JPH035207B2 - - Google Patents

Info

Publication number
JPH035207B2
JPH035207B2 JP60275833A JP27583385A JPH035207B2 JP H035207 B2 JPH035207 B2 JP H035207B2 JP 60275833 A JP60275833 A JP 60275833A JP 27583385 A JP27583385 A JP 27583385A JP H035207 B2 JPH035207 B2 JP H035207B2
Authority
JP
Japan
Prior art keywords
membrane
siloxane compound
film
porous support
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60275833A
Other languages
Japanese (ja)
Other versions
JPS62136212A (en
Inventor
Junji Harada
Masaoki Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP27583385A priority Critical patent/JPS62136212A/en
Publication of JPS62136212A publication Critical patent/JPS62136212A/en
Publication of JPH035207B2 publication Critical patent/JPH035207B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (A) 産業上の利用分野 本発明は選択性透過複合膜に関するものであ
り、特に空気から酸素富化空気を得るための酸素
富化膜の製造方法に関するものであり、この膜を
通して得られた酸素富化空気は燃焼、医療、醗酵
等に利用される。
[Detailed Description of the Invention] (A) Field of Industrial Application The present invention relates to a selectively permeable composite membrane, and particularly relates to a method for producing an oxygen-enriched membrane for obtaining oxygen-enriched air from air. The oxygen-enriched air obtained through this membrane is used for combustion, medicine, fermentation, etc.

(B) 従来の技術 混合気体からある特定の気体を選択的に分離、
濃縮する手段として高分子薄膜を用いた連続法が
近年注目されている。
(B) Conventional technology Selective separation of a specific gas from a gas mixture,
Continuous methods using thin polymer films have been attracting attention in recent years as a means of concentration.

高分子薄膜を用いた連続的気体分離法は従来の
蒸留法、深冷法などに比べて省エネルギー的であ
るが、実用化の遅れている理由として、特定気体
の透過性が大きく、かつ他の気体をほとんど通さ
ないほど選択性が高いような優秀な膜が未だ開発
されていないことが挙げられる。一般に選択性を
大きくすると気体透過性が悪くなる。この関係を
改善するために高分子膜を薄膜化し支持体と複合
化させた複合膜の製造方法が数多く検討されてい
る。ガス透過性については数多くの高分子が検討
されているが、中でもシリコンゴムと略称される
シロキサン化合物がジメチルシロキサン、メチル
ビニルシロキサン、メチルフエニルシロキサン及
びその他の変性化合物も含めて特に秀れている。
例えばポリジメチルシロキサンは酸素の透過係数
が10-8cm3(STP)・cm/cm2・sec・cmHg台であり、
従来知られている高分子膜の中では最大の部類に
属する。しかしながらこの膜は機械的強度が小さ
く比較的厚い膜を用いる必要があり、従つて透過
係数が大きくしても透過速度を大きくする事がで
きない。
Continuous gas separation methods using polymer thin films are more energy-saving than conventional distillation methods, deep cooling methods, etc., but the reason for the delay in practical application is that they have high permeability for specific gases and One reason is that an excellent membrane with high selectivity that hardly allows gas to pass through has yet to be developed. Generally, increasing selectivity decreases gas permeability. In order to improve this relationship, many methods for producing composite membranes in which the polymer membrane is thinned and composited with a support have been studied. Many polymers have been studied for gas permeability, but siloxane compounds, abbreviated as silicone rubber, are particularly superior, including dimethylsiloxane, methylvinylsiloxane, methylphenylsiloxane, and other modified compounds. .
For example, polydimethylsiloxane has an oxygen permeability coefficient of 10 -8 cm 3 (STP) cm/cm 2 sec cmHg,
It belongs to the largest class of polymer membranes known to date. However, this membrane has low mechanical strength and requires the use of a relatively thick membrane, so even if the permeability coefficient is increased, the permeation rate cannot be increased.

これを解決する方法として米国特許3189662号
にはポリジメチルシロキサン/ポリカーボネート
ブロツク共重合体が報告されているが、ポリカー
ボネート構造を含むために耐薬品性に劣る。また
主鎖に芳香環を有するフエノール系樹脂とα,ω
−2管能性ポリシロキサンから得られる架橋型共
重合体(特願昭56−24019)においては機械的強
度の改善はされているが気体透過能は低下してい
る。
As a method to solve this problem, a polydimethylsiloxane/polycarbonate block copolymer is reported in US Pat. No. 3,189,662, but it has poor chemical resistance because it contains a polycarbonate structure. In addition, phenolic resins with aromatic rings in the main chain and α, ω
-A crosslinked copolymer obtained from bifunctional polysiloxane (Japanese Patent Application No. 56-24019) has improved mechanical strength, but has decreased gas permeability.

シロキサン化合物の低い機械的強度という問題
は十分な機械的強度を有する支持体との複合膜化
という方法で解決し得る。しかしこの場合でもシ
ロキサン化合物と支持体との接着性を考慮する必
要があると同時に高い気体透過性を維持するため
にシロキサン化合物の膜は可能な限り薄く均一で
ある事が必要である。
The problem of low mechanical strength of siloxane compounds can be solved by forming a composite film with a support having sufficient mechanical strength. However, even in this case, it is necessary to consider the adhesion between the siloxane compound and the support, and at the same time, it is necessary that the siloxane compound film be as thin and uniform as possible in order to maintain high gas permeability.

従来、気体選択透過性複合膜の製造方法として
は支持体上にポリマー溶液を塗布した後に溶媒を
乾燥除去する方法、多孔質支持体をシリコーン含
有の半浸透性膜形成剤および架橋剤を含有するハ
ロゲン置換エタン溶液に浸漬後、加流する方法
(特開昭59−3201号)、ポリオルガノシロキサン系
重合体の非水系溶媒溶液を水面上に展開して薄膜
化し、多孔質支持体に付着せしめる方法(例えば
米国特許3874986号)及びさらに加硫処理を施す
方法(特開昭58−92430)、しかしながら、これら
の方法ではシロキサン化合物の層を非常に薄くす
るため欠点を生じやすいばかりでなく膜厚の不均
一性を生じやすい。また水面展開法に関しては装
置及び操作の煩雑さといつた欠点が存在し良好な
物性を有する複合膜を工業的に得るための製造方
法として必ずしも満足されるものではなかつた。
Conventionally, methods for producing gas selectively permeable composite membranes include coating a polymer solution on a support and then drying and removing the solvent, and applying a porous support to a semipermeable membrane forming agent containing silicone and a crosslinking agent. A method of immersing in a halogen-substituted ethane solution and then applying it (Japanese Patent Application Laid-open No. 59-3201), a solution of a polyorganosiloxane polymer in a non-aqueous solvent is spread on the water surface to form a thin film, which is then attached to a porous support. (for example, U.S. Pat. No. 3,874,986) and a method of further applying vulcanization treatment (Japanese Patent Application Laid-Open No. 1983-92430). However, these methods not only tend to cause defects because the siloxane compound layer is made very thin, but also have problems with the film thickness. tends to cause non-uniformity. Furthermore, the water surface development method has drawbacks such as the complexity of equipment and operations, and is not necessarily a satisfactory manufacturing method for industrially obtaining composite membranes having good physical properties.

(C) 発明が解決しようとする問題点 本発明は、選択分離性、透過性、強度のすべて
の物性を満足する素材を得る事を目的とする。シ
ロキサン化合物の溶液を直接多孔質支持体上に塗
布する場合、シロキサン化合物の溶液の粘度が低
いと多孔性の空間に毛管現象により吸い込まれ、
その結果多孔質支持体の内部で濃度ムラを生じ
る。その結果、乾燥後に生成するシロキサン化合
物の被膜は膜厚のムラが生じ均一膜とならないば
かりか、被膜の厚い部分は気体の透過能力が低
く、実質的な気体分離膜の有効面積を減少させ
る。
(C) Problems to be Solved by the Invention The purpose of the present invention is to obtain a material that satisfies all the physical properties of selective separation, permeability, and strength. When applying a solution of a siloxane compound directly onto a porous support, if the viscosity of the siloxane compound solution is low, it will be sucked into the porous space by capillary action.
As a result, density unevenness occurs inside the porous support. As a result, the film of the siloxane compound formed after drying has uneven film thickness and is not a uniform film, and the thick portion of the film has a low gas permeation ability, which effectively reduces the effective area of the gas separation membrane.

一方、シロキサン化合物の粘度の高い溶液を多
孔質支持体上に塗布する場合、毛管現象による吸
引は少なくなり、多孔質支持体内部の濃度ムラは
小さくなるものの薄膜化が難しいという欠点を有
する。このような相反する性質がある中で本発明
においては、多孔質支持体にシロキサン化合物を
薄く、均一に塗布し気体透過性に優れた膜を生成
する方法を鋭利追求した結果、放射線重合法を用
いて良好な性質を有する膜の製法の開発に成功し
た。
On the other hand, when a highly viscous solution of a siloxane compound is applied onto a porous support, suction due to capillary action is reduced and concentration unevenness inside the porous support is reduced, but it has the disadvantage that it is difficult to form a thin film. In view of these contradictory properties, in the present invention, as a result of keenly pursuing a method of applying a siloxane compound thinly and uniformly to a porous support to produce a membrane with excellent gas permeability, we developed a radiation polymerization method. We succeeded in developing a method for producing a membrane with good properties using this method.

(D) 問題点を解決するための手段 本発明は、放射線照射により硬化可能な不飽和
結合を有する液状のシロキサン化合物を多孔性支
持体上に塗布し、紫外線照射または電子線照射に
より表面層のシロキサン化合物を架橋により硬化
することを特徴とする選択透過性複合膜の製造方
法である。
(D) Means for Solving the Problems The present invention involves coating a porous support with a liquid siloxane compound having unsaturated bonds that can be cured by radiation irradiation, and then irradiating the surface layer with ultraviolet rays or electron beams. This is a method for producing a permselective composite membrane characterized by curing a siloxane compound by crosslinking.

本発明における選択透過性複合膜は選択性、透
過性を受けもつ層と強度を受けもつ層が別々に構
成されている。すなわち選択性、透過性を受け持
つ層はシロキサン化合物による薄膜であり、強度
を受け持つ層は適度の多孔質を持つ支持体であ
る。この支持体は強度の他に耐薬品性、耐熱性を
有する素材である事が好ましく、市販の多孔性高
分子素材や紙、不織布などから目的に、合つたも
のを選ぶ。
The permselective composite membrane of the present invention has separate layers that provide selectivity and permeability and a layer that provides strength. That is, the layer responsible for selectivity and permeability is a thin film made of a siloxane compound, and the layer responsible for strength is a support having appropriate porosity. This support is preferably made of a material that has not only strength but also chemical resistance and heat resistance, and one suitable for the purpose is selected from commercially available porous polymer materials, paper, nonwoven fabric, etc.

上記の多孔質支持体上に塗布するシロキサン化
合物としては末端にビニル基、アクリル酸エステ
ル基やメタクリル酸エステル基のような不飽和カ
ルボキシエステル基、アクリルアミド基などを1
個以上有する高分子材料を用いる。このような高
分子材料は多孔質支持体上に塗布した後で電子線
を照射する事により、または光開始剤と共に紫外
線照射する事により容易に重合反応が進み硬化し
成膜化する。電子線照射による硬化においては加
速電圧と有効塗膜厚さの間には、ほぼ直線関係が
成立している。さらに照射量をコントロールすれ
ば、任意の厚さの膜を得る事ができる。原料とな
るシロキサン化合物は単独でも、また数種類混合
しても硬化させることができるし、さらに他にス
チレンなどの低分子量のモノマーを加えても硬化
可能である。膜厚及び重合度をコントロールする
為の加速電圧、照射量などの条件は使用するシロ
キサン化合物によつて異なるが、今回の実施例に
おいては加速電圧170〜300KV、照射量1〜
20Mradの範囲内で硬化可能である。このように
して放射線硬化により作成した複合膜はこのまま
使用可能であるが、多孔質支持体開孔部にしみ込
んだ過剰の未架橋シロキサン化合物は直ちに、あ
るいはさらに積層膜を生成した後で溶媒抽出によ
り除去する事が膜厚を小さくして透過性を高くす
る意味から好ましい。
The siloxane compound coated on the porous support described above may have a vinyl group, an unsaturated carboxyester group such as an acrylic acid ester group or a methacrylic acid ester group, or an acrylamide group at the terminal.
A polymeric material having more than 100% is used. Such a polymeric material is coated on a porous support and then irradiated with an electron beam or irradiated with ultraviolet rays together with a photoinitiator, whereby a polymerization reaction easily proceeds and hardens to form a film. In curing by electron beam irradiation, there is a nearly linear relationship between accelerating voltage and effective coating thickness. Furthermore, by controlling the irradiation amount, it is possible to obtain a film of any desired thickness. The siloxane compound used as a raw material can be cured alone or in combination of several types, and it can also be cured by adding another low molecular weight monomer such as styrene. Conditions such as accelerating voltage and irradiation amount to control the film thickness and degree of polymerization vary depending on the siloxane compound used, but in this example, the accelerating voltage was 170 to 300 KV, and the irradiation amount was 1 to 300 KV.
Can be cured within 20 Mrad. The composite membrane thus prepared by radiation curing can be used as is, but the excess uncrosslinked siloxane compound seeping into the pores of the porous support can be removed immediately or by solvent extraction after further laminated membrane formation. Removal is preferable in terms of reducing the film thickness and increasing permeability.

このようにして得られた複合膜はこのまま選択
性分離膜として用いる事もできるし、要求に応じ
て他の材料をシロキサン化合物の薄膜の上に積層
する事も可能である。放射線重合による薄膜が多
孔質支持体の開孔部を覆つて無孔性となるため積
層すべき材料の粘度が低くても毛管現象による濃
度ムラや材料の損失はおこらない。また特に積層
すべき材料がシロキサン化合物の場合には放射線
硬化した薄膜とのなじみが良く接着性が良いとい
う利点がある。
The composite membrane thus obtained can be used as is as a selective separation membrane, or other materials can be laminated on the siloxane compound thin film as required. The thin film produced by radiation polymerization covers the openings of the porous support and becomes non-porous, so even if the viscosity of the materials to be laminated is low, density unevenness and loss of material due to capillary action will not occur. In particular, when the material to be laminated is a siloxane compound, it has the advantage of good compatibility with radiation-cured thin films and good adhesion.

(E) 作用 上記のように作成された選択性透過性複合膜は
強固な支持体層の働きで衝激力、破断力に対して
強い耐性を有する。また放射線重合によりシロキ
サン化合物が均一な薄膜を形成しているため高い
透過性を持ち、空気に関して言えば窒素に比べて
酸素の透過性が大きいために酸素富化作用があ
る。また多孔性支持体の表面を放射線重合により
生成した薄膜が覆い無孔性となつているため、さ
らに積層膜を生成する際に均一膜を作りやすくし
ている。
(E) Effect The selectively permeable composite membrane prepared as described above has strong resistance to impact force and breaking force due to the strong support layer. Furthermore, since the siloxane compound forms a uniform thin film through radiation polymerization, it has high permeability, and when it comes to air, the permeability of oxygen is greater than that of nitrogen, so it has an oxygen-enriching effect. Furthermore, since the surface of the porous support is covered with a thin film produced by radiation polymerization, making it non-porous, it is easier to form a uniform film when producing a laminated film.

また多孔質支持体の片側にのみ薄膜が形成され
るために反対側は開孔のままであり、内部の過剰
な材料を抽出によつて除去できるという作用をす
る。
In addition, since the thin film is formed only on one side of the porous support, the pores remain open on the other side, allowing excess material inside to be removed by extraction.

(F) 実施例 実施例 1 多孔性支持体としてジエラガード2500(ハイフ
ラツクスタイプ、ポリプラスチツク社製ポリプロ
ピレンマイクロポーラスフイルム)を支持用ガラ
ス板上に密着させ末端ビニル変性ポリジメチルシ
ロキサン(PSI社製PS445)をバーコーターで薄
く塗布し、次に電子線照射装置(ESI社製、エレ
クトロカーテン)内に支持用ガラス板ごと導入
し、照射室内を窒素で置換し酸素濃度を150ppm
とし、175KVで5〜20Mradの電子線を照射し
た。このようにして得られた複合膜から未架橋の
シロキサン化合物をメチレンクロライドを用いて
ソツクスレー抽出して除去し第1図に示すような
積層膜を得た。この積層膜の気体透過係数をcm3
(STP)・cm/cm2・sec・cmHgの単位で表わすと
O2は3.64×10-8、N2は1.76×10-8であつた。
(F) Examples Example 1 Dieraguard 2500 (high flux type, polypropylene microporous film manufactured by Polyplastics) was adhered to a supporting glass plate as a porous support and vinyl-terminated polydimethylsiloxane (PS445 manufactured by PSI) was attached. was applied thinly using a bar coater, and then introduced into an electron beam irradiation device (Electro Curtain, manufactured by ESI) together with the supporting glass plate, and the inside of the irradiation chamber was replaced with nitrogen to bring the oxygen concentration to 150 ppm.
An electron beam of 5 to 20 Mrad was irradiated at 175 KV. Uncrosslinked siloxane compounds were removed from the composite membrane thus obtained by Soxhlet extraction using methylene chloride to obtain a laminated membrane as shown in FIG. The gas permeability coefficient of this laminated film is cm3
(STP)・cm/ cm2・sec・cmHg
O 2 was 3.64×10 −8 and N 2 was 1.76×10 −8 .

実施例 2 シリコンゴム(LS63u、トーレシリコーン製)
に過剰化物(トーレRC−2)を1.5重量%添加
し、そのものにトルエンを85重量%になるように
加え10時間攪拌して均一溶液を得る。実施例1で
得られた電子線処理した複合膜の表面にバーコー
ターで塗布した後、120℃で10分間加熱する。こ
のようにして得られた複合膜から未架橋のシロキ
サン化合物をメチレンクロライドを用い、ソツク
スレー抽出して除去し第2図に示すような積層膜
を得た。この積層膜の気体透過係数をcm3
(STP)・cm/cm2・sec・cmHgの単位で表示すると
O2は3.22×10-8、N2は1.71×10-8であつた。
Example 2 Silicone rubber (LS63u, manufactured by Toray Silicone)
Add 1.5% by weight of an excess compound (Toray RC-2) to the mixture, add toluene to 85% by weight, and stir for 10 hours to obtain a homogeneous solution. After coating the surface of the electron beam-treated composite film obtained in Example 1 with a bar coater, it was heated at 120° C. for 10 minutes. The uncrosslinked siloxane compound was removed from the composite membrane thus obtained by Soxhlet extraction using methylene chloride to obtain a laminated membrane as shown in FIG. The gas permeability coefficient of this laminated film is cm3
(STP)・cm/ cm2・sec・cmHg
O 2 was 3.22×10 −8 and N 2 was 1.71×10 −8 .

実施例 3 ジエラガード2500を支持用ガラス板上に密着さ
せ、末端メタクリロキシプロピル変性ポリジメチ
ルシロキサン(PSI社製PS583)をバーコーター
で薄く塗布し含浸させた。
Example 3 Dieraguard 2500 was adhered onto a supporting glass plate, and a thin layer of methacryloxypropyl-terminated polydimethylsiloxane (PS583, manufactured by PSI) was applied and impregnated using a bar coater.

窒素雰囲気下で電子線照射(175KV、
10Mrad)して硬化させ複合膜を得た。この複合
膜の表面にさらに上記の末端メタクリロキシプロ
ピル変性ジメチルシロキサンを塗布し同様に電子
線硬化し積層した。
Electron beam irradiation (175KV,
10 Mrad) and cured to obtain a composite film. The above-mentioned methacryloxypropyl-terminated dimethylsiloxane was further coated on the surface of this composite film, and was cured with electron beam in the same manner and laminated.

未架橋のシロキサン化合物をメチレンクロライ
ドでソツクスレー抽出して除去し積層膜を得た。
この積層膜の気体透過係数をcm3(STP)・cm/
cm2・sec・cmHgの単位で表示するとO2は3.46×
10-8、N2は1.53×10-8であつた。
Uncrosslinked siloxane compounds were removed by Soxhlet extraction with methylene chloride to obtain a laminated film.
The gas permeability coefficient of this laminated film is cm 3 (STP) cm/
When expressed in units of cm2・sec・cmHg, O2 is 3.46×
10 -8 and N 2 was 1.53×10 -8 .

(G) 発明の効果 本発明の方法に基づいて作成した積層膜をステ
ンレス製の気体透過測定セルに保持し一方から酸
素21%、窒素79%の標準空気を1Kg/cm2の圧力で
加圧し膜を透過した気体をガスクロマトグラフイ
ーにより分析したところ酸素の濃度が35%以上に
高められている事が確認され酸素富化の効果を有
する事が確かめられた。
(G) Effects of the invention The laminated membrane prepared according to the method of the invention was held in a stainless steel gas permeation measurement cell, and standard air containing 21% oxygen and 79% nitrogen was pressurized at a pressure of 1 kg/cm 2 from one side. When the gas that permeated through the membrane was analyzed by gas chromatography, it was confirmed that the oxygen concentration was increased to over 35%, confirming that it has an oxygen enrichment effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における選択性複合
膜の断面図を示す。第2図は本発明の実施例2に
おける選択透過性複合膜の断面図を示す。 1……多孔質支持体、2……放射線硬化型薄膜
層、3……放射線硬化法またはそれ以外の方法に
よつて積層される膜。
FIG. 1 shows a cross-sectional view of a selective composite membrane in Example 1 of the present invention. FIG. 2 shows a cross-sectional view of a permselective composite membrane in Example 2 of the present invention. 1...Porous support, 2...Radiation curing type thin film layer, 3...Membrane laminated by radiation curing method or other method.

Claims (1)

【特許請求の範囲】[Claims] 1 放射線照射による硬化可能な不飽和結合を有
する液状のシロキサン化合物を多孔性支持体上に
塗布し、紫外線照射または電子線照射により表面
層のシロキサン化合物を架橋により硬化させ、そ
の後多孔質支持体開口部にしみ込んだ過剰の未架
橋のシロキサン化合物を溶媒抽出により除去する
ことを特徴とする選択透過性複合膜の製造方法。
1. A liquid siloxane compound having an unsaturated bond that can be cured by radiation irradiation is applied onto a porous support, and the siloxane compound in the surface layer is cured by crosslinking by ultraviolet irradiation or electron beam irradiation, and then the porous support is opened. 1. A method for producing a permselective composite membrane, which comprises removing excess uncrosslinked siloxane compound that has soaked into the membrane by solvent extraction.
JP27583385A 1985-12-07 1985-12-07 Preparation of permselective composite membrane Granted JPS62136212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27583385A JPS62136212A (en) 1985-12-07 1985-12-07 Preparation of permselective composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27583385A JPS62136212A (en) 1985-12-07 1985-12-07 Preparation of permselective composite membrane

Publications (2)

Publication Number Publication Date
JPS62136212A JPS62136212A (en) 1987-06-19
JPH035207B2 true JPH035207B2 (en) 1991-01-25

Family

ID=17561061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27583385A Granted JPS62136212A (en) 1985-12-07 1985-12-07 Preparation of permselective composite membrane

Country Status (1)

Country Link
JP (1) JPS62136212A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
DE102005031703B3 (en) * 2005-07-05 2007-01-11 Gkss-Forschungszentrum Geesthacht Gmbh composite
US8419838B2 (en) * 2008-04-08 2013-04-16 Fujifilm Manufacturing Europe B.V. Process for preparing membranes
JP2015501851A (en) 2011-11-09 2015-01-19 エボニック メンブレイン イクストラクション テクノロジー リミテッドEvonik Membrane Extraction Technology Ltd. Membrane-based method and composition resulting therefrom for producing a concentrate comprising a non-marine fatty acid oil mixture for reducing at least one impurity and comprising at least one natural ingredient
JP6177115B2 (en) * 2013-12-05 2017-08-09 富士フイルム株式会社 Method for producing composite
JP6170449B2 (en) * 2014-02-04 2017-07-26 富士フイルム株式会社 Method for producing composite
SG11201606162XA (en) 2014-02-11 2016-08-30 Evonik Membrane Extraction Technology Ltd Method for producing vitamine e-enriched, especially tocotrienol-enriched, compositions from natural oils
TWI669317B (en) 2014-09-22 2019-08-21 德商贏創德固賽有限責任公司 Method for improved reactive monomer production
JP6779642B2 (en) * 2016-03-24 2020-11-04 次世代型膜モジュール技術研究組合 Gas separation membrane
JP7063733B2 (en) * 2018-06-06 2022-05-09 東芝ライフスタイル株式会社 Method for manufacturing oxygen-enriched membrane
JP2022537573A (en) 2019-06-18 2022-08-26 コナミックス インコーポレイテッド Selectively Permeable Nanostructured Materials
WO2021003088A1 (en) 2019-06-30 2021-01-07 Evonik Corporation Cannabinoid separation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPS61103505A (en) * 1984-10-29 1986-05-22 Nitto Electric Ind Co Ltd Preparation of composite semipermeable membrane
JPS61242608A (en) * 1985-04-22 1986-10-28 Matsushita Electric Ind Co Ltd Preparation of gas permeable membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPS61103505A (en) * 1984-10-29 1986-05-22 Nitto Electric Ind Co Ltd Preparation of composite semipermeable membrane
JPS61242608A (en) * 1985-04-22 1986-10-28 Matsushita Electric Ind Co Ltd Preparation of gas permeable membrane

Also Published As

Publication number Publication date
JPS62136212A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
US5006187A (en) Plugged microporous film
US5733663A (en) Composite membrane and process for its production
AU604892B2 (en) Reactive posttreatment for gas separation membranes
JPH035207B2 (en)
JPH0335971B2 (en)
CA2432046A1 (en) Separation membrane, separation membrane element, separation membrane module, sewage treatment apparatus, and method for making the separation membrane
JPH0457372B2 (en)
JPH0317533B2 (en)
US4631075A (en) Composite membrane for gas separation
KR101035717B1 (en) A preparation of asymmetric porous PEBA membrane for composite membrane
JPH0417084B2 (en)
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPH0244575B2 (en)
US4919694A (en) Selective gas permeation membranes and method of manufacturing them
JPH05237353A (en) Method for separating hydrogen from gas mixture by using semipermeable membrane mainly consisting of polycarbonate derived from tetrahalobisphenol
DK321581A (en) PLASMA MEMBRANE AND PROCEDURE FOR PREPARING THEREOF
JPS586207A (en) Production of gas permselective composite membrane
JPS56147604A (en) Manufacture of composite gas permeable membrane
JPH0243228A (en) Manufacture of membrane
JPH034925A (en) Separation membrane and its preparation
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
GB2011828B (en) Semipermeable membranes
JPH05220362A (en) Gas separation membrane
JPH01288315A (en) Permselective gas permeable membrane
JPH0479687B2 (en)