JPS61278307A - Preparation of gas separation membrane - Google Patents

Preparation of gas separation membrane

Info

Publication number
JPS61278307A
JPS61278307A JP60120945A JP12094585A JPS61278307A JP S61278307 A JPS61278307 A JP S61278307A JP 60120945 A JP60120945 A JP 60120945A JP 12094585 A JP12094585 A JP 12094585A JP S61278307 A JPS61278307 A JP S61278307A
Authority
JP
Japan
Prior art keywords
membrane
group
film
thin film
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60120945A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Tasuke Sawada
太助 沢田
Shigeru Ryuzaki
粒崎 繁
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60120945A priority Critical patent/JPS61278307A/en
Publication of JPS61278307A publication Critical patent/JPS61278307A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase the strength of membrane remarkably and to obtain separation membrane having high durability by forming thin film comprising a permeable membrane material having reactive groups on the surface of water and crosslinking under this condition the membrane by irradiating with light or electronic energy. CONSTITUTION:Reactive groups having high photosensitivity are introduced into a polymer to be used for a permeable membrane material. Thin film is formed on the surface of water with the material. In this stage, 0.1-30wt% basing on the amt. of the membrane material of a photosensitizer is added to the membrane material. The thin film is irradiated with light energy such as ultraviolet rays while holding the thin film on the water surface. Electronic energy may be used also, but sensitizer is unnecessary for this case, and setting time can be reduced remarkably. The measure for the degree of crosslinking is defined by a degree where the irradiated film becomes insoluble in tetra hydrofuran.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体の分離濃縮を行なう気体分離膜の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a gas separation membrane for separating and concentrating gases.

従来の技術 近年、限外濾過膜、逆浸透膜、気体透過膜等の高分子を
利用する分離技術の進歩発展には著しいものがあり、そ
のいくつかは工業的規模で実用化されている。しかしな
がら現実に実用化されているものは、海水の淡水化、工
場廃液の処理、食品(液状物)の濃縮等の液−液分離若
しくは液−膜分離であり、気−膜分離、すなわち2種以
上の混合ガスから特定ガスの分離、濃縮については完全
な実用化までには至っておらず、現状では研究段階にと
どまっている。
BACKGROUND OF THE INVENTION In recent years, separation technologies using polymers such as ultrafiltration membranes, reverse osmosis membranes, and gas permeation membranes have made remarkable progress, and some of them have been put into practical use on an industrial scale. However, what has actually been put into practical use is liquid-liquid separation or liquid-membrane separation for desalination of seawater, treatment of factory waste liquid, concentration of food (liquid substances), etc., and gas-membrane separation, that is, two types of separation. The separation and concentration of specific gases from the above-mentioned mixed gases has not yet been fully put into practical use, and is currently at the research stage.

従来の気体分離膜が実用化困難である理由としては、主
に膜材料の選択透過性が小さいこと、すなわち特定の気
体を選択的に通し他の気体をほとんど通さないという膜
がないために、高純度の気体を得るためには膜分離を何
度か繰り返す多段方式を採用する必要があり、そのため
に装置が太きくなりすぎること、及び透過流量が小さい
ために多量のガスを生産できないことが挙げられる。
The reason why it is difficult to put conventional gas separation membranes into practical use is mainly because the membrane material has low selective permselectivity, that is, there is no membrane that selectively allows certain gases to pass through while virtually no other gases pass through. In order to obtain high-purity gas, it is necessary to adopt a multi-stage method in which membrane separation is repeated several times, which makes the equipment too thick and the permeation flow rate is small, making it impossible to produce a large amount of gas. Can be mentioned.

しかしながら、最終用途として必らずしも高純度の気体
を必要としない分野も多々あり、例えば酸素について言
えば、高炉送風用、燃焼補助用、汚泥処理用、医療にお
ける呼人気等が考えられる。
However, there are many fields in which high-purity gas is not necessarily required as an end use. For example, in the case of oxygen, it can be used for blast furnace ventilation, combustion assistance, sludge treatment, and medical exhalation.

これらは、大気中の酸素濃度がある程度高められた、い
わゆる酸素富化空気であればその目的は達成される。
These objectives can be achieved if the oxygen concentration in the atmosphere is increased to some extent, so-called oxygen-enriched air.

酸素を濃縮分離する、いわゆる酸素富化膜については特
に研究開発がさかんに行なわれており、米国のゼネラル
エレクトリック社のオルガノシロキサン−ポリカーボネ
ート共重合体(特開昭64−40868号公報参照)を
はじめ、様々な高分子材料が合成されている。本発明者
らもシリコーンを主成分とする共重合体(特開昭56−
11245γ号公報参照)を合成した。これらの膜材料
の製膜方法としては、主に多孔質支持体上に別途製膜し
た薄膜を重ね合わせる方法、表皮層と多孔質支持体が共
存する異方性膜を一度に製膜する方法、多孔質膜の上に
種々の方法によりモノマーを直接重合し薄膜を形成する
方法、あるいはポリマーの溶液を被覆した後で溶媒を蒸
発させて薄膜を形成する等の方法がある。
Research and development is particularly active on so-called oxygen-enriching membranes that concentrate and separate oxygen, including organosiloxane-polycarbonate copolymers (see Japanese Patent Laid-Open No. 64-40868) manufactured by General Electric Company in the United States. , various polymeric materials have been synthesized. The present inventors also developed a copolymer mainly composed of silicone (Japanese Unexamined Patent Publication No.
11245γ) was synthesized. The methods for forming these membrane materials are mainly a method of overlapping separately formed thin films on a porous support, and a method of forming an anisotropic film in which a skin layer and a porous support coexist at the same time. There are methods such as forming a thin film by directly polymerizing monomers on a porous membrane by various methods, or forming a thin film by coating a polymer solution and then evaporating the solvent.

以上の製膜方法の中で、最も代表的なものの1つとして
水面展開法〔ラングミュア・プロジェット製膜法(略し
てLB法)〕がある。この方法ではポリマーの溶液を水
面上に滴下し展開させて、結果的に用いた溶媒を自発的
に蒸発させ、ポリマーのみを水面上に残す。そして得ら
れたポリマーの薄膜を多孔質支持体上に付着させること
により、製膜を完了するものである。
Among the above film forming methods, one of the most representative is the water surface spreading method [Langmuir-Prodgett film forming method (abbreviated as LB method)]. In this method, a polymer solution is dropped onto the water surface and allowed to spread, and as a result, the solvent used spontaneously evaporates, leaving only the polymer on the water surface. Film formation is then completed by attaching the obtained polymer thin film onto a porous support.

この方法の場合、満たすべきポリマーの条件としては溶
解可能な溶剤が1種以上存在し、製膜後、支持体上にで
ある一定以上の強度を保持することである。しかしなが
ら、ある程度の強度を得るためには、用いるポリマーの
分子量をかなり高分子化(架橋)させることが必要にな
るが、高分子化が進みすぎると溶解性が低下し溶剤の選
択が困難になってくるし、また、薄膜化の面から言って
も好ましくない。つまり、膜強度を向上させるために高
分子化を行なえば、ポリマーの溶解性の問題あるいは薄
膜化困難という問題を来たす。逆に低分子で溶解性に優
れ薄膜化可能なポリマーの場合は、膜強度が乏しいため
にポリマー自体が多孔質支持体の孔の申に垂れ込んでし
まいピンホールが発生するので、ポリマーの分離性能を
得るためには膜厚をかなり大きくする必要があったり、
極端な場合にはポリマーが多孔質支持体を通過してしま
い分離性能を得られない場合もある。合わせて、水面展
開法にて製膜されたポリマーは水面展開以前のポリマー
と物性的には全く同等であり、膜強度、耐熱性、耐溶剤
性は変化しておらず当然用いた溶剤に易溶であり、耐候
性に乏しいことは言うまでもない。以上のことは水面展
開法に限らず、それ以外の方法にも言えることである。
In the case of this method, the conditions for the polymer to be satisfied include the presence of one or more kinds of solvents that can dissolve the polymer, and the need to maintain a certain level of strength on the support after film formation. However, in order to obtain a certain degree of strength, it is necessary to significantly increase the molecular weight of the polymer used (crosslinking), but if the polymerization progresses too much, solubility decreases and it becomes difficult to select a solvent. Moreover, it is not preferable from the viewpoint of thinning the film. In other words, if polymerization is performed to improve film strength, problems arise such as the solubility of the polymer or the difficulty of forming a thin film. On the other hand, in the case of low-molecular polymers that have excellent solubility and can be made into thin films, the film strength is poor and the polymer itself hangs into the pores of the porous support, creating pinholes, making it difficult to separate the polymer. In order to obtain performance, it is necessary to increase the film thickness considerably,
In extreme cases, the polymer may pass through the porous support, making it impossible to obtain separation performance. In addition, the polymer film formed by the water surface spreading method is completely the same in physical properties as the polymer before water surface spreading, and the film strength, heat resistance, and solvent resistance have not changed, and it is naturally easy to use the solvent used. Needless to say, it is molten and has poor weather resistance. The above can be said not only to the water surface development method but also to other methods.

先に、膜強度を向上させ、耐候性、寿命試験の性能の向
上を図るという意図で、感光基を有する透過膜材料を多
孔質支持体に付着させた後に、紫外線、電子線等の照射
によって重合(架橋)させるという特許を先願している
が、この場合、比較的高分子の透過膜材料では問題はな
いが、低分子の場合、多孔質支持体内部に垂れ込んでし
まい、超薄膜としての分離性能は得られず、結局膜厚を
大きくする必要があった。本発明は特に、超薄膜化が可
能で比較的低分子の透過膜材料について検討を重ねたも
のである。
First, with the intention of improving membrane strength, weather resistance, and performance in life tests, a transparent membrane material having a photosensitive group was attached to a porous support, and then irradiated with ultraviolet rays, electron beams, etc. We have previously filed a patent application for polymerization (crosslinking), but in this case, there is no problem with relatively high-molecular permeable membrane materials, but in the case of low-molecular weight materials, they tend to sag into the porous support, making it impossible to create ultra-thin membranes. As a result, it was necessary to increase the film thickness. In particular, the present invention is the result of repeated studies on a relatively low-molecular permeable membrane material that can be made into an ultra-thin film.

発明が解決しようとする問題点 先に述べたように、従来の水面展開法による製膜方法で
は、低分子で溶解性に優れ水面上にて超薄膜化可能なポ
リマーの場合は、ポリマー自体の強度が乏しいために、
多孔質支持体上にて十分な分離膜性能を発揮できず、分
離膜性能を得られた場合でも膜強度が弱く、耐熱性、耐
溶剤性にも乏しいために取扱いが面倒であったり、環境
の変化に弱く寿命試験においても膜劣化が激しいという
欠点を有していた。
Problems to be Solved by the Invention As mentioned earlier, in the conventional film forming method using the water surface spreading method, in the case of low-molecular polymers that have excellent solubility and can be formed into ultra-thin films on the water surface, the polymer itself Due to lack of strength,
Separation membranes cannot exhibit sufficient performance on porous supports, and even if separation membrane performance is achieved, the membrane strength is weak, heat resistance and solvent resistance are poor, making handling difficult and environmentally friendly. It has the disadvantage that it is sensitive to changes in the film and shows severe film deterioration even in life tests.

本発明は上記欠点に鑑み、水面上に反応基を有する透過
膜材料の薄膜を形成し、この状態にて光エネルギーある
いは電子エネルギーの照射を行なうことにより重合(架
橋)膜を形成させることにより膜強度を大幅に向上させ
、多孔質支持体上で超薄膜としての分離膜性能を維持し
、合わせて耐熱性、耐溶剤性をも向上させることにより
取り扱いが容易で耐久性の優れた分離膜の製造方法を提
供するものである。
In view of the above-mentioned drawbacks, the present invention forms a thin film of a transparent film material having a reactive group on the water surface, and in this state is irradiated with light energy or electron energy to form a polymerized (crosslinked) film. By significantly improving strength, maintaining separation membrane performance as an ultra-thin membrane on a porous support, and improving heat resistance and solvent resistance, we have created a separation membrane that is easy to handle and has excellent durability. A manufacturing method is provided.

問題点を解決するだめの手段 この目的を達成するために、本発明の分離膜の製造方法
は、液体面上、特に水面に反応基を有する透過膜材料の
薄膜を形成し、この状態にて光エネルギーあるいは電子
エネルギーの照射を行なうことにより重合(架橋)膜を
形成させることから構成されている。
Means for Solving the Problems In order to achieve this objective, the method for producing a separation membrane of the present invention involves forming a thin film of a permeable membrane material having reactive groups on the liquid surface, particularly on the water surface, and in this state. It consists of forming a polymerized (crosslinked) film by irradiating light energy or electron energy.

反応基は基本的には感光性に優れているものが好ましく
、ビニル基、アリル基、シンナモイル基、α−シアノシ
ンナモイル基、シンナミリデンアセチル基、α−シアノ
シンナミリデンアセチル基、ベンザルアセトフェノン(
カルコン基)、フェニルアジド基、α−7エニルマレイ
ミド基、フリルアクロイル基等が挙げられるが、中でも
特にビニル基、アリル基等のエチレン系のものが適して
いるO また、反応基を有する透過膜材料の母体としては、4−
メチルペンテン−1、ポリスチレン、ポリビニルアルコ
ール、フェノオキシ樹脂(エポキシ樹脂とビスフェノー
ル化合物との縮合樹脂)、水酸基を有するポリエーテル
、水酸基を有するポリエステル、水酸基を有するポリア
ミド、ポリアリルアルコール、スチレン−マレイン酸、
ホリシメチルシロキサンを代表とするシリコーン蓋合体
が挙げられるが、これらの1種またはそれ以上の混合物
として用いることにより共重合体としても良い。
Basically, the reactive group is preferably one that has excellent photosensitivity, such as a vinyl group, an allyl group, a cinnamoyl group, an α-cyanocinnamoyl group, a cinnamylideneacetyl group, an α-cyanocinnamylideneacetyl group, and a benzyl group. Acetophenone (
chalcone group), phenyl azide group, α-7 enylmaleimide group, furyl acroyl group, etc. Among them, ethylene-based ones such as vinyl group and allyl group are particularly suitable. As the base material of the membrane material, 4-
Methylpentene-1, polystyrene, polyvinyl alcohol, phenoxy resin (condensation resin of epoxy resin and bisphenol compound), polyether having a hydroxyl group, polyester having a hydroxyl group, polyamide having a hydroxyl group, polyallyl alcohol, styrene-maleic acid,
Examples include silicone lid composites typified by polysimethylsiloxane, but a copolymer may be obtained by using one or more of these as a mixture.

中でも特にシリコーン重合体との共重合が、透過性と分
離性の双方の特性を引き出すには有効である0 次に光エネルギーとして紫外線を使用する場合、次に述
べるような増感剤を反応基を有する透過膜材料に添加す
ることにより、硬化時間を大幅に短縮することができる
Among these, copolymerization with silicone polymers is particularly effective in bringing out the characteristics of both transparency and separation.Next, when using ultraviolet rays as light energy, a sensitizer such as the one described below is added to the reactive group. By adding it to a permeable membrane material having the following properties, the curing time can be significantly shortened.

過酸化ベンゾイル等の過酸化物、アゾビスインブチロニ
トリル等のアゾ化合物、ジアセチル、ジベンジル等のカ
ルボニル化合物、ジフェニルモノ及びジスルフィド、ジ
ベンゾイルモノ及びジスフィト等の硫黄化合物、四塩化
炭素等のハロゲン化合物、塩化第二鉄等の金属塩、ペン
ゾインイソブσピルエーテル等のエーテル化合物等。こ
れらの増感剤は、膜材料に対して通常0.1〜30重量
%、実用的には0.5〜6重量%の使用が有効である。
Peroxides such as benzoyl peroxide, azo compounds such as azobisin butyronitrile, carbonyl compounds such as diacetyl and dibenzyl, sulfur compounds such as diphenyl mono- and disulfide, dibenzoyl mono- and disphite, and halogen compounds such as carbon tetrachloride. , metal salts such as ferric chloride, ether compounds such as penzoin isobutylene ether, etc. These sensitizers are usually used in an amount of 0.1 to 30% by weight, and practically 0.5 to 6% by weight based on the membrane material.

使用に際しては、膜材料あるいは使用する溶剤に対して
最も相溶性の良い増感剤を選択することが肝要である。
When used, it is important to select the sensitizer that is most compatible with the membrane material or the solvent used.

また、照射光源としては特に限定はなく、一般の化学反
応に使用されるものをそのまま用いれば目的を達成する
ことができるが、特に紫外線照射の場合は光源によって
強度が異なるので、膜の重合の度合いは照射膜がテトラ
ヒドロフランに不溶化になる程度をその目安とする。
In addition, there are no particular limitations on the irradiation light source, and the purpose can be achieved by using those used in general chemical reactions as they are; however, especially in the case of ultraviolet irradiation, the intensity varies depending on the light source, so it is difficult to polymerize the film. The degree is determined by the extent to which the irradiated film becomes insoluble in tetrahydrofuran.

また電子エネルギー照射として電子線装置を用いる場合
は、紫外線ランプ等に比べ、増感剤を必要とせず、硬化
時間を大幅に短縮することはできるが、設備がかなり大
がかりになるという欠点がある。
Furthermore, when an electron beam device is used for electron energy irradiation, compared to an ultraviolet lamp or the like, a sensitizer is not required and the curing time can be significantly shortened, but the disadvantage is that the equipment is quite large.

作  用 以上のような構成によって、まず、水面上に反応基を有
する透過膜材料の原液あるいは溶液を滴下し、透過膜材
料の薄膜を水面上に展開させる。
Function Using the above-described configuration, first, a stock solution or a solution of a permeable membrane material having a reactive group is dropped onto the water surface, and a thin film of the permeable membrane material is spread on the water surface.

この状態では膜材料としては単に鎖状のポリマー若しく
はオリゴマーであるから、例えばテトラヒドロフラン、
ジメチルホルムアミド等の溶剤に容易に溶解する。また
低分子の膜材料を用いた場合は、膜強度はほとんど得ら
れず、単に水面上に浮いている状態である。次に膜材料
を水面に展開させ薄膜を形成させた状態にて、紫外線あ
るいは電子線の照射を行なうと、膜材料中の反応基によ
り重合(架橋)が進行し、それまで基本構造として鎖状
であったものが網目構造に変化していく。これに伴ない
、膜としての強度が大幅に向上し、多孔質支持体上に付
着させても垂れ込みはなく、十分な分離膜性能を発揮す
る程度の強度を得る。まり、今まで可溶であったテトラ
ヒドロフラン、ジメチルホルムアミド等の溶剤に不溶化
となり、耐溶剤性が向上する。合わせて耐熱性も向上す
るため、耐候性に優れ、取り扱いの容易な分離膜を製造
することが可能となる。
In this state, the membrane material is simply a chain polymer or oligomer, so for example, tetrahydrofuran,
Easily soluble in solvents such as dimethylformamide. Furthermore, when a low-molecular membrane material is used, almost no membrane strength is obtained, and the membrane simply floats on the water surface. Next, when the membrane material is spread out on the water surface to form a thin film and irradiated with ultraviolet rays or electron beams, polymerization (crosslinking) proceeds due to the reactive groups in the membrane material, and the basic structure until then is chain-like. What used to be a structure changes into a mesh structure. Along with this, the strength of the membrane is greatly improved, and even when it is deposited on a porous support, it does not sag and has enough strength to exhibit sufficient separation membrane performance. Therefore, it becomes insolubilized in solvents such as tetrahydrofuran and dimethylformamide, which were previously soluble, and its solvent resistance is improved. At the same time, heat resistance is also improved, making it possible to produce a separation membrane that has excellent weather resistance and is easy to handle.

尚、紫外線照射の場合には、先に述べたように増感剤を
使用する場合が多いが、この場合、増感剤が紫外線にて
開裂し、これに伴ない膜材料側の反応が開始され最終的
には、十分な網目構造を呈するようになる。但し、膜材
料の種類及び含まれる反応基の割合、増感剤の種類や添
加量の相違等により、不溶化はするものの、大きく膨潤
し、ゲル状を示すものがある。しかしこのような場合で
も、膜強度は分離性能を発揮するに充分であるし、メタ
ノールやアセト/等の溶剤にはほとんどの膜が十分に不
溶化しており、膨潤状態は示さない。
In addition, in the case of ultraviolet irradiation, a sensitizer is often used as mentioned above, but in this case, the sensitizer is cleaved by the ultraviolet rays, and a reaction on the membrane material side begins accordingly. Eventually, it will exhibit a sufficient network structure. However, depending on the type of membrane material, the proportion of reactive groups included, the type and amount of sensitizer added, etc., some membranes may swell significantly and exhibit a gel-like appearance, although they become insolubilized. However, even in such a case, the membrane strength is sufficient to exhibit separation performance, and most membranes are sufficiently insolubilized in solvents such as methanol and acetate, and do not show any swelling.

実施例 次に本発明を実施例に基づき、さらに詳細に説明するが
、本発明の内容は実施例のみに限定されるものではない
EXAMPLES Next, the present invention will be explained in more detail based on Examples, but the content of the present invention is not limited only to the Examples.

(実施例1) ポリジメチル7ロキサンの両末端ビニル基材料であるガ
ム状の5H−410(東し・シリコーン社製)を、ベン
ゼンにて溶解し、約20重量係の溶液とする。これに5
H−410の重量に対して1重量係のベンゾインイソプ
ロピルエーテル(以下略してBIPEとする。)を添加
し、充分に攪拌させて均一にする。これを水面上にて展
開させ、溶剤を充分に蒸発させて、水面上に5H−41
0の連続的な超薄膜を形成させる。次に、光源として水
銀ランプ〔(株)東芝製の理化学用水銀ランプ5HLS
−1002A型(ランプS!(L −100OA 。
(Example 1) Gum-like 5H-410 (manufactured by Toshi Silicone Co., Ltd.), which is a vinyl-based material at both ends of polydimethyl 7-loxane, is dissolved in benzene to form a solution having a weight of about 20%. 5 for this
Add 1 part by weight of benzoin isopropyl ether (hereinafter abbreviated as BIPE) to the weight of H-410, and stir thoroughly to make the mixture uniform. Develop this on the water surface, evaporate the solvent sufficiently, and place 5H-41 on the water surface.
0 to form a continuous ultra-thin film. Next, as a light source, a mercury lamp [mercury lamp 5HLS for physical and chemical use manufactured by Toshiba Corporation] was used.
-1002A type (Lamp S! (L -100OA.

1 ooV、soC/S、2A) 〕i用い、水面上ニ
薄膜を形成させた状態で、照射強度6.6mW/(yj
にて約20秒の照射を行なった。次に得られた重合膜を
、ジュラガード2400[ポリプロピレン製多孔質支持
体、ポリプラスチック(株)製]に付着させる。これを
気泡流量計(−気圧で加圧し、酸素及び窒素をそれぞれ
同体積分膜通過させて、その秒数にて特性を評価するも
の)にて特性を調べたところ、第1図のような結果が得
られた。これにより、酸素1oCC当りの酸素の透過秒
数が約8.5sec、以上にて分離係数αが2.0をク
リアーしていることがわかる。尚、得られた膜を24時
間テトラヒドロフラン及びベンゼンにそれぞれ浸漬した
後に再度特性を調べたところ、変化はなくピンホールは
生じていないことが判明した。
1 ooV, soC/S, 2A) ] i, with an irradiation intensity of 6.6 mW/(yj
Irradiation was carried out for about 20 seconds. Next, the obtained polymer film is attached to DURAGUARD 2400 [porous support made of polypropylene, manufactured by Polyplastics Co., Ltd.]. When we investigated the characteristics using a bubble flowmeter (a device that pressurizes at -atmosphere, passes the same volume of oxygen and nitrogen through the membrane, and evaluates the characteristics based on the number of seconds), we found the results shown in Figure 1. was gotten. As a result, it can be seen that the number of seconds of oxygen permeation per 10CC of oxygen is about 8.5 seconds, and that the separation coefficient α clears 2.0. Note that when the obtained membrane was immersed in tetrahydrofuran and benzene for 24 hours and its properties were examined again, it was found that there was no change and no pinholes were generated.

(比較例1) 実施例1と同様の材料である5H−410を、同じ<2
0重量%のベンゼン溶液とし、水面上にて薄膜を形成し
た。これを、ジュラガード2400に付着させて、特性
を実施例1と同様調べたところ、第2図のような結果が
得られた。これにより分離係数αが2.0をクリアーす
るには酸素10cc当りの透過秒数が15.5SeC以
上必要であり、実施例1と比較した場合、と考えると、
水面上にて重合膜を形成させた方が約2倍程度特性が向
上していると言える。また、重合膜を形成させない場合
は、気泡流量計にて一気圧の加圧中に、多孔質支持体上
の5H−410が圧力に耐えられず、垂れ込んでしまい
次第にピンホールになる場合が多く、特に酸素10CC
当りの透過秒が15sec以内では顕著であった。
(Comparative Example 1) 5H-410, which is the same material as Example 1, was used in the same <2
A 0% by weight benzene solution was used to form a thin film on the water surface. When this was attached to DURAGUARD 2400 and its characteristics were examined in the same manner as in Example 1, the results shown in FIG. 2 were obtained. As a result, in order to clear the separation coefficient α of 2.0, the number of seconds per 10 cc of oxygen required to pass through is 15.5 SeC or more, and when compared with Example 1,
It can be said that the properties are improved by about twice when the polymer film is formed on the water surface. In addition, if a polymer film is not formed, the 5H-410 on the porous support may not be able to withstand the pressure during pressurization of one atmosphere using a bubble flowmeter, and may sag and gradually become pinholes. A lot, especially 10cc of oxygen
It was noticeable when the permeation time was within 15 seconds.

(実施例2) 粘度約100cs、分子量6000のシリコンジオール
ウレタンアクリレート(以下略してS DUAと記す。
(Example 2) Silicon diol urethane acrylate (hereinafter abbreviated as SDUA) having a viscosity of about 100 cs and a molecular weight of 6000.

)をベンゼンに溶解させ、60重量%とし、次に5DU
Aの重量に対して2重量係のダロキュア963〔メルク
・ジャパン(株)製〕を添加し、充分に攪拌させて均一
にする。これを水面上に展開し、溶剤を充分に蒸発させ
て水面上に5DUAの超薄膜を形成させる。次に光源と
して水銀ランプ〔(株)東芝製の理化学用水銀ランプ5
HLS−1002A型(ランプ5HL−1oooA、 
 1ooV。
) was dissolved in benzene to 60% by weight, then 5DU
Add 2 parts by weight of Darocure 963 (manufactured by Merck Japan Co., Ltd.) to the weight of A, and stir thoroughly to make the mixture uniform. This is spread on the water surface and the solvent is sufficiently evaporated to form an ultra-thin film of 5DUA on the water surface. Next, we used a mercury lamp as a light source [Mercury lamp 5 for physical and chemical use manufactured by Toshiba Corporation.
HLS-1002A type (lamp 5HL-1oooA,
1ooV.

50C/S、2A) 〕を用い、水面上に薄膜を形成さ
せた状態で、6.6 rnw/iの照射強度にて約6秒
の照射を行なった。次に、得られた重合膜をジュラガー
ド2400に付着させ、実施例1と同様気泡流量計にて
特性を調べたところ、第3図のような結果が得られた。
50C/S, 2A)], irradiation was performed for about 6 seconds at an irradiation intensity of 6.6 rnw/i with a thin film formed on the water surface. Next, the obtained polymer film was attached to DURAGUARD 2400, and its characteristics were examined using a bubble flow meter as in Example 1, and the results shown in FIG. 3 were obtained.

これより、酸素10cc 当りの透過秒数が約6.05
ee以上の領域にて分離係数2゜0以上をクリアーして
いることがわかる。尚、得られた膜′ff、24時間テ
トラヒドロフラン及びベンゼンに浸漬した後に再度測定
を行なったが、特性はほとんど変化なく、ピンホールは
生じてないことが判明した。
From this, the number of seconds per 10cc of oxygen is approximately 6.05
It can be seen that the separation coefficient of 2° or more is cleared in the region of ee or more. The obtained membrane 'ff was immersed in tetrahydrofuran and benzene for 24 hours and then measured again, and it was found that the properties remained almost unchanged and no pinholes were formed.

(比較例2) 実施例2にて調整を行なった材料を、同様に水面上に展
開させ、紫外線照射を行なわずに、そのままの状態にて
、ジュラガード上に付着させた。
(Comparative Example 2) The material adjusted in Example 2 was spread on the water surface in the same manner and was adhered to Duraguard in that state without irradiating with ultraviolet rays.

次に、気泡流量計にて特性を調べたところ、ピンホール
であり、かなり膜厚を大きくしても変化はなく、結局、
分離性能が得られなかった。測定後、膜の状態を調べた
ところジュラガードの一次側に付着していた膜材料が二
次側にて確認され、膜材料の強度が乏しいため、ジュラ
ガードの孔を通過したものと考えられる。
Next, when we investigated the characteristics using a bubble flow meter, we found that it was a pinhole, and there was no change even if the film thickness was increased considerably.
Separation performance could not be obtained. After the measurement, we examined the condition of the membrane and found that the membrane material that had adhered to the primary side of DuraGuard was found on the secondary side, and it is thought that the membrane material had passed through the pores of DuraGuard due to its poor strength. .

(実施例3) 実施例2にて使用した5DUA1oyと粘度約20C3
の4−メチルペンテン−1モノマー102に増感剤とし
て、ジェトキシアセトフェノンを0.4y添加し、充分
に攪拌混合した。その後水面上に滴下し、薄膜を形成さ
せた。次に、実施例1と2にて用いた水銀ランプにて1
0秒間紫外線照射を行ない、水面上に重合(架橋)膜を
形成させた。次にジュラガード2400に付着させ、先
の実施例と同様に気泡流量計にて特性を求めた。結果を
第4図に示す。
(Example 3) 5DUA1oy used in Example 2 and viscosity of about 20C3
0.4y of jetoxyacetophenone was added as a sensitizer to the 4-methylpentene-1 monomer 102, and the mixture was thoroughly stirred and mixed. Thereafter, it was dropped onto the water surface to form a thin film. Next, with the mercury lamp used in Examples 1 and 2,
Ultraviolet irradiation was performed for 0 seconds to form a polymerized (crosslinked) film on the water surface. Next, it was attached to DURAGUARD 2400, and its characteristics were determined using a bubble flow meter in the same manner as in the previous example. The results are shown in Figure 4.

第4図により酸素10 cc 当りの透過秒数が約、8
.6SeC程度で分離係数αが2.0をクリアーシ、1
6気以上になると約2.36で一定値を示し、ピンホー
ル性が極めて低いといえる。得られた膜をテトラヒドロ
フラン及びベンゼンに24時間浸漬後、気泡流量計にて
測定を行なってみたが、結果は第4図と同様であった。
According to Figure 4, the number of seconds per 10 cc of oxygen is approximately 8.
.. Separation coefficient α clears 2.0 at around 6SeC, 1
At 6 ki or higher, it shows a constant value of about 2.36, and it can be said that the pinhole property is extremely low. The obtained membrane was immersed in tetrahydrofuran and benzene for 24 hours, and then measured using a bubble flow meter, and the results were the same as those shown in FIG. 4.

また、水面展開後、紫外線未照射の場合は、膜形成能が
乏しいためにジュラガード上に付着の際、垂れ込みによ
るピンホールを生じ、比較例2と同様、膜厚を大きくし
ても分離性能は得られなかった。
In addition, if UV rays are not irradiated after development on the water surface, the film formation ability is poor, and pinholes will occur due to hanging when adhering to DuraGuard, and as in Comparative Example 2, separation will occur even if the film thickness is increased. No performance was obtained.

(実施例4) 先の実施例にて用いた5H−410,10fと、5DU
A、 10yとをsopのベンゼンに溶解した。これを
、水面上に滴下し、展開させ溶剤を充分に蒸発させた後
、エリアビーム形電子線照射装置〔研究用キュアトロン
、日新ハイボルテージ(株)製〕を用いて、水面上の薄
膜に対して電子線照射を行なった。照射強度2メガラツ
ドにて0.1秒照射後に、形成された重合(架橋)膜を
ジュラガード24oO上に付着させ、気泡流量計にて特
性を求めた。結果を第5図に示す。これより酸素10C
C当りの透過秒数が7.05eC以上で、分離係数α2
2.0以上をクリアーしている。比較として電子線未照
射の場合の特性を調べたが、水面上での膜厚を厚くして
も、膜強度に乏しいため、ピンホー ルを生じ、分離性
能を求めることはできなかった。
(Example 4) 5H-410, 10f used in the previous example and 5DU
A, 10y was dissolved in sop benzene. After dropping this onto the water surface and spreading it to sufficiently evaporate the solvent, use an area beam electron beam irradiation device [Curetron for research, manufactured by Nissin High Voltage Co., Ltd.] to create a thin film on the water surface. Electron beam irradiation was performed on the After irradiation for 0.1 seconds at an irradiation intensity of 2 megarads, the formed polymerized (crosslinked) film was deposited on DURAGUARD 24oO, and its characteristics were determined using a bubble flow meter. The results are shown in Figure 5. From this oxygen 10C
When the transmission seconds per C is 7.05eC or more, the separation coefficient α2
Cleared 2.0 or higher. For comparison, we investigated the characteristics of the sample without electron beam irradiation, but even if the film thickness on the water surface was increased, the film did not have sufficient strength, resulting in pinholes and it was not possible to determine the separation performance.

以上のように、本実施例によれば、水面上に反応基を有
する透過膜材料の薄膜を形成し、この状態にて光エネル
ギーあるいは電子エネルギーの照射を行なうことにより
重合(架橋)膜を形成させることにより、膜強度が大幅
に向上し、多孔質支持体上で超薄膜としての分離性能を
維持させ、合わせて耐熱性、耐溶剤性の向上により分離
特性に優れ取り扱いが容易で耐久性の優れた分離膜の製
造が可能となる。
As described above, according to this example, a thin film of a transparent film material having reactive groups is formed on the water surface, and a polymerized (crosslinked) film is formed by irradiating light energy or electronic energy in this state. This greatly improves membrane strength and maintains separation performance as an ultra-thin membrane on a porous support.In addition, improved heat resistance and solvent resistance result in excellent separation properties, easy handling, and durability. It becomes possible to manufacture excellent separation membranes.

発明の効果 以上のように本発明は、水面上に反応基を有する透過膜
材料の薄膜を形成し、この状態にて光エネルギーあるい
は電子エネルギーの照射を行なうことにより重合(架橋
)膜を形成させることにより、水面上に展開した超薄膜
の膜強度を大幅に向上させ、多孔質支持体上にて超薄膜
としての分離性能を引き出し、合わせて膜強度の増大に
伴ない耐熱性、耐溶剤性をも向上させることにより、分
離特性に優れ、取り扱いが容易でしかも耐久性に優れた
分離膜の製造を可能にし、その実用的効果は大なるもの
がある。
Effects of the Invention As described above, the present invention forms a thin film of a transparent film material having reactive groups on the water surface, and in this state, irradiates with light energy or electron energy to form a polymerized (crosslinked) film. This greatly improves the membrane strength of the ultra-thin membrane developed on the water surface, brings out the separation performance as an ultra-thin membrane on a porous support, and also improves heat resistance and solvent resistance as the membrane strength increases. By improving this, it is possible to manufacture a separation membrane that has excellent separation characteristics, is easy to handle, and has excellent durability, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例における気泡流量計に
よって求められた酸素10cc 当りの透過秒数と分離
係数αとの関係を示す図、第2図は、本発明の第1の比
較例における気泡流量計によって求められた酸素10C
C当りの透過秒数と分離係数aとの関係を示す図、第3
図、第4図及び第6図はそれぞれ本発明の実施例2の場
合、実施例3の場合、実施例4の場合の酸素10cc当
りの透過秒数と分離係数αの関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 aか1名第1
図 9  t  foccXs  リ /)  *a##、
、L   (Jjec/ブocc )第2図 # t fOcc ’zすI)i!4ケ41 (iec
/ 10Co)第3図 #t  fDcc%+)AMA#P1  (a/fOo
o)男 4 図 it ヂOcc 当りntt、才9−k  (wec/
yoct−)第 5 図
FIG. 1 is a diagram showing the relationship between the number of seconds per 10 cc of oxygen permeated and the separation coefficient α determined by the bubble flowmeter in the first embodiment of the present invention, and FIG. Oxygen 10C determined by bubble flow meter in comparative example
Diagram showing the relationship between the number of seconds of transmission per C and the separation coefficient a, 3rd
4 and 6 are diagrams showing the relationship between the number of seconds per 10 cc of oxygen and the separation coefficient α for Example 2, Example 3, and Example 4 of the present invention, respectively. . Name of agent Patent attorney Toshi Nakao (a) 1st person
Figure 9 t foccXs ri/) *a##,
, L (Jjec/Boocc) Figure 2 #t fOcc'zI)i! 4 ke 41 (iec
/ 10Co) Figure 3 #t fDcc%+) AMA#P1 (a/fOo
o) Male 4 Figure it ヂOcc per ntt, age 9-k (wec/
yoct-) Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)液体面上に反応基を有する透過膜材料の薄膜を形
成し、この状態にて光エネルギーあるいは電子エネルギ
ーの照射を行なうことにより重合(架橋)膜を形成させ
ることを特徴とする気体分離膜の製造方法。
(1) Gas separation characterized by forming a thin film of a permeable membrane material having reactive groups on the liquid surface and irradiating this state with light energy or electronic energy to form a polymerized (crosslinked) film. Membrane manufacturing method.
(2)液体が水であることを特徴とする特許請求の範囲
第1項記載の気体分離膜の製造方法。
(2) The method for producing a gas separation membrane according to claim 1, wherein the liquid is water.
(3)反応基がビニル基、アリル基、シンナモイル基、
α−シアノシンナモイル基、シンナミリデンアセチル基
、α−シアノシンナミリデンアセチル基、ベンザルアセ
トフェノン(カルコン)基、フェニルアジド基、α−フ
ェニルマレイミド基、フリルアクロイル基のうちの1種
あるいはそれ以上の混合物であることを特徴とする特許
請求の範囲第1項記載の気体分離膜の製造方法。
(3) The reactive group is a vinyl group, an allyl group, a cinnamoyl group,
One of α-cyanocinnamoyl group, cinnamylideneacetyl group, α-cyanocinnamylideneacetyl group, benzalacetophenone (chalcone) group, phenylazide group, α-phenylmaleimide group, furyl acroyl group, or 2. The method for producing a gas separation membrane according to claim 1, wherein the gas separation membrane is a mixture of more than the above.
JP60120945A 1985-06-04 1985-06-04 Preparation of gas separation membrane Pending JPS61278307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120945A JPS61278307A (en) 1985-06-04 1985-06-04 Preparation of gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120945A JPS61278307A (en) 1985-06-04 1985-06-04 Preparation of gas separation membrane

Publications (1)

Publication Number Publication Date
JPS61278307A true JPS61278307A (en) 1986-12-09

Family

ID=14798857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120945A Pending JPS61278307A (en) 1985-06-04 1985-06-04 Preparation of gas separation membrane

Country Status (1)

Country Link
JP (1) JPS61278307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
EP0681862A2 (en) * 1994-05-09 1995-11-15 Hoechst Aktiengesellschaft Composite membrane and process for the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
EP0681862A2 (en) * 1994-05-09 1995-11-15 Hoechst Aktiengesellschaft Composite membrane and process for the production thereof
EP0681862A3 (en) * 1994-05-09 1996-01-17 Hoechst Ag Composite membrane and process for the production thereof.

Similar Documents

Publication Publication Date Title
He et al. Photo-irradiation for preparation, modification and stimulation of polymeric membranes
US7279096B2 (en) Polymer based permeable membrane for removal of ions
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JP2004509192A (en) Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
KR100562050B1 (en) New crosslinked polyvinyl alcohol-based membranes and their Preparation Process
US20020161066A1 (en) Method for making a nanofiltration membrane, and resulting membrane
CN104245102B (en) The composite membrane of high performance tape positive electricity and the purposes in nano filtering process thereof
US6458310B1 (en) Process of making a polymeric material having a microporous matrix
JPS61278307A (en) Preparation of gas separation membrane
JPH02187134A (en) Structure and method for separation of fluid mixture
JPS61242608A (en) Preparation of gas permeable membrane
Strathmann Development of new membranes
JP2688663B2 (en) Gas separation membrane and manufacturing method thereof
EP0467903B1 (en) Process for the preparation of chlorine-resistant polyester semipermeable membranes
JPS62125825A (en) Gas separation membrane
EP3296011A1 (en) Fluoropolymers and membranes comprising fluoropolymers
EP0860199B1 (en) Method of producing a membrane
JPH05220362A (en) Gas separation membrane
JPH0523820B2 (en)
WO2020040129A1 (en) Nanostructure composite semipermeable membrane
JPS6151925B2 (en)
Jeon et al. Performance changes of composite membranes prepared from various glycidyl methacrylate derivatives and their mixtures
JPS63236515A (en) Gas separating membrane
JPH0368429A (en) Formation of thin organic film and its use
LEI Stimuli-responsive microfiltration membranes and surfaces from copolymers with grafted functional side chains