JPS61242608A - Preparation of gas permeable membrane - Google Patents

Preparation of gas permeable membrane

Info

Publication number
JPS61242608A
JPS61242608A JP60085715A JP8571585A JPS61242608A JP S61242608 A JPS61242608 A JP S61242608A JP 60085715 A JP60085715 A JP 60085715A JP 8571585 A JP8571585 A JP 8571585A JP S61242608 A JPS61242608 A JP S61242608A
Authority
JP
Japan
Prior art keywords
film
irradiation
membrane
permeable membrane
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60085715A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Tasuke Sawada
太助 沢田
Shigeru Ryuzaki
粒崎 繁
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60085715A priority Critical patent/JPS61242608A/en
Publication of JPS61242608A publication Critical patent/JPS61242608A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To form membrane having superior strength, heat resistance, and solvent resistance by using a material forming permeable thin film having photosensitive groups on a porous base material and irradiating the film with light energy or electron energy. CONSTITUTION:A material having ethylenic photosensitive groups such as vinyl group, allyl group, etc. is formed to thin film on a porous base material. If 0.1-30wt% photosensitizer is added to the membrane material, the irradiation time with ultraviolet rays, etc. may be shortened remarkably. Crosslinking polymn. of the photosensitive group proceeds by the irradiation with ultraviolet rays or electron beam, and the structure of the polymer changes from linear structure to net work structure. In accompany with the change of the structure, the polymer becomes insoluble in solvent, and the strength and heat resistance of the film is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体の分離濃縮を行なう気体透過膜の2 ・・
− 製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a gas permeable membrane for separating and concentrating gases.
- relates to manufacturing methods;

従来の技術 近年、限外E過膜、逆浸透膜、気体透過膜等の高分子を
利用する分離技術の進歩発展には著しいものがあり、そ
のいくつかは工業的規模で実用化されている。しかしな
がら、現実に実用化されているものに1海水の淡水化、
工場廃液の処理、食品(液状物)の濃縮等の液−液分離
着1〜くけ液−膜分離であり、気−膜分離、すなわち2
種以上の混合ガスから特定ガスの分離、濃縮については
、完全な実用化寸でには至っておらず、研究段階にとど
捷っているのが現状である。
Conventional technology In recent years, there has been remarkable progress in separation technologies that utilize polymers, such as ultra-E membranes, reverse osmosis membranes, and gas permeation membranes, and some of them have been put into practical use on an industrial scale. . However, one thing that has actually been put into practical use is seawater desalination.
Liquid-liquid separation for processing factory waste liquids, concentrating food (liquid substances), etc.
The separation and concentration of specific gases from a mixture of more than one species has not yet reached the stage of complete practical use, and is currently still at the research stage.

従来の気体透過膜が実用化回器である理由としては、主
に、膜拐料の選択透過性が小さいこと、すなわち特定の
気体を選択的に通し、他の気体をほとんど通さないとい
う膜がないために、高純度の気体を得るためには膜分離
を何度か繰り返す多段方式を採用する必要があり、その
ために装置が犬きくなりすぎることおよび透過流量が小
さいため、多量のカスを生産できないことが挙げられる
The main reason why conventional gas permeable membranes cannot be put into practical use is that the selective permeability of the membrane material is low, that is, membranes that selectively allow certain gases to pass through while hardly allowing other gases to pass through. Therefore, in order to obtain high-purity gas, it is necessary to adopt a multi-stage method in which membrane separation is repeated several times, which makes the equipment too harsh and the permeation flow rate is small, resulting in the production of a large amount of waste. There are things you can't do.

3 ′− しかしながら、最終用途として必ずしも高純度の気体を
必要としない分野も多々あり、例えば酸素の場合、高炉
送風用、燃焼補助用、汚泥処理用、医療における呼気用
等では、大気中の酸素濃度かある程度高めれた、いわゆ
る酸素富化空気であれば、その目的は達成される。
3'- However, there are many fields that do not necessarily require high-purity gases as end-uses. If the concentration is increased to some extent, so-called oxygen-enriched air, this purpose can be achieved.

酸素を濃縮分離する、いわゆる酸素富化膜については時
に研究開発がさかんに行われており、米国のゼネラルエ
レクトリック社のオルガノシロキザンーポリカーボネー
ト共重合体(特開昭54−40868号公報参照)をは
じめ、様々な高分子材料が合成されている。本発明者ら
もシリコーンを主成分とするH8共重合体(特開昭66
−112457号公報参照)を合成した。これらの  
 □膜材料の製膜方法としては主に、多孔質支持体上に
別途製膜した薄膜を重ね合わせる方法、表皮層と多孔質
支持体が共存する異方性膜を一度に製膜する方法、多孔
質膜の−Fに種々の方法によりモノマーを直接重合し、
薄膜を形成する方法あるいは、ポリマーの溶液を被覆し
だ後で溶媒を蒸発させて薄膜を製膜する等の方法がある
Research and development has been actively conducted on so-called oxygen-enriching membranes that concentrate and separate oxygen. Various polymer materials have been synthesized. The present inventors also developed an H8 copolymer containing silicone as a main component (Unexamined Japanese Patent Publication No. 66
-112457) was synthesized. these
□Membrane materials are mainly formed by overlapping separately formed thin films on a porous support, by simultaneously forming an anisotropic film in which a skin layer and a porous support coexist, Direct polymerization of monomers to -F of the porous membrane by various methods,
There is a method of forming a thin film, or a method of forming a thin film by coating a polymer solution and then evaporating the solvent.

以上の製膜方法の中で、ポリマーの溶液を被覆した後で
溶媒を蒸発させて薄膜を製膜する方法の代表例として水
面展開法〔ラングミュア・プロジェット製膜法(略して
LB法)〕がある。これは、ポリマーの溶液を水面上に
滴下し、その溶液を水面上に展開させて、用いた溶媒は
自発的に蒸発させ、ポリマーのみを水面上に残し、得ら
れだポリマーの薄膜を多孔質支持体−4二に付着させる
ことにより、製膜を完了するものである。この際、多孔
質支持体上に形成された薄膜上のポリマーは、当然なが
ら、水面展開以前の溶液中のポリマーとは物性的に言っ
て何ら変化はなく、強度も同じであるし、耐熱性、耐溶
剤性等も同じであり、用いた溶剤にも可溶であることは
勿論明白なことである。
Among the above film forming methods, the water surface spreading method [Langmuir-Prodgett film forming method (abbreviated as LB method)] is a typical example of a method in which a thin film is formed by coating a polymer solution and then evaporating the solvent. There is. This method involves dropping a polymer solution onto the water surface, spreading the solution on the water surface, allowing the solvent used to evaporate spontaneously, leaving only the polymer on the water surface, and forming a porous thin film of the polymer. Film formation is completed by adhering it to the support 42. At this time, the polymer on the thin film formed on the porous support is naturally the same in terms of physical properties as the polymer in the solution before spreading on the water surface, and has the same strength and heat resistance. , solvent resistance, etc. are the same, and it is obvious that they are soluble in the solvent used.

以上のことは、水面展開法に限定されるものではなく、
他の製膜方法においても共通して言えることである。
The above is not limited to the water surface deployment method;
This also applies to other film forming methods.

発明が解決しようとする問題点 先に述べたように、従来の製膜方法では、製膜前と製膜
後では、膜材料の特性自体は何ら変化していないので、
膜強度が弱く、耐熱性、耐溶剤性にも乏l−いだめに、
取扱いが面倒であったり、環境の変化にも弱く、寿命試
験においても膜劣化が激しいという欠点を有していた。
Problems to be Solved by the Invention As mentioned earlier, in the conventional film forming method, the properties of the film material itself do not change at all between before and after film formation.
The membrane strength is weak, and the heat resistance and solvent resistance are poor.
It has the drawbacks of being troublesome to handle, being sensitive to changes in the environment, and exhibiting severe membrane deterioration in life tests.

多孔質支持体の」薬品性、耐溶剤性、耐熱性及び機械的
強度を改善する手段としては、既に提案されている。(
特開昭59−136107号公報参照)、これは基本的
には光感応性基をもった樹脂を製膜して多孔質膜とした
のち、光照射により架橋化させるものであり、本発明と
原理的には類似しているが、あく寸でも多孔質支持体の
製造方法に限られており、本発明が透過膜材料について
の発明である点で大きく異なる。
Means for improving the chemical properties, solvent resistance, heat resistance and mechanical strength of porous supports have already been proposed. (
(Refer to JP-A No. 59-136107), this is basically a method in which a porous membrane is formed by forming a resin having a photosensitive group, and then crosslinked by light irradiation. Although they are similar in principle, they are largely different in that they are limited to methods for producing porous supports, and the present invention relates to permeable membrane materials.

まだ、■三菱化成工業により、気体分離膜を架橋化させ
ることにより、その機械的強度及び気体分離性能を改良
させるという主旨のものが提案されている。(特開昭5
9−186602号公報参照)、しかしながら、この論
文においては、架橋化の方法としては、あくまでも、加
熱反応型のも6ベーン のであり、反応速度を加速するだめには架橋剤を使用す
るとしてもかなり高温にする必要がある。
However, Mitsubishi Chemical Industries, Ltd. has proposed a method that aims to improve the mechanical strength and gas separation performance of gas separation membranes by crosslinking them. (Unexamined Japanese Patent Publication No. 5
However, in this paper, the crosslinking method is strictly a heat reaction type six-vane method, and even if a crosslinking agent is used, it is quite difficult to accelerate the reaction rate. It needs to be at a high temperature.

この点において、本発明では、加熱反応型ではなく、光
重合型のポリマーを用いており、基本的は感光基をもつ
ホリゴマーやポリマーが紫外線や電子線により活性化さ
れて、相互にあるいは他のポリマー、オリゴマ等と反応
する付加重合型のものであり根本的に異なったものであ
る。本発明では、以上のように、本発明は、膜の強度と
耐熱性。
In this respect, the present invention uses a photopolymerizable rather than a heat-reactive polymer, and basically oligomers and polymers with photosensitive groups are activated by ultraviolet rays or electron beams, allowing them to interact with each other or other polymers. It is an addition polymerization type that reacts with polymers, oligomers, etc., and is fundamentally different. As described above, the present invention focuses on the strength and heat resistance of the film.

耐溶剤性を向上させることにより、取扱いが容易で耐久
性の優れだ体透過膜の製造方法を提供するものでちる。
The object of the present invention is to provide a method for producing a body-permeable membrane that is easy to handle and has excellent durability by improving solvent resistance.

問題点を解決するだめの手段 この目的を達成するために、本発明の気体透過膜の製造
方法は、多孔質支持体上に感光基を有する透過膜材料の
薄膜を形成させ、光エネルギーまたけ電子エネルギーの
照射により重合を行なうことから構成される装置 多孔質支持体としては、例えばポリプロピレン。
Means for Solving the Problems In order to achieve this objective, the method for producing a gas permeable membrane of the present invention involves forming a thin film of a permeable membrane material having a photosensitive group on a porous support, and applying light energy to the membrane. Examples of the porous support for the device, which is polymerized by irradiation with electron energy, include polypropylene.

ポリエステル、ポリスルホン、ポリエチレン、ポリエー
テルスルホン、ポリカーボネー1イスh−でもよく、本
発明に使用できる樹脂が拘束さハ、るものではない。
Polyester, polysulfone, polyethylene, polyethersulfone, and polycarbonate may be used, and the resins that can be used in the present invention are not limited.

次に感光基としては、ビニル基、アリル基、シンナモイ
ル基、α−シアノシンナモイル基、シンナミリデンアセ
チル基、α−シアノシンナミリデンアセチル基、ベンザ
ルアセトフェノン(カルコ/基)、フェニルアシ)’ 
基+α−フェニルマレイミド基、フリルアクロイル基等
が挙げられるが、中でも特にビニル基、アリル基等、の
エチレン系のものが適している。壕だ、こね、らの感光
基を有する透過膜材料の母体としては、ポリスチレン、
ポリビニルアルコール、フェノオキシ樹脂(エポキシ樹
脂とビスフェノール化合物との縮合樹脂)、水酸基を有
するポリエーテル、水酸基を有するポリエステル、水酸
基をもったポリアミド、ポリアリルアルコール、スチレ
ン−マレイン酸、ホリシメチル/ロキザンを代表とする
シリコン重合体等が挙げられるか、これらは、1種また
はそれ以上の混合物として用いることにより共重合体と
してもよい。中でも特に、シリコーン重合体とその他の
膜材料との組み合わ、ぜが、透過性と選択性の双方の特
性を引き出すのに有効である。
Next, as photosensitive groups, vinyl group, allyl group, cinnamoyl group, α-cyanocinnamoyl group, cinnamylideneacetyl group, α-cyanocinnamylideneacetyl group, benzalacetophenone (calco/group), phenylacyl)'
Examples thereof include group+α-phenylmaleimide group, furyl acroyl group, etc. Among them, ethylene-based groups such as vinyl group and allyl group are particularly suitable. Polystyrene,
Typical examples include polyvinyl alcohol, phenoxy resin (condensation resin of epoxy resin and bisphenol compound), polyether with hydroxyl group, polyester with hydroxyl group, polyamide with hydroxyl group, polyallyl alcohol, styrene-maleic acid, and phorisimethyl/roxane. Silicone polymers and the like may be mentioned, or they may be used as a copolymer by using one or more of them as a mixture. Among these, combinations of silicone polymers and other membrane materials are particularly effective in bringing out the characteristics of both permeability and selectivity.

次に、照射光源として紫外線を使用する場合、次に述べ
るような増感剤を用いることにより、照射時間を大幅に
短縮することができる。
Next, when using ultraviolet rays as the irradiation light source, the irradiation time can be significantly shortened by using a sensitizer as described below.

過酸化ベンゾイル等の過酸化物、アゾビスイソブチロニ
トリル等のアゾ化合物、ジアセチル、ジベンジル等のカ
ルボニル化合物、ジンェニルモノ及びジスルフィド、ジ
ベンゾイルモノ及びジスルフィド等の硫黄化合物、四塩
化炭素等のハロゲン化合物、塩イヒ第二鉄等の金属塩、
ベンゾインイソプロピルエーテル等のエーテル化合物等
。こレラの増感剤は、膜材料に対して通常0.1〜30
重量係、世襲的には0.6〜6重量係世襲用が有効であ
る。使用に際しては、膜材料の溶剤に対して最も相溶性
の良い増感剤を選択することが肝要である。
Peroxides such as benzoyl peroxide, azo compounds such as azobisisobutyronitrile, carbonyl compounds such as diacetyl and dibenzyl, sulfur compounds such as digenyl mono and disulfide, dibenzoyl mono and disulfide, halogen compounds such as carbon tetrachloride, Metal salts such as ferric salts,
Ether compounds such as benzoin isopropyl ether, etc. The sensitizer for cholera is usually 0.1 to 30% relative to the membrane material.
For weight divisions, hereditary use of 0.6 to 6 weight divisions is effective. When used, it is important to select a sensitizer that is most compatible with the solvent of the membrane material.

また、照射光源としては、特に限定はなく、−9ヘ−ジ 般の化学反応に用すられるものをそのま1用いれば目的
を達成することができるが、特に紫外線照射の場合−1
、光源によって強度が異なるので、膜の重合の度合は、
照射膜がテトラヒドロフランに不溶化になる程度をその
目安とする。
In addition, there is no particular limitation on the irradiation light source, and the purpose can be achieved by using one that is used in general chemical reactions of -9Hage, but especially in the case of ultraviolet irradiation -1
, the intensity varies depending on the light source, so the degree of polymerization of the film is
The degree to which the irradiated film becomes insoluble in tetrahydrofuran is used as a guideline.

作  用 以上のような構成によって、捷ず従来どうりに多孔質支
持体上に、感光基を有した膜材料の薄膜を形成させる。
Function: With the above structure, a thin film of a film material having a photosensitive group can be formed on a porous support in the conventional manner without twisting.

この状態では、膜材料としては単に鎖状のポリマー若し
くはオリゴマーであるから、例えばテトラヒドロフラン
、ジメチルホルムアミド等の溶剤に容易に溶解する。次
に、得られた薄膜上に紫外線あるいは電子線を照射する
と膜材料中の感光基により重合(架橋)が進行し、それ
まで基本構造として鎖状であったものが、網目構造に変
化していく。これに伴ない、今壕で可溶であったテトラ
ヒドロフラン、ジメチルホルムアミド等の溶剤に難溶性
を示すようになり、最終的には完全に不溶化してし1う
。またこのような耐溶剤性の向上に伴ない、膜強度、耐
熱性も向」ニして〈1oへ一/ る。尚紫外線照射の場合は、先に述べたように増感剤を
使用する場合が多いが、この場合でも、増感剤が紫外線
にて開裂し、これに伴ない膜材料の反応が開始していき
、最終的には、十分な網目構造を呈するようになる。但
し、膜材料の種類、及び含捷れる感光基の割合、増感剤
の種類や添加量の相違により、不溶化はするものの、大
きく膨潤し、ゲル状を示すものがある。しかしながら、
メタノールやアセトン等の溶剤にはほとんどの膜が十分
に不溶化し、膨潤状態を示さ々くなる。
In this state, since the membrane material is simply a chain polymer or oligomer, it is easily dissolved in a solvent such as tetrahydrofuran or dimethylformamide. Next, when the obtained thin film is irradiated with ultraviolet rays or electron beams, polymerization (crosslinking) progresses due to the photosensitive groups in the film material, and the basic chain structure changes to a network structure. go. Along with this, it becomes poorly soluble in solvents such as tetrahydrofuran and dimethylformamide, which were previously soluble, and eventually becomes completely insoluble. In addition, along with such improvement in solvent resistance, film strength and heat resistance also improve, reaching <1/1>. In the case of ultraviolet irradiation, a sensitizer is often used as mentioned above, but even in this case, the sensitizer is cleaved by the ultraviolet rays, and the reaction of the membrane material begins accordingly. Eventually, it will take on a sufficient network structure. However, depending on the type of membrane material, the proportion of photosensitive groups included, and the type and amount of sensitizer added, some membranes may become insolubilized but swell significantly and exhibit a gel-like appearance. however,
Most membranes are sufficiently insolubilized by solvents such as methanol and acetone, and exhibit little swelling.

実施例 次に本発明を実施例に基づき、さらに詳細に説明するが
、本発明の内容は実施例のみに限定されるものではない
EXAMPLES Next, the present invention will be explained in more detail based on Examples, but the content of the present invention is not limited only to the Examples.

(実施例1) ポリジメテルシ、ロキサンの両末端ビニル基材料。(Example 1) Polydimeteryl, loxane, vinyl-based material at both ends.

ガム状の5H−410(東し・シリコーン社製)をベン
ゼンにて溶解し、約20重世襲の溶液とする。これに、
5H−410の重量に対して1重量%のベンゾインイン
プロピルエーテル(以下略し11ノ、 てBIPE とする。)を添加し、十分に攪拌させて均
一にする。これを水面上にて展開させ′、溶剤が十分に
蒸発した後、ジュラガード240o〔ポリプロピレン製
多孔質支持体、ポリプラスチックス@)製〕上に付着さ
せる。この除膜のピンホール性を防ぐ為にこの操作を再
度繰り返し、結局、ジュラガード上に5H−410薄膜
の2層を形成させる。次に光源と(−で水銀ランプ〔■
東芝製の理化学用水銀ラップ5HLS−1002A型(
ランプ5I(L−1oooA、1ooV 、50C/S
、2A):]を用い、照射強度、6.6mW/cnfに
て約20秒照射を行なった。次に気泡流量計(−気圧で
加圧し、酸素及び窒素をそれぞれ同体積分膜通過させて
、その秒数にて特性を評価するもの)′にて、特性を調
べたところ、酸素透過秒数が10CC当り15.2秒で
、その分離係数は2.1であった。これに対し、未照射
のものは、酸素透過秒数が10CG当り約9.0秒分離
係数は1.4であったが、次第に1気圧の圧力に配えら
れず、ピンポールとなり測定不可能となった。
Gum-like 5H-410 (manufactured by Toshi Silicone Co., Ltd.) is dissolved in benzene to form a solution of approximately 20 times the strength. to this,
Add 1% by weight of benzoin propyl ether (hereinafter referred to as BIPE) based on the weight of 5H-410, and stir thoroughly to make it homogeneous. This is spread on the water surface, and after the solvent has sufficiently evaporated, it is deposited on Duragard 240o (porous support made of polypropylene, manufactured by Polyplastics@). In order to prevent the pinhole nature of this film removal, this operation is repeated again, resulting in the formation of two layers of 5H-410 thin film on Duraguard. Next, add the light source (– to the mercury lamp [■
Toshiba mercury wrap for physical and chemical use 5HLS-1002A type (
Lamp 5I (L-1oooA, 1ooV, 50C/S
, 2A):], and irradiation was performed for about 20 seconds at an irradiation intensity of 6.6 mW/cnf. Next, we investigated the characteristics using a bubble flow meter (a device that allows equal volumes of oxygen and nitrogen to pass through the membrane under -atmosphere pressure, and evaluates the characteristics based on the number of seconds). At 15.2 seconds per 10 CC, the separation factor was 2.1. On the other hand, for the non-irradiated sample, the oxygen permeation time was approximately 9.0 seconds per 10CG, and the separation coefficient was 1.4, but it gradually became unable to reach the pressure of 1 atm and became a pinpole, making it impossible to measure. became.

(実施例2) 実施例1ど同じ材オ・1である5H−41oを、同じ(
20%重量のベンゼン溶液とし、これを水面上に展開さ
せて、ジュラガード24oO上に2層製膜を行なった。
(Example 2) 5H-41o, which is the same material O.1 as in Example 1, was
A 20% weight benzene solution was prepared, and this was spread on the water surface to form a two-layer film on Duragard 24oO.

次に、得られた膜をエリアビーム形電子線照射装置(研
究用ギュアトロン2日新ハイボルテージ鋼0製)を用い
て電子線照射を行なった。照射強度、2メガラツドにて
0.1 秒の照射後、気泡流量計にてその特性を調べた
とこ名、酸素透過秒数が1occ−2す14秒で、分離
係数は2.2であった。
Next, the obtained film was subjected to electron beam irradiation using an area beam type electron beam irradiation device (manufactured by Guatron 2 Nisshin High Voltage Steel 0 for research use). After irradiation for 0.1 seconds at an irradiation intensity of 2 megarads, its characteristics were examined using a bubble flow meter.The oxygen permeation time was 1occ-2/14 seconds, and the separation factor was 2.2. .

これに対し、未照射の膜は、初期酸素透過秒数が10C
G当り8.6秒で、分離係数が1.3程度であったが、
最終的にはピンホールになり測定不可能となった。
In contrast, the unirradiated film had an initial oxygen permeation time of 10C.
The separation coefficient was about 1.3 at 8.6 seconds per G, but
In the end, it became a pinhole and could not be measured.

次に、照射l−だ膜、未照射の膜それぞれをベンゼン、
テトラヒドロフラン、ジメチルホルムアミドの溶剤にそ
れぞれ浸漬し、24時間後に取り出して、気泡流量計に
て測定を行なったところ、未照射の膜は全ての溶剤にお
いて、完全にピンホー13ベー。
Next, the irradiated and unirradiated membranes were treated with benzene,
When immersed in tetrahydrofuran and dimethylformamide solvents, taken out after 24 hours, and measured using a bubble flow meter, the unirradiated film had a complete pinhole concentration of 13 bases in all solvents.

ルで測定不可能であったが、照射を行々つだ膜は、全て
の溶剤において特性を維持しており、それぞれ酸素透過
秒数(ioccの場合)は、14,2,14.3゜14
.1秒であり、その分離係数は、2.1.2,2.1 
Although it was not possible to measure the properties using the irradiation method, the membrane maintained its properties in all solvents, and the oxygen permeation time (in the case of IOCC) was 14, 2, and 14.3°, respectively. 14
.. 1 second, and its separation coefficient is 2.1.2, 2.1
.

2.2であった。It was 2.2.

次に、ジュラガード2400に、5H−410の膜を先
に述べた方法にて3層形成させ、電子線照射(〜だもの
と未照射のものの特性を調べたところ、酸素透過秒数が
それぞれ17.5秒、 ’17.0秒で分離係数は、2
.2と2゜1 であ゛った。
Next, three layers of 5H-410 were formed on Duraguard 2400 using the method described above, and the characteristics of those subjected to electron beam irradiation (~) and those that were not irradiated were investigated. 17.5 seconds, 'At 17.0 seconds the separation factor is 2
.. It was 2 and 2゜1.

これらの照射した膜と未照射のものを、劣化の加速テス
トの指標の1つとして、e o ℃951RHの耐湿槽
に投入し、投入瞳部と特性の関係を調べだ。結果を第1
図に示す。
The irradiated film and the non-irradiated film were placed in a moisture-proof tank at 951RH at 951 RH as one of the indicators of accelerated deterioration test, and the relationship between the entrance pupil and the characteristics was investigated. Results first
As shown in the figure.

第1図により、未照射のものは劣化が極めて激しいが、
照射したものは、安定しており、膜特性から考えて本質
的に耐湿劣化け々′いと考えられる。
As shown in Figure 1, the unirradiated one shows extremely severe deterioration, but
The irradiated material is stable, and considering the film properties, it is thought that there is essentially no deterioration in moisture resistance.

(実施例3) ポリヒドロギシスチレン(以後lPH8と略す)のフェ
ノール性OH’4の一部をアリル(aliyl)基14
ページ に置換した。これをモノクロルベンセンに溶解させ、次
いで、a、ω−ジアミノポリジメチルシロキサンを添加
していき、溶液の粘度が10cpにて添加を止めて、メ
タノール中に反応物を沈殿させ、精製を3回繰り返し、
真空乾燥を行なった。
(Example 3) A part of the phenolic OH'4 of polyhydrogystyrene (hereinafter abbreviated as lPH8) was replaced with an aliyl group 14
Replaced with page. Dissolve this in monochlorobenzene, then add a,ω-diaminopolydimethylsiloxane, stop the addition when the viscosity of the solution is 10 cp, precipitate the reactant in methanol, and repeat the purification three times. ,
Vacuum drying was performed.

次にこれをベンゼンにて約2重世襲とし、水面展開法に
て製膜を行なった。製膜は、ジュラガード上にて、2層
構造とした。得られた膜の特性を気泡流量計にて測定し
たところ、分離係数が2.1゜10CG当りの酸素透過
秒数が9.6秒であった。次にこれと同様の膜を、実施
例2で用いた装置にて電子線照射を行なった。照射後、
膜特性を調べたところ、分離係数が2.礼 10(、C
当りの酸素透過秒数が10.3秒であった。次に拐料そ
のものをテトラヒドロフランにて溶解させ、ガラス基板
上にキャスト法により製膜した。得られた膜の厚みは約
100μm程度であり、これを先にmmいた装置にて電
子線照射を行なった。次に照射した膜をテトラヒドロフ
ラン中に浸漬したが、溶解しなくなった。この場合、ア
リル化率の相違により、テト15 ・・−7 ラヒトロノランあるいはジノチルホルムアミド等に対す
る照射膜のd解性d、異なるか、アリル化率70俸程度
のものが実験的には良好であった。
Next, this was made about twice hereditary with benzene, and a film was formed by the water surface spreading method. The film was formed into a two-layer structure on Duraguard. When the properties of the obtained membrane were measured using a bubble flowmeter, the separation coefficient was 2.1° and the number of seconds for oxygen permeation per 10 CG was 9.6 seconds. Next, a film similar to this was subjected to electron beam irradiation using the apparatus used in Example 2. After irradiation,
When the membrane properties were investigated, the separation coefficient was 2. Thank you 10(,C
The number of seconds per oxygen permeation was 10.3 seconds. Next, the coating material itself was dissolved in tetrahydrofuran, and a film was formed on a glass substrate by a casting method. The thickness of the obtained film was approximately 100 μm, and the film was irradiated with electron beams using a device that had previously measured the thickness of the film. The irradiated membrane was then immersed in tetrahydrofuran, but it no longer dissolved. In this case, due to the difference in the allylation rate, the d-decomposition d of the irradiated film for tet-15...-7 lahytronolane or dinotylformamide may be different, or an allylation rate of about 70 is experimentally better. Ta.

(実施例4) 実施例3にて合成したPH8のアリル化物(アリル化率
70% )20gと、メタアクリロキシプロピル基を有
するシリコンのオリゴマー〔X−22−5002,信越
化学工業(イ)で)製〕10gとを混合した。次にトル
エン1oog添加して十分に攪拌し、均一にした。これ
を水面」二に展開し、ジュラガード上に2回製膜を行な
い、電子線照射を行なった。未照射のものけ、膜形成能
がほとんど無く、気泡流量計の1気圧の加圧に耐えられ
ず、完全にピンホールであったが、照射を行なったもの
は、分離係数2.3. 10CG当りの酸素透過秒数が
10.1秒であった。また60℃95係RHの耐湿槽に
て加速試験を行なったところ、1000時間でも照射膜
はほとんど変化しておらず、第1図と同様の結果が得ら
れた。
(Example 4) 20 g of the allylated product of PH8 (allylation rate 70%) synthesized in Example 3 and a silicon oligomer having a methacryloxypropyl group [X-22-5002, manufactured by Shin-Etsu Chemical Co., Ltd. )] was mixed with 10 g. Next, 10g of toluene was added and thoroughly stirred to make it homogeneous. This was spread on the water surface, and a film was formed twice on Duraguard, followed by electron beam irradiation. The unirradiated one had almost no film-forming ability and could not withstand the pressure of 1 atm from the bubble flowmeter, and was completely pinhole, but the irradiated one had a separation coefficient of 2.3. The number of seconds for oxygen permeation per 10 CG was 10.1 seconds. Further, when an accelerated test was conducted in a humidity-resistant tank at 60° C. and 95 RH, the irradiated film remained almost unchanged even after 1000 hours, and the same results as in FIG. 1 were obtained.

(実施例5) モノメチル七ノビニルジクロロンランヲ出発物質とし、
これに水を添加し、次いでジエチルアミンにてアミン化
を行ない下に示すようなシロキサンを合成した。
(Example 5) Monomethyl heptanovinyl dichlororane was used as the starting material,
Water was added to this and then aminated with diethylamine to synthesize the siloxane shown below.

CH=CHCH=CH CH3CH3 n=30.62.70 次に、実施例3にて使用しだアリル化PH8(アリル化
率7o%)sgをモノクロルベンゼン3oomlに溶解
し、so’61で加熱後、先に合成したシロキサン(重
合度n = 30 )を10g添加し、合成を行なった
。反応終了後、反応液を多量のメタルノール中てて沈殿
させ、精製後、24時間40’Cにて真空乾燥を行なっ
た。次に得られた合成物をテトラヒドロフランにて溶解
し、ガラス基板上にキャストし、約100μm程度の薄
膜を形成させた。次にこの薄膜の1部分を電子線照射し
、その後テトラヒドロフラン中に浸漬したとこ17ヘー
/ ろ、未照射の部分は完全に溶解したが、照射した部分は
ほとんど溶解せず、24時間放置後も変化は見られなか
った。
CH=CHCH=CH CH3CH3 n=30.62.70 Next, allylated PH8 (allylation rate 70%) sg used in Example 3 was dissolved in 3 ooml of monochlorobenzene, and after heating at SO'61, 10 g of the previously synthesized siloxane (degree of polymerization n = 30) was added to carry out synthesis. After the reaction was completed, the reaction solution was precipitated in a large amount of metallol, purified, and vacuum dried at 40'C for 24 hours. Next, the obtained composite was dissolved in tetrahydrofuran and cast on a glass substrate to form a thin film of about 100 μm. Next, a part of this thin film was irradiated with an electron beam and then immersed in tetrahydrofuran.The unirradiated part completely dissolved, but the irradiated part remained almost undissolved, and even after being left for 24 hours. No changes were observed.

(実施例6) 次にPH85gを1,4−ジオキサン250m1中にて
溶解させ、実施例5で用いた側鎖にビニル基を有したジ
エチルアミノシロキサンiogを添加させて合成を行な
った。実施例5と同様に、メタノール中にて沈殿さぜ、
精製後、24時間4゜℃にて真空乾燥を行なった。次に
合成物をベンゼンにて約2重索条溶液とし、水面展開法
にて製膜を行なった。次に電子線照射を行ない、気泡流
量計にてその特性を求めた。未照射のものが分離係数2
.1. 10CG当りの酸素透過秒数が10.6秒で、
照射したものは分離係数が2.2.酸素透過秒数が11
.0秒であった。これらの膜を実施例2と同様の60℃
95%RHの耐湿槽にて劣化の加速試験を行なったとこ
ろ、第2図に示すとうり、未照射のものけ500時間程
度で特性が低下していくが、照射した膜は、1000時
間を経過しても、18 l・−/ はとんど変化していないことが判る。
(Example 6) Next, 85 g of PH was dissolved in 250 ml of 1,4-dioxane, and diethylaminosiloxane iog having a vinyl group in the side chain used in Example 5 was added to perform synthesis. Similar to Example 5, precipitate in methanol,
After purification, vacuum drying was performed at 4°C for 24 hours. Next, the composite was made into a double-stripe solution with benzene, and a film was formed by a water surface development method. Next, electron beam irradiation was performed, and its characteristics were determined using a bubble flow meter. The unirradiated one has a separation factor of 2.
.. 1. The number of oxygen permeation seconds per 10CG is 10.6 seconds,
The irradiated one had a separation factor of 2.2. Oxygen permeation seconds is 11
.. It was 0 seconds. These films were heated at 60°C as in Example 2.
When we conducted an accelerated deterioration test in a 95% RH humidity tank, as shown in Figure 2, the properties of the unirradiated film deteriorated after about 500 hours, but the properties of the irradiated film deteriorated after 1000 hours. It can be seen that 18 l·-/ hardly changes even after the passage of time.

丑だ、上盲巨の2重量部のベンゼン溶液に、増感剤とし
てα、σ′−アゾビスイソブチロニトリル〔関東化学■
製〕を溶液全体の0.1重量部添加し、水面上にて製膜
した後、実施例1で用いたUVランプにて20秒間照射
を行ない、60℃95係RHの耐湿槽にて試験したとこ
ろ、はとんど先に述べた第2図の特性と同様のものが得
られた。
In a benzene solution of 2 parts by weight, add α, σ'-azobisisobutyronitrile [Kanto Kagaku ■] as a sensitizer.
0.1 part by weight of the entire solution was added, a film was formed on the water surface, irradiated for 20 seconds with the UV lamp used in Example 1, and tested in a moisture-resistant tank at 60°C and 95% RH. As a result, characteristics similar to those shown in FIG. 2 described above were obtained.

(実施例7) アリル化PH8(アリル化率70%)3g、ポリスルホ
ン(Mn〜5000)6yを、クロルベンゼン6oom
l中に溶解し、80℃にて、ジエチルアミノボリジメチ
ルシロキザン18gを添加し、合成を行なった。反応液
をメタノール中に投入1〜、次いで精製を行ない、24
時間40℃にて真空乾燥を行なった。次にこれをトルエ
ンにて2重量部の溶液とし、水面展開法にて製膜を行な
い、先に述べた実施例と同様、電子線照射を行ない、未
照射の膜と照射膜の特性変化を60℃95%RHの耐熱
槽にて調べた。結果は第2図に類似しており、19べ−
2 照射膜が未照射のものに比べかなり耐久性が良好である
ことは明らかである。
(Example 7) 3 g of allylated PH8 (allylation rate 70%), 6 y of polysulfone (Mn ~ 5000), 6 oom of chlorobenzene
18 g of diethylaminoborodimethylsiloxane was added at 80° C. to carry out synthesis. The reaction solution was poured into methanol from 1 to 1, and then purified, 24
Vacuum drying was performed at 40°C. Next, this was made into a solution of 2 parts by weight in toluene, and a film was formed by the water surface spreading method, followed by electron beam irradiation in the same manner as in the previous example, and changes in the characteristics of the unirradiated film and the irradiated film were observed. The test was conducted in a heat-resistant tank at 60° C. and 95% RH. The results are similar to Figure 2, with 19 bases.
2 It is clear that the irradiated film has considerably better durability than the non-irradiated film.

以上のように、本実施例によれば、感光基を有する透過
膜材料の薄膜を形成させ、光重たは電子エネルギーの照
射にて重合させることにより、膜性 の強度、耐熱性、耐溶剤f向上し、従来のものに比べ取
扱いが容易で耐久性の優れた膜にすることが可能である
As described above, according to this example, by forming a thin film of a transparent film material having a photosensitive group and polymerizing it by irradiation with light or electronic energy, the strength of the film property, heat resistance, and solvent resistance are improved. It is possible to obtain a film that is easier to handle and more durable than conventional ones.

発明の効果 以上のように本発明は、感光基を有する透過膜材料の薄
膜を形成させ、光エネルギーまたは電子エネルギーの照
射によって重合(架橋)させることにより、膜の強度、
耐熱性、耐溶剤が向」ニジ、従来のものに比べ取扱いが
容易で耐久性の優れた膜を得ることができるものであり
、その工業的効果は犬なるものがある。
Effects of the Invention As described above, the present invention improves the strength of the film by forming a thin film of a transparent film material having a photosensitive group and polymerizing (crosslinking) it by irradiation with light energy or electron energy.
It has excellent heat resistance and solvent resistance, and is easier to handle than conventional films and can provide a film with excellent durability, and its industrial effects are outstanding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例2における照射膜と未照射膜の
60℃95%RH耐湿槽での特性比較図、第2図は本発
明の実施例6における照射膜と未照射膜の60℃95%
RH耐湿槽での特性比較図である。
Figure 1 is a characteristic comparison diagram of the irradiated film and unirradiated film in Example 2 of the present invention in a 60°C 95% RH humidity tank, and Figure 2 is a comparison diagram of the irradiated film and unirradiated film in Example 6 of the present invention ℃95%
It is a characteristic comparison diagram in an RH moisture-resistant tank.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔質支持体上に、感光基を有する透過膜材料の
薄膜を形成し、光エネルギーまたは電子エネルギーの照
射により重合(架橋)させることを特徴とする気体透過
膜の製造方法。
(1) A method for producing a gas permeable membrane, which comprises forming a thin film of a permeable membrane material having a photosensitive group on a porous support, and polymerizing (crosslinking) it by irradiation with light energy or electronic energy.
(2)感光基を有する透過膜材料の薄膜が多層構造であ
ることを特徴とする特許請求の範囲第1項記載の気体透
過膜の製造方法。
(2) The method for producing a gas permeable membrane according to claim 1, wherein the thin film of the permeable membrane material having a photosensitive group has a multilayer structure.
(3)光エネルギーが紫外線であることを特徴とする特
許請求の範囲第1項記載の気体透過膜の製造方法。
(3) The method for producing a gas permeable membrane according to claim 1, wherein the light energy is ultraviolet rays.
(4)電子エネルギーが電子線であることを特徴とする
特許請求の範囲第1項記載の気体透過膜の製造方法。
(4) The method for producing a gas permeable membrane according to claim 1, wherein the electron energy is an electron beam.
JP60085715A 1985-04-22 1985-04-22 Preparation of gas permeable membrane Pending JPS61242608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085715A JPS61242608A (en) 1985-04-22 1985-04-22 Preparation of gas permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085715A JPS61242608A (en) 1985-04-22 1985-04-22 Preparation of gas permeable membrane

Publications (1)

Publication Number Publication Date
JPS61242608A true JPS61242608A (en) 1986-10-28

Family

ID=13866523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085715A Pending JPS61242608A (en) 1985-04-22 1985-04-22 Preparation of gas permeable membrane

Country Status (1)

Country Link
JP (1) JPS61242608A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129107A (en) * 1985-11-29 1987-06-11 Agency Of Ind Science & Technol New separating membrane
JPS62136212A (en) * 1985-12-07 1987-06-19 Mitsubishi Paper Mills Ltd Preparation of permselective composite membrane
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
EP0344799A2 (en) * 1988-06-03 1989-12-06 Matsushita Electric Industrial Co., Ltd. Selectively permeable film and process for producing the same
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
WO1996003202A1 (en) * 1994-07-28 1996-02-08 Millipore Corporation Porous composite membrane and process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129107A (en) * 1985-11-29 1987-06-11 Agency Of Ind Science & Technol New separating membrane
JPH0239931B2 (en) * 1985-11-29 1990-09-07 Kogyo Gijutsuin
JPS62136212A (en) * 1985-12-07 1987-06-19 Mitsubishi Paper Mills Ltd Preparation of permselective composite membrane
JPH035207B2 (en) * 1985-12-07 1991-01-25 Mitsubishi Paper Mills Ltd
EP0296519A2 (en) * 1987-06-24 1988-12-28 Air Products And Chemicals, Inc. Method of treating membranes with ultraviolet radiation
EP0344799A2 (en) * 1988-06-03 1989-12-06 Matsushita Electric Industrial Co., Ltd. Selectively permeable film and process for producing the same
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
WO1996003202A1 (en) * 1994-07-28 1996-02-08 Millipore Corporation Porous composite membrane and process

Similar Documents

Publication Publication Date Title
Takegami et al. Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane
US6391937B1 (en) Polyacrylamide hydrogels and hydrogel arrays made from polyacrylamide reactive prepolymers
Andreopoulos et al. Light-induced tailoring of PEG-hydrogel properties
Yamagishi et al. Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes
Sirkar et al. Amperometric biosensors based on oxidoreductases immobilized in photopolymerized poly (ethylene glycol) redox polymer hydrogels
JPH10511708A (en) Permeable polymer composition and blood gas sensor overcoat
EP2905304A1 (en) Encoded polymer microparticles
US20140010970A1 (en) Photocurable polyethylene glycol silsesquioxane, polyethylene glycol silsesquioxane network prepared therefrom, anti-biofouling device including the polyethylene glycol silsesquioxane network, and method of preparing nano-pattern
TWI642474B (en) Porous ptfe membranes for metal removal
TWI781951B (en) Materials that inhibit the adhesion of biological components
Shi et al. Multicomponent DNA polymerization motor gels
JPS61242608A (en) Preparation of gas permeable membrane
US6991887B1 (en) Photopatternable sorbent and functionalized films
KR20170068805A (en) Detecting protein with microfluidic channel system using molecular imprinted polymer and manufacturing method of the system, biosensor detecting protein made thereby
Pavli et al. Protein-resistant cross-linked poly (vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst
Tokuda et al. A low-fouling polymer surface prepared by controlled segregation of poly (ethylene oxide) and its functionalization with biomolecules
CN113402768B (en) Phospholipid double-layer membrane for nanopore sequencing and preparation method thereof
JPH02187134A (en) Structure and method for separation of fluid mixture
JP2006322709A (en) Substance fixing substrate
Lee et al. Direct nanopatterning of silsesquioxane/poly (ethylene glycol) blends with high stability and nonfouling properties
JPS61278307A (en) Preparation of gas separation membrane
JPS62223750A (en) Radiation sensitive positive type resist and such resist composition
CN111203106A (en) Multilayer reverse osmosis composite membrane
JPH04504375A (en) Manufacturing method of chlorine-resistant polyester semipermeable membrane
Grate et al. Polymers for chemical sensors using hydrosilylation chemistry