Menpuran (manufactured by Honshu Paper Co., Ltd.), liquid polybutadiene (molecular weight = 2000),
It was impregnated with toluene diisocyanate (3% by weight) and reacted at 70°C for 13 hours while being sandwiched between spacers.

反応物は室温にてトルエンで30分未架橋物の抽出処理
を行った。生成物のガス透過性能は次のとおりであった
The reaction product was subjected to an extraction treatment of uncrosslinked products with toluene at room temperature for 30 minutes. The gas permeability of the product was as follows.

反応後 PO2= 1.40X tO−’α−3,20 抽出後 PO2= 2.70x 10−’α−1,80 実施例8 多孔質膜として、孔径3.0μmのステンレススチール
フィルター(日本精練(株)製)を用い、液状ポリブタ
ジェン(分子!=2000)、l−ルエンジイソシア不
一ト(3重量%)を含IL、スペーサーで挟んだ状態で
、70℃13時間反応させた。
After reaction PO2 = 1.40X tO-'α-3,20 After extraction PO2 = 2.70x 10-'α-1,80 Example 8 As a porous membrane, a stainless steel filter with a pore size of 3.0 μm (Nippon Seiren Co., Ltd. Co., Ltd.), liquid polybutadiene (molecules = 2000), l-ruene diisocyanate (3% by weight) were sandwiched between IL and spacers and reacted at 70°C for 13 hours.

反応物はトルエンで、室温にて30分未架橋物の抽出処
理を行った。生成物のガス透過性能は次のとおりであっ
た。
The reaction product was toluene, and uncrosslinked products were extracted at room temperature for 30 minutes. The gas permeability of the product was as follows.

反応後 PO2−i、4ox 10 ’α−3,00 抽出後 PO4−4,30X 10−’α−1,65After reaction PO2-i, 4ox 10'α-3,00 After extraction PO4-4,30X 10-'α-1,65

Claims (1)

【特許請求の範囲】 1 各細孔内壁が50℃以下のガラス転移温度をもつ高
分子化合物の架橋化物の層で被覆された多孔質膜から成
る選択性気体透過膜。 2 多孔質膜に、50℃以下のガラス転移温度をもつ架
橋性高分子化合物又はその前駆体を含浸させたのち、架
橋化処理を行い、次いで未反応物を溶剤抽出により除去
することを特徴とする請求項1記載の選択性気体透過膜
の製造方法。
[Scope of Claims] 1. A selective gas permeable membrane comprising a porous membrane in which the inner walls of each pore are coated with a layer of a crosslinked polymer compound having a glass transition temperature of 50° C. or lower. 2. A porous membrane is impregnated with a crosslinkable polymer compound or its precursor having a glass transition temperature of 50°C or less, then subjected to a crosslinking treatment, and then unreacted substances are removed by solvent extraction. The method for producing a selective gas permeable membrane according to claim 1.
JP10877889A 1989-04-27 1989-04-27 Selectivity gas permeable membrane and production thereof Pending JPH02284636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10877889A JPH02284636A (en) 1989-04-27 1989-04-27 Selectivity gas permeable membrane and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10877889A JPH02284636A (en) 1989-04-27 1989-04-27 Selectivity gas permeable membrane and production thereof

Publications (1)

Publication Number Publication Date
JPH02284636A true JPH02284636A (en) 1990-11-22

Family

ID=14493239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10877889A Pending JPH02284636A (en) 1989-04-27 1989-04-27 Selectivity gas permeable membrane and production thereof

Country Status (1)

Country Link
JP (1) JPH02284636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502850A (en) * 2000-07-08 2004-01-29 ユニヴァシティート トウェンテ Membrane and its use
US7674498B2 (en) * 2004-02-27 2010-03-09 Corning Incorporated Porous ceramic filters with catalyst coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502850A (en) * 2000-07-08 2004-01-29 ユニヴァシティート トウェンテ Membrane and its use
US7674498B2 (en) * 2004-02-27 2010-03-09 Corning Incorporated Porous ceramic filters with catalyst coatings

Similar Documents

Publication Publication Date Title
NO157049B (en) MACROPOROS ASYMMETRIC HYDROPHILIC MEMBRANE OF SYNTHETIC POLYMERISATE.
JPH0335971B2 (en)
JPH0324252B2 (en)
JPH0417084B2 (en)
KR20090033733A (en) A preparation of asymmetric porous peba membrane for composite membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPH0388B2 (en)
JPS58163403A (en) Gas separation membrane
JPH035207B2 (en)
JPH02284636A (en) Selectivity gas permeable membrane and production thereof
US5595658A (en) Membrane based on graft copolymers
JPS5924843B2 (en) Method for producing gas selectively permeable composite membrane
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution
JP3668771B2 (en) Separation membrane and manufacturing method thereof
JPH047026A (en) Composite semi-permeable membrane
JPH06277474A (en) Gas permselective membrane and production thereof
JPS61111121A (en) Composite membrane for separating gas
EP0336999B1 (en) Reactive posttreatment for gas separation membranes
JPH034925A (en) Separation membrane and its preparation
JPH04341334A (en) Composite semipermeable membrane
JPH02241529A (en) Gas separation membrane
JPS6171820A (en) Gas permeable membrane
JPH05220362A (en) Gas separation membrane
JPH0372928A (en) Gas separation membrane
JPH0677673B2 (en) Selective gas permeable flat membrane