JPS62125825A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPS62125825A
JPS62125825A JP60265208A JP26520885A JPS62125825A JP S62125825 A JPS62125825 A JP S62125825A JP 60265208 A JP60265208 A JP 60265208A JP 26520885 A JP26520885 A JP 26520885A JP S62125825 A JPS62125825 A JP S62125825A
Authority
JP
Japan
Prior art keywords
polymerization
membrane
thin film
group
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60265208A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Tasuke Sawada
太助 沢田
Shigeru Ryuzaki
粒崎 繁
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60265208A priority Critical patent/JPS62125825A/en
Publication of JPS62125825A publication Critical patent/JPS62125825A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enable polymerization in the atmosphere wherein polymerization inhibition due to oxydation is easily caused by performing ultraviolet rays irradiation for a substance which is made to a thin membrane by adding a polymerization initiator to a membrane material having >=3 functionality as a photoreactive group in one molecular and polymerizing and curing it. CONSTITUTION:A membrane material having >=3 functionality as a photoreactive functional group such as acryloyl group, methacryloyl group and vinyl group is used. A silicone compd. is suitable as the membrane material when considering high permeability and stability. As a polymerization initiator, either of a radical reaction type and an ion reaction type may be used and benzoins such as a structure of 1-(4-alkylphenyl)-2-hydroxy-2-methylpropane-1-one is high in polymerization starting efficiency and preferably used and the loadings are 0.1-30wt%. A soln. of this mixture is made to a membrane having <=10mum thickness and polymerization is performed by irradiating ultraviolet rays thereon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、気体の分離4縮を行なう気体分離膜に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas separation membrane for separating and condensing gases.

従来の技術 近年、限外濾過膜、逆浸透膜、気体透過膜等の高分子を
利用する分離技術の進歩発展には著しいものがあり、そ
のいくつかは工業的規模で実用化されている。しかしな
がら、現実に実用化されているものは、海水の淡水化、
工場廃液の処理9食品(液状物)の濃縮等の液−液分離
若しくは液〜面分離であり、気−気分離、すなわち2種
以上の混合ガスから特定ガスの分離、濃縮については完
全な実用化までには至っておらず、研究段階ばとど1っ
ているのが現状である。
BACKGROUND OF THE INVENTION In recent years, separation technologies using polymers such as ultrafiltration membranes, reverse osmosis membranes, and gas permeation membranes have made remarkable progress, and some of them have been put into practical use on an industrial scale. However, what has actually been put into practical use is seawater desalination,
Processing of factory waste liquid 9 Liquid-liquid separation or liquid-surface separation, such as concentration of food (liquid substances), and gas-gas separation, that is, separation and concentration of a specific gas from a mixture of two or more gases, is completely practical. Currently, it has not yet reached the stage of development and is only at the research stage.

従来の気体透過膜が、実用化困難である理由としては、
主に膜材料の選択性が小さいこと、すなわち特定の気体
を選択的に通し、他の気体をほとんど通さないという膜
がないため、高純度の気体を得るためには膜分離を何度
か繰り返す多段方式を採用する必要があり、そのため装
置が犬きくなりすぎることが考えられる。また、透過流
量が少ないため、多量のガスを生産できないことが挙げ
られる。
The reason why conventional gas permeable membranes are difficult to put into practical use is that
The main reason is that the selectivity of the membrane material is low, that is, there are no membranes that selectively allow certain gases to pass through while hardly allowing other gases to pass through. To obtain highly pure gases, membrane separation is repeated several times. It is necessary to adopt a multi-stage method, which may make the device too harsh. Another problem is that a large amount of gas cannot be produced because the permeation flow rate is small.

しかしながら、最終用途として必ずしも高純度の気体を
必要としない分野も多々あり、例えば酸素の場合、高炉
送風用、燃焼補助用、汚泥処理用。
However, there are many fields in which high-purity gases are not necessarily required as end-uses, such as oxygen, blast furnace ventilation, combustion assistance, and sludge treatment.

医療における呼気用等では、大気中の酸素濃度がある程
度高められた、いわゆる酸素富化空気であれば、その目
的は達成される。
For medical exhalation, etc., the purpose can be achieved if the oxygen concentration in the atmosphere is increased to some extent, so-called oxygen-enriched air.

酸素を濃縮分離する、いわゆる酸素富化膜については特
に研究開発がさかんに行なわれており、米国のゼネラル
エレクトリック社のオルガノシロキサン−ポリカーボネ
ート共重合体C特開昭64−40868号公報参照)を
筆頭に、様々な高分子材料が合成されており、日本国内
でもシリコーンを主成分としだ共重合体を中心に研究が
進められている(特開昭56−112457号公報参照
)0これら膜材料を用いた製膜方法としては、主に多孔
質支持体上に別途製膜した薄膜を重ね合わせる方法、表
皮層と多孔質支持体が共存する異方性膜を一度に製膜す
る方法、多孔質膜の上に種々の方法によりモノマーを直
接重合し、薄膜を形成する方法、あるいは、膜材料をそ
のまま若しくは溶剤に希釈して、水面上に滴下し、界面
活性作用にて、水面上に単分子膜を形成させる言わゆる
[ラングミュア・プロジェット製膜法」等が考えられる
Particularly active research and development is being carried out on so-called oxygen enrichment membranes that concentrate and separate oxygen, with the leading research being on organosiloxane-polycarbonate copolymer C (see Japanese Patent Application Laid-open No. 40868/1986) from General Electric Company in the United States. Various polymeric materials have been synthesized, and research is currently underway in Japan, focusing on copolymers containing silicone as the main component (see Japanese Patent Application Laid-Open No. 112457/1983). The film-forming methods used were mainly a method of overlapping separately formed thin films on a porous support, a method of forming an anisotropic film in which a skin layer and a porous support coexist, and a method of forming an anisotropic film in which a skin layer and a porous support coexist. Monomers can be directly polymerized on the membrane by various methods to form a thin film, or the membrane material can be dropped onto the water surface as it is or diluted with a solvent, and monomers can be formed on the water surface by surface active action. The so-called [Langmuir-Prodgett film forming method], which forms a film, can be considered.

この「ラングミュア・プロジェット製膜法」の応用とし
て「水面展開法」が考えられる。これは、膜材料の溶液
を水面上に滴下し、その溶液を水面上に展開させて用い
た溶媒を自発的に蒸発させ、膜材料のみを水面上に残す
。次に得られた膜材料の薄膜を多孔質支持体上に付着さ
せることにより、製膜を完了するものである。この方法
の場合、一般に膜材料としてはかなり高分子化されたも
のを使用することが多く、これによって、膜厚、膜強度
及び寿命特性を決定づけている。しかしながら、高分子
化されたものを使用する場合、水面展開を行なっては、
何らかの溶剤に溶解し得ることが必要条件となるため、
膜強度を向上させる目的でより高分子化を進めるには限
界がある。また、既に高分子化されているために、超薄
膜化という点においても限界がある。
A possible application of this ``Langmuir-Prodgett film forming method'' is the ``water surface spreading method.'' In this method, a solution of the membrane material is dropped onto the water surface, the solution is spread on the water surface, and the solvent used spontaneously evaporates, leaving only the membrane material on the water surface. Next, the film formation is completed by attaching a thin film of the obtained film material onto a porous support. In the case of this method, generally a highly polymerized membrane material is often used, which determines the membrane thickness, membrane strength, and life characteristics. However, when using a polymerized material, it is difficult to develop it on the water surface.
Since it is a necessary condition that it can be dissolved in some kind of solvent,
There is a limit to further increasing polymerization for the purpose of improving membrane strength. Furthermore, since it has already been made into a polymer, there is a limit in terms of making it an ultra-thin film.

超薄膜化を考えた場合、勿論高分子のものより低分子の
方が、広がりの点でも膜厚の点でも有利である。光反応
基を有したモノマー、オリゴマー及び比較的低分子量の
高分子材料を水面上に展開。
When considering ultra-thin films, low-molecular materials are of course more advantageous than high-molecular materials in terms of spread and film thickness. Monomers, oligomers, and relatively low molecular weight polymeric materials with photoreactive groups are deployed on the water surface.

薄膜化した後で紫外線あるいは電子線照射し、重合させ
るという方法を、本発明者らによって既に提案済である
。この方法によって得られた超薄膜は、特に耐溶剤性K
lれ、ピンホールも極めて少ないものであり、信頼性に
おいても良好な結果が得られている。しかしながら、こ
の方法で問題となる点は、大気雰囲気中で紫外線あるい
は電子線照射を行なった場合、膜材料の光反応基が大気
中の酸素と反応し、重合反応を妨げてしまい、膜強度を
得ることが困難となる。そのため、光照射を行なう際、
その雰囲気を窒素等の不活性ガスに置換して初めて薄膜
状態での重合が可能となるが、装、嫂が複雑になるし、
取扱いが面倒である。
The present inventors have already proposed a method of polymerizing the film by irradiating it with ultraviolet rays or electron beams after forming a thin film. The ultrathin film obtained by this method has particularly high solvent resistance K
There were very few deviations and pinholes, and good results were obtained in terms of reliability. However, the problem with this method is that when irradiated with ultraviolet rays or electron beams in the atmosphere, the photoreactive groups in the film material react with oxygen in the atmosphere, hindering the polymerization reaction and reducing the film strength. difficult to obtain. Therefore, when performing light irradiation,
Polymerization in a thin film state is only possible by replacing the atmosphere with an inert gas such as nitrogen, but this requires complicated packaging and
It is troublesome to handle.

薄膜化を図る場合、膜材料の分子量をより低くした方が
有利であり、究極的にはモノマ一単位の単分子膜が考え
られる。しかしながら、一般に分子量が低くなるに連れ
て空気阻害の影響は大きくなる傾向にあり、薄膜であれ
ばある程、空気阻害という点に留意しなければならなく
なる。
In order to make the film thinner, it is more advantageous to lower the molecular weight of the film material, and ultimately a monomolecular film with one unit of monomer can be considered. However, in general, as the molecular weight decreases, the influence of air inhibition tends to increase, and the thinner the film, the more attention must be paid to air inhibition.

発明が解決しようとする問題点 先に述べたように、従来の製膜方法では、水面展開に用
いる膜材料の分子量は、膜強度を得るために比較的高い
ものを使用しており、そのため広がりが悪かったり、薄
膜にも自ずと限界があった。
Problems to be Solved by the Invention As mentioned earlier, in the conventional film forming method, the molecular weight of the membrane material used for water surface development is relatively high in order to obtain membrane strength, which causes However, thin films naturally had their limits.

また、耐溶剤性も乏しいという欠点を有していた。It also had the disadvantage of poor solvent resistance.

そこで、これらの諸欠点を解決させるために、本発明者
らによって、光反応基を有したモノマー。
Therefore, in order to solve these drawbacks, the present inventors developed a monomer having a photoreactive group.

オリゴマー及び比較的低分子量の高分子材料を水面上に
展開、薄膜化し、その状態で紫外線あるいは電子線照射
し、重合させるという製膜法(水面UV硬化法)を既に
提案している。しかしながら、この方法の場合、窒素等
の不活性ガス雰囲気中では極めて有効であるが、大気雰
囲気では空気阻害を受け、重合が進行せずに、膜強度が
得られないという欠点を有している。
A film-forming method (water surface UV curing method) has already been proposed in which oligomers and relatively low-molecular-weight polymeric materials are spread on the water surface to form a thin film, and in this state are irradiated with ultraviolet rays or electron beams to polymerize. However, although this method is extremely effective in an atmosphere of an inert gas such as nitrogen, it has the disadvantage that it is inhibited by air in an atmospheric environment, and polymerization does not proceed and film strength cannot be obtained. .

本発明は、上記欠点に鑑み、膜材料について鋭利検討を
重ねた結果、1分子当り2官能性以下の材料を大気中に
て薄膜し、光照射を行なっても重合は進まないが、3官
能以上にした場合、大気中でも兄事に光重合することを
見い出した。それで、膜材料として用いるモノマー、オ
リゴマー及び比較的低分子量の高分子材料の1分子当り
の光反応基の数を増加させることにより、単位面積当り
の空気阻害の影響を小さくし、大気中でも所謂「水面U
V硬化法」による製膜を可能にするという発明に至った
のである。具体的には、光反応基を3官能以上有した膜
材料に重合開始剤を添加し、水面展開法等にて薄膜化し
た後、紫外線照射にて重合硬化することにより、膜強度
に優れ、透過流量の大きい気体分離の超薄膜を提供する
ものである。
In view of the above-mentioned drawbacks, the present invention has been made after repeated careful studies on film materials.The present invention has been developed by forming a thin film of a material with less than two functionalities per molecule in the air, and polymerization does not proceed even when irradiated with light, but with trifunctional materials. It was discovered that when the above conditions were used, photopolymerization occurred even in the atmosphere. Therefore, by increasing the number of photoreactive groups per molecule of monomers, oligomers, and relatively low molecular weight polymer materials used as membrane materials, the influence of air inhibition per unit area can be reduced, and even in the atmosphere, the so-called " water surface U
This led to an invention that enables film formation using the "V curing method". Specifically, a polymerization initiator is added to a film material having three or more functional photoreactive groups, the film is formed into a thin film by a water surface spreading method, etc., and then polymerized and cured by ultraviolet irradiation, resulting in excellent film strength. This provides an ultra-thin membrane for gas separation with a large permeation flow rate.

問題点を解決するための手段 この目的を達成するために、本発明の気体分離膜は、1
分子中、光反応基として3官能以上を有した膜材料に重
合開始剤を加え、薄膜したものを紫外線照射により重合
硬化させることから構成されている。
Means for Solving the Problems In order to achieve this objective, the gas separation membrane of the present invention has the following features:
It consists of adding a polymerization initiator to a film material having trifunctional or higher functional groups as photoreactive groups in the molecule, and polymerizing and curing the thin film by irradiating it with ultraviolet rays.

光反応基としては、アクリロイル基、メタクリロイル基
、ビニル基、アリル基、ンンナモイル基。
Examples of photoreactive groups include acryloyl group, methacryloyl group, vinyl group, allyl group, and nannamoyl group.

α−ンアノシンナモイル基、ノンナミリデンアセチル基
+a−シアノシンナミリデンアセチル基。
α-anocinnamylideneacetyl group, nonnamylideneacetyl group + a-cyanocinnamylideneacetyl group.

ベンザルアセトフェノン(カルコン基)、フェニルアジ
ド基、α−フェニルマレイミド基、フリルアクロイル基
等が挙げられるが、中でも特にアクリロイル基、メタク
リロイル基、ビニル基等が適しているが、光反応性官能
基であれば何ら支障はない。
Examples include benzalacetophenone (chalcone group), phenyl azide group, α-phenylmaleimide group, furyl acroyl group, etc. Among them, acryloyl group, methacryloyl group, vinyl group, etc. are particularly suitable, but photoreactive functional groups If so, there is no problem.

次ニ、膜材料としては、スチレン、ビニルアルコール、
フェノオキシ類(エポキンとビスフェノール化合物との
縮合物)2エーテル類、エステル。
Second, membrane materials include styrene, vinyl alcohol,
Phenoxys (condensation product of Epoquin and bisphenol compound) 2 ethers, esters.

アミド、アリルアルコール、スチレン−マレイン酸、マ
レイン酸エステルや、フマル酸エステル。
Amides, allyl alcohol, styrene-maleic acid, maleic esters, and fumaric esters.

アセチレン誘導体、ジメテルンロキサンを中心トするシ
リコーン化合物等のモノマー、オリゴマー及び比較的低
分子の高分子材料が考えられるが、特に高透過性、安定
性を考えた場合、シリコーン化合物が最も適しており、
シリコーン単体かあるいは、高分離性をも考える場合は
シリコーンと上記膜材料との組み合わせが望ましい。
Acetylene derivatives, monomers such as silicone compounds mainly containing dimethane loxane, oligomers, and relatively low-molecular polymer materials can be considered, but silicone compounds are the most suitable, especially when considering high permeability and stability. Ori,
It is desirable to use silicone alone or, if high separation is also considered, a combination of silicone and the above membrane material.

また、使用する重合開始剤としては、ラジカル反応型、
イオン反応型のいずれでも使用可能であり、ジェトキシ
アセトフェノン、ジおよびトリクロロアセトフェノン等
のアセトフェノン類、ベンゾフェノン、ミヒラーケトン
、ベンジル、ベンゾイン類、ベンゾインメチルエーテル
、ペンゾインイソグロビルエーテル等のベンゾインエー
テル類。
In addition, the polymerization initiators used include radical reaction type,
Any ionic reaction type can be used, such as acetophenones such as jetoxyacetophenone, di- and trichloroacetophenone, benzoin ethers such as benzophenone, Michler's ketone, benzyl, benzoins, benzoin methyl ether, and penzoin isoglobil ether.

ベンジルジメチルケタール、ベンゾイルベンゾエート、
a−アジロキシムエステル、テトラメチルチウラムモノ
サルファイド、アゾ化合物等が考えらね、るが、中でも
1−(4−アルキルフェニル)−2−ヒドロキシ−2−
メチルプロパン−1−オン構造のようなアルキル基を有
するベンゾイン類が、極めて開始効率が高く、本発明に
使用する重合開始剤として最も適している。添加量は、
膜材料に対して通常0.1〜30重量係、実用的には0
.2〜6.0重責チの使用が有効である。
Benzyl dimethyl ketal, benzoyl benzoate,
Examples include a-aziroxime ester, tetramethylthiuram monosulfide, azo compounds, among others 1-(4-alkylphenyl)-2-hydroxy-2-
Benzoins having an alkyl group such as a methylpropan-1-one structure have extremely high initiation efficiency and are most suitable as polymerization initiators for use in the present invention. The amount added is
Normally 0.1 to 30 weight factor for membrane material, practically 0
.. It is effective to use a weight of 2 to 6.0.

本発明の薄膜化の方法は、先に説明したLB法(水面展
開法)を筆頭に、ディップ法、キャスト法、スプレー法
等、基本的にはどのような方法でも良く、限定されるも
のではない。また、膜材料の分子量が高く、そのままで
は薄膜化困難な場合は、必要に応じて溶剤を加えても良
く、特に1107u以下の薄膜の場合、膜表面の空気阻
害の部分を隋めて小さくし、表面硬度を上げることがで
きる。また、薄膜後紫外線を照射するが、この際照射手
段としては、放電灯方式、フラッシュランプ方式、レー
ザ一方式、無電極ランプ方式等があるが、いずれでも良
い。また、照射源として勿論電子線を用いても良い。こ
の場合、重合開始剤を添加する必要がなく、より簡便で
あるが装置が複雑になるし、コストが高くつくので、紫
外線を用いた方が簡易で実用的である。
The method of thinning the film of the present invention may basically be any method, including the LB method (water surface spreading method) described above, a dipping method, a casting method, a spray method, etc., and is not limited to any particular method. do not have. In addition, if the molecular weight of the membrane material is high and it is difficult to make it into a thin film as it is, a solvent may be added as necessary. Especially in the case of a thin film of 1107 u or less, the air-obstructed area on the membrane surface can be reduced. , surface hardness can be increased. Further, ultraviolet rays are irradiated after the thin film is formed. In this case, the irradiation means may be a discharge lamp method, a flash lamp method, a single laser method, an electrodeless lamp method, etc., and any method may be used. Furthermore, it is of course possible to use an electron beam as the irradiation source. In this case, there is no need to add a polymerization initiator, which is simpler, but the equipment becomes complicated and the cost increases, so it is simpler and more practical to use ultraviolet light.

尚、紫外線照射にて薄膜が重合しているかどうかを調べ
るには、照射した薄膜を多孔質支持体に巻き取り、その
後気泡流量計にて分離係数を求めれば明らかであるが、
念のため、テトラヒドロフランに不溶であるかどうかの
確認を行ない、重合しているかどうかの評価を行なった
。尚、本発明の気体分離膜の多孔質支持体は、例えばポ
リプロピレン、ポリエステル、ポリスルホン、ポリエチ
レン、ポリエーテルスルホン、ポリカーボネート等、い
ずれの材質でもよく、使用される樹脂が拘束されるもの
ではない。
It should be noted that in order to check whether a thin film is polymerized by ultraviolet irradiation, it is obvious that the irradiated thin film is wound up on a porous support and then the separation coefficient is determined using a bubble flow meter.
As a precaution, we checked whether it was insoluble in tetrahydrofuran and evaluated whether it was polymerized. The porous support of the gas separation membrane of the present invention may be made of any material such as polypropylene, polyester, polysulfone, polyethylene, polyethersulfone, polycarbonate, etc., and the resin used is not limited.

作   用 以上のような構成によって、まず、1分子中光反応基と
して3官能以上を有した膜材料に、重合開始剤を適量加
え、無溶剤あるいは溶剤を適量加えて、水面展開法等で
膜材料の薄膜を形成させる。
Effect With the above structure, first, add an appropriate amount of a polymerization initiator to a membrane material having trifunctional or higher functional groups as photoreactive groups in one molecule, add an appropriate amount of solvent or no solvent, and form a membrane using a water surface development method or the like. Form a thin film of material.

次に、この状態にて大気中での紫外線照射を行ない、薄
膜中に添加されている重合開始剤がラジカルとなり、反
応が開始される。薄膜の表面では、確かに重合開始剤の
開始反応の後、ラジカル開裂した膜材料の光反応基が大
気中の酸素と反応し、部分的に重合停止反応が起こるが
、使用する膜材料1分子当り光反応基が3個以上存在す
る場合、大気中の酸素との反応に関与しなかった光反応
基が、ラジカル開裂後膜材料間の反応を進行させ、結果
的に薄膜表面においても重合が進行していく。
Next, in this state, ultraviolet rays are irradiated in the atmosphere, and the polymerization initiator added to the thin film becomes radicals, and a reaction is initiated. On the surface of the thin film, after the initiation reaction of the polymerization initiator, the radically cleaved photoreactive groups of the film material react with oxygen in the atmosphere, and a partial polymerization termination reaction occurs, but one molecule of the film material used When there are three or more photoreactive groups, the photoreactive groups that did not participate in the reaction with oxygen in the atmosphere proceed with the reaction between the film materials after radical cleavage, resulting in polymerization even on the thin film surface. It progresses.

つ寸り光反応基が多いために、大気中でも薄膜表面での
酸化重合停止を必要最小限に抑え、超薄膜での重合を可
能にするのである。
Because it has many photoreactive groups, it minimizes the oxidative polymerization termination on the thin film surface even in the air, making it possible to perform polymerization in ultra-thin films.

実施例 次に本発明を実施例に基づき、更に詳しく説明するが、
本発明の内容は実施例のみに限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail based on examples.
The content of the present invention is not limited only to the examples.

比較例1 1分子当シ2官能性のポリジメチルシロキサンの両末端
ビニル基材料〔チノン(株)製、商品名PS441 、
PS445 、PS448等〕に、重合開始剤としてベ
ンゾインイソプロピルエーテルを1.○〜6.0重量係
加え端条いで水面上にて薄膜化を行なった。この状態で
紫外線照射(強度6.6m w /CJ )を30分間
荷なったが、全く重合せず、ポリプロピレン製多孔質支
持体〔ポリプラスチック(株)製、商品名ジュラガード
〕に巻き取り、気泡流量側(酸素及び窒素それぞれ1気
圧の圧力をかけた場合、10ccを通過する秒数にて特
性評価する装置)にて特性を調べたところ、重合してい
ないために一気圧に耐えられずピンホールとなりff1
l+定出来なかった。また、重合開始剤として、下記構
造式のダロキュア953〔メルク(株)製、1−(4−
ドデンルフェニル)−2−ヒドロキシ−2−メチルプロ
パン−1−オン〕を用いた場合でも結果は同じであった
Comparative Example 1 Material with vinyl terminals at both ends of bifunctional polydimethylsiloxane per molecule [manufactured by Chinon Co., Ltd., trade name: PS441,
PS445, PS448, etc.] and benzoin isopropyl ether as a polymerization initiator. A thin film was formed on the water surface using an end strip with a weight factor of ○ to 6.0. In this state, it was irradiated with ultraviolet light (intensity 6.6 mw/CJ) for 30 minutes, but it did not polymerize at all, and was wound up on a polypropylene porous support [manufactured by Polyplastics Co., Ltd., trade name: DURAGUARD]. When we investigated the characteristics on the bubble flow rate side (a device that evaluates the characteristics based on the number of seconds it takes for 10cc to pass when 1 atm pressure is applied to each of oxygen and nitrogen), we found that it could not withstand 1 atm pressure because it had not polymerized. It becomes a pinhole ff1
I couldn't determine l+. In addition, as a polymerization initiator, Darocure 953 [manufactured by Merck Co., Ltd., 1-(4-
The results were the same even when 2-hydroxy-2-methylpropan-1-one] was used.

PS441.445,448 ダロキュア953 実施例1 下記のような構造をした5H−410C束し・シリコー
ン社製〕をベンゼンにて溶解し、約20重端条の溶液と
する。
PS441.445,448 Darocure 953 Example 1 A 5H-410C bundle (manufactured by Silicone Co., Ltd.) having the following structure was dissolved in benzene to form a solution with approximately 20 stacks of ends.

H−410 次に、重合開始剤としてベンゾインイソプロピルエーテ
ルを5H−410に対して0.5〜4.○重景饅加えて
、水面開展法にて薄膜を作成した。この状態にて6.6
mw/crAの強度にて紫外線照射を行ない、約6分根
度で重合した。ジュラガードにて巻き取り、気泡流量計
にて特性を調べその結果を第1図として示す。比較例1
では2官能性であり、・薄膜特性が得られなかったが、
本実施例のように多官能の場合、薄膜で重合することが
判る。重合開始剤の検討の結果、大半のものにて約5分
相度で重合が可能であったが、とりわけダロキュア95
3を用いた場合、重合速度が極めて早く、6〜16秒程
度程度重合した0尚、得られた重合膜は、テトラヒドロ
フラン、ベンゼン等に不溶であった。
H-410 Next, as a polymerization initiator, benzoin isopropyl ether was added to 5H-410 in a proportion of 0.5 to 4. ○In addition, a thin film was created using the water surface spreading method. 6.6 in this state
Ultraviolet irradiation was carried out at an intensity of mw/crA, and polymerization was carried out to a degree of about 6 minutes. It was wound up using Duraguard, and its characteristics were examined using a bubble flow meter, and the results are shown in Figure 1. Comparative example 1
However, it was bifunctional and thin film properties could not be obtained.
It can be seen that in the case of polyfunctionality as in this example, polymerization occurs in a thin film. As a result of examining polymerization initiators, it was found that most of them were capable of polymerization in about 5 minutes, but Darocure 95 was particularly effective.
When No. 3 was used, the polymerization rate was extremely fast, and the polymerization took about 6 to 16 seconds. Note that the obtained polymer film was insoluble in tetrahydrofuran, benzene, and the like.

また同様に、末端ビニル基を有するポリジメチル−メチ
ルビニルシロキサンコポリマー〔チッソ(株)製、商品
名、PS493)に重合開始剤としてダロキュア963
を、膜材料に対し、0.5〜6.0重景チ添加し、水面
展開法にて薄膜化し、照射強度6.6mw/c4Cて6
〜2Q秒にて重合した〇ジュラガードに巻き取り、薄膜
特性を調べたところ、先に示した第1図と同様の結果が
得られ、重合後テトラヒドロフラン、ベンゼン等の溶剤
にて耐溶剤テストを行ない、不溶であるという確認を行
なった。
Similarly, Darocure 963 was added as a polymerization initiator to a polydimethyl-methylvinylsiloxane copolymer having a vinyl terminal group (manufactured by Chisso Corporation, trade name, PS493).
Added 0.5 to 6.0 heavy weights to the membrane material, made it into a thin film using the water surface spreading method, and irradiated it with an irradiation intensity of 6.6 mw/c4C.
When the thin film properties were examined by winding it around Duraguard, which had been polymerized for ~2Q seconds, the same results as shown in Figure 1 were obtained, and after polymerization, a solvent resistance test was carried out using solvents such as tetrahydrofuran and benzene. and confirmed that it was insoluble.

比較例2 両末端メタクロイル基を有するポリジメチルシロキサン
に重合開始剤としてダロキュア963を0.5〜7.0
重量多添加し、実施例と同様に水面展開し、薄膜化した
上で6.6mw/crlの強度で約30分紫外線照射し
たが、全く重合しておらず、ジュラガードに巻き取り薄
膜特性を調べたがピンホールで測定不能であった。また
、他の重合開始剤を用いた場合でも結果は同じであった
Comparative Example 2 0.5 to 7.0 of Darocure 963 was added as a polymerization initiator to polydimethylsiloxane having methacroyl groups at both ends.
A large amount of the polymer was added, spread on the water surface as in the example, made into a thin film, and then irradiated with ultraviolet rays at an intensity of 6.6 mw/crl for about 30 minutes, but no polymerization occurred, and the film was rolled up on Duraguard and the thin film properties were evaluated. I looked into it, but it was impossible to measure because of a pinhole. Furthermore, the results were the same even when other polymerization initiators were used.

実施例2 ポリジメチルーメタクリロキンプロビルメチルンロキサ
ン〔チッソ(株)製、商品名PS4291に重合開始剤
としてダロキュア963を0.5〜6.0重i%添加し
、水面上にて薄膜化し、6.6m W /Ciの強度に
て紫外線照射を行ない10〜30秒にて重合した。次に
ジュラガードに巻き取り気泡流量計にて測定したところ
、実施例1の第1図とほぼ同等の結果が得られた。尚、
他の重合開始剤を用いても重合は可能であったが、5分
〜10分根度の紫外線照射が必要であった。また、得ら
れた膜は、テトラヒドロフラン、ベンゼン、トルエンに
不溶であった。
Example 2 Polydimethyl-methacryloquine probylmethylronloxane [manufactured by Chisso Corporation, trade name: PS4291, 0.5 to 6.0% by weight of Darocure 963 was added as a polymerization initiator, and a thin film was formed on the water surface. The polymer was irradiated with ultraviolet light at an intensity of 6.6 m W /Ci and polymerized for 10 to 30 seconds. Next, when it was wound around Duraguard and measured using a bubble flowmeter, results almost the same as those in FIG. 1 of Example 1 were obtained. still,
Polymerization was possible using other polymerization initiators, but required ultraviolet irradiation for 5 to 10 minutes. Furthermore, the obtained membrane was insoluble in tetrahydrofuran, benzene, and toluene.

比較例3 チッソ(株)製ンリコーンアルキルジオール(商品名、
F M 4411 、 M、 W=1ooo)を出発物
質として、二官能性インシアネート及びβ−ヒドロキシ
エチルアクリレートを反応させることにより下記に示す
ようなンリコーンジオールの2官能性ウレタンアクリレ
ートを合成した。
Comparative Example 3 Niricone alkyl diol manufactured by Chisso Corporation (trade name,
Using F M 4411, M, W=1ooo) as a starting material, a difunctional urethane acrylate of phosphoricone diol as shown below was synthesized by reacting a difunctional incyanate and β-hydroxyethyl acrylate.

R−ウレタン結合能 これに1重合開始剤としてダロキュア953を0.2〜
3.0重端条添加し、水面展開法にて薄膜化後、6.6
 mW/6rJの強度で紫外線照射を30分間行なった
が、重合しなかった0次に、照射雰囲気を大気から窒素
雰囲気にして、同様に紫外線照射を行なったところ、3
0秒程度にて重合した。ジュラガードに巻き取り、気泡
流量計にて測定したところ、第2図のような結果が得ら
れた。このグラナにより厚膜側ではピンホールがなく良
好7Z特性であると言えるが、薄膜側ではピンホールで
あることが判る。
R-Urethane binding capacity: 1 Add Darocure 953 as a polymerization initiator to 0.2~
After adding 3.0 heavy end strips and forming a thin film using the water surface spreading method, 6.6
Ultraviolet irradiation was performed at an intensity of mW/6rJ for 30 minutes, but no polymerization occurred.Next, when the irradiation atmosphere was changed from air to nitrogen atmosphere and UV irradiation was performed in the same way, 3
Polymerization occurred in about 0 seconds. When it was wound up on a Duraguard and measured using a bubble flowmeter, the results shown in Figure 2 were obtained. Due to this grana, it can be said that there are no pinholes on the thick film side and good 7Z characteristics, but it can be seen that there are pinholes on the thin film side.

実施例3 比較例3と同様に、FM4411を出発物質とし、今度
は3官能性イソシアネート及びβ−ヒドロキンエチルア
クリレートを反応させることにより、下記に示すような
ンリコーンジオールの4官能性ウレタンアクリレートの
合成を行なった。
Example 3 In the same manner as in Comparative Example 3, using FM4411 as a starting material, this time a trifunctional isocyanate and β-hydroquine ethyl acrylate were reacted to prepare a tetrafunctional urethane acrylate of an silicone diol as shown below. Synthesis was performed.

R′;ウレタン結合部等 次に、このアクリレートに重合開始剤としてダロキュア
953を膜材料に対して0.2〜6.0重量条添加し、
水面展開法にて薄膜化した。次に大気雰囲気中にて、6
.6mw/cJの強度で紫外線照射を行ない、約1〜3
秒のうちに重合した。これをジュラガードにて巻き取り
、気泡流量計にて測定したところ、第3図のような結果
が得られた。尚、比較例3と同様に窒素雰囲気中にて紫
外線照射を行なったところ、大気雰囲気の場合と同じ約
1〜3秒にて重合し、大気の差によって重合速度に差は
認められず、官能基の数が増えたために、大気中での薄
膜状の重合が可能であることを示唆している。尚、他の
重合開始剤を用いた場合でも重合は行なうが、重合時間
として約3〜5分根度の時間を要し、ダロキュア953
が極めて優れた開始剤であることは明らかである。
R′: urethane bond, etc. Next, 0.2 to 6.0 weight of Darocure 953 is added to the membrane material as a polymerization initiator to this acrylate,
It was made into a thin film using the water surface development method. Next, in the atmospheric atmosphere, 6
.. Ultraviolet irradiation is performed at an intensity of 6 mw/cJ, and approximately 1 to 3
It polymerized within seconds. When this was wound up using Duraguard and measured using a bubble flowmeter, the results shown in Figure 3 were obtained. In addition, when UV irradiation was performed in a nitrogen atmosphere as in Comparative Example 3, polymerization occurred in about 1 to 3 seconds, the same as in the case of an air atmosphere, and no difference was observed in the polymerization rate due to the difference in the atmosphere. The increased number of groups suggests that thin film polymerization in the atmosphere is possible. Polymerization can also be carried out using other polymerization initiators, but the polymerization time takes about 3 to 5 minutes, and Darocure 953
is clearly an excellent initiator.

以上、実施例によって本発明を水面展開法を中心に説明
を行なったが、キャスト法、ディップ法等、他の方法に
おいても勿論同様な効果が得られることは明白である。
Although the present invention has been explained above with reference to the embodiments, focusing on the water surface spreading method, it is obvious that similar effects can be obtained by other methods such as the casting method and the dipping method.

発明の効果 以上のように、本発明によれば、1分子光反応基として
3官能以上を有した膜材料を用いることにより、酸化に
よる重合阻害の生じやすい大気雰囲気においても薄膜状
態での紫外線重合が可能で、荷に重合開始剤として1−
(4−アルキルフェニル)−2−ヒドロキシ−2−メチ
ルプロパン−1−オンを用いた場合、優れた硬化性を示
す0これによって、不活性雰囲気中にて薄膜形成させる
必凹がなく、しかも硬化が早いために、装置が簡便でし
かも生産性に優れた気体分離膜が可能となり、その薄膜
化特性、膜強度、耐溶剤性等も良好なものである。
Effects of the Invention As described above, according to the present invention, by using a film material having trifunctionality or more as a photoreactive group in one molecule, ultraviolet polymerization can be carried out in a thin film state even in an atmospheric atmosphere where polymerization inhibition due to oxidation is likely to occur. is possible, and 1-
When (4-alkylphenyl)-2-hydroxy-2-methylpropan-1-one is used, it exhibits excellent curability. This eliminates the need for forming a thin film in an inert atmosphere and cures it. Since the process is quick, it is possible to produce a gas separation membrane with a simple device and excellent productivity, and its thin film properties, membrane strength, solvent resistance, etc. are also good.

【図面の簡単な説明】[Brief explanation of drawings]

、■1図は、本発明の実施例1における5f(−410
材料に重合開始剤としてベンゾインイソプロピルエーテ
ルを添加し、水面展開後に紫外線照射させた場合の薄膜
特性図、第2図は本発明の比較例3における、シリコー
ンジオールの2官能性ウレタンアクリレートの窒素雰囲
気中で薄膜、紫外線照射した場合の薄膜特性図、第3図
は実施例3におけるシリコーンジオールの4官能性ウレ
タンアクリレートの大気雰囲気中で薄膜、紫外線照射し
た場合の薄膜特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
 図    5)(−41Cl:→褒化坪性(戊C/1
0CCC 1、(l K3/CTn2ニア)lEj3にて 1ダロ
キュア%3濃度40直量/・ 第 21    シリコーンシ゛オール?宮官旨・臣。
, ■ Figure 1 shows 5f (-410
Figure 2 shows the characteristics of a thin film obtained by adding benzoin isopropyl ether as a polymerization initiator to the material and irradiating it with ultraviolet light after spreading on the water surface. FIG. 3 is a thin film characteristic diagram when a thin film of the silicone diol tetrafunctional urethane acrylate of Example 3 is formed in an atmospheric atmosphere and is irradiated with ultraviolet rays. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 5)
0CCC 1, (l K3/CTn2 near) at lEj3 1 Darocure%3 concentration 40 direct quantity/・21st silicone siol? Palace officials and ministers.

Claims (4)

【特許請求の範囲】[Claims] (1)1分子中、光反応基として3官能以上を有した膜
材料に重合開始剤を添加した薄膜を、紫外線照射により
重合硬化させて構成したことを特徴とする気体分離膜。
(1) A gas separation membrane characterized in that it is constructed by polymerizing and curing a thin film in which a polymerization initiator is added to a membrane material having three or more functional groups as photoreactive groups in one molecule, by irradiating ultraviolet rays.
(2)膜材料がシロキサン構造を含有していることを特
徴とする特許請求の範囲第1項記載の気体分離膜。
(2) The gas separation membrane according to claim 1, wherein the membrane material contains a siloxane structure.
(3)薄膜が10μm以下の膜厚であることを特徴とす
る特許請求の範囲第1項記載の気体分離膜。
(3) The gas separation membrane according to claim 1, wherein the thin membrane has a thickness of 10 μm or less.
(4)重合開始剤が、下記構造式の1−(4−アルキル
フェニル)−2−ヒドロキシ−2−メチルプロパン−1
−オンの構造であることを特徴とする特許請求の範囲第
1項記載の気体分離膜。 ▲数式、化学式、表等があります▼
(4) The polymerization initiator is 1-(4-alkylphenyl)-2-hydroxy-2-methylpropane-1 of the following structural formula.
The gas separation membrane according to claim 1, characterized in that it has a -on structure. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP60265208A 1985-11-26 1985-11-26 Gas separation membrane Pending JPS62125825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60265208A JPS62125825A (en) 1985-11-26 1985-11-26 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60265208A JPS62125825A (en) 1985-11-26 1985-11-26 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPS62125825A true JPS62125825A (en) 1987-06-08

Family

ID=17414029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60265208A Pending JPS62125825A (en) 1985-11-26 1985-11-26 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS62125825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024432A (en) * 1987-12-16 1990-01-09 Hoechst Celanese Corp Membrane of an uv-hardenable resin
US7250204B2 (en) * 2002-10-15 2007-07-31 Goldschmidt Ag Use of hydroxyalkylphenone-type photoinitiators in radiation-curable organopolysiloxanes for producing abhesive coatings
JP2016513160A (en) * 2013-02-26 2016-05-12 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Porous membranes made of cross-linked thermoplastic silicone elastomer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024432A (en) * 1987-12-16 1990-01-09 Hoechst Celanese Corp Membrane of an uv-hardenable resin
US7250204B2 (en) * 2002-10-15 2007-07-31 Goldschmidt Ag Use of hydroxyalkylphenone-type photoinitiators in radiation-curable organopolysiloxanes for producing abhesive coatings
JP2016513160A (en) * 2013-02-26 2016-05-12 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Porous membranes made of cross-linked thermoplastic silicone elastomer

Similar Documents

Publication Publication Date Title
Takegami et al. Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane
EP2671628B1 (en) Production method for separation membrane for water treatment
EP0226141B1 (en) Fluorinated polymeric membranes for gas separation processes
US4156597A (en) Ultrathin polyetherimide membrane and gas separation process
CN112203742B (en) Membrane containing polymeric ionic liquid for gas separation
Thom et al. Synthesis of photoreactive α‐4‐azidobenzoyl‐ω‐methoxy‐poly (ethylene glycol) s and their end‐on photo‐grafting onto polysulfone ultrafiltration membranes
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
JPH0323208B2 (en)
JP2012040487A (en) Separation membrane element
JPS62125825A (en) Gas separation membrane
JP2615375B2 (en) Surface modified gas separation membrane and method for producing the same
Parthasarathy et al. Interfacial polymerization of thin polymer films onto the surface of a microporous hollow-fiber membrane
JP3130358B2 (en) Polyimide gas separation membrane
Lee et al. Pervaporation of aqueous alcohol mixtures through a membrane prepared by grafting of polar monomer onto nylon 4
JPS61242608A (en) Preparation of gas permeable membrane
JPS61278307A (en) Preparation of gas separation membrane
Ito et al. Silicon-containing block copolymer membranes
JPH0824603A (en) Gas separation membrane and its preparation
JPH01278507A (en) Oxygen permeable resin composition
Zouahri et al. Synthesis of perfluorinated cation exchange membranes by preirradiation grafting of acrylic acid onto ethylene‐tetrafluoroethylene films
JP2855231B2 (en) Composite semipermeable membrane
McKenzie et al. Effect of solvated block size on the layer thickness of copolymers adsorbed to liquid/solid interfaces
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
Jeon et al. Performance of negatively charged nanofiltration membranes prepared from mixtures of various dimethacrylates and methacrylic acid