JPS5938195B2 - Production method of brilliant chrysoberine single crystal - Google Patents

Production method of brilliant chrysoberine single crystal

Info

Publication number
JPS5938195B2
JPS5938195B2 JP7599281A JP7599281A JPS5938195B2 JP S5938195 B2 JPS5938195 B2 JP S5938195B2 JP 7599281 A JP7599281 A JP 7599281A JP 7599281 A JP7599281 A JP 7599281A JP S5938195 B2 JPS5938195 B2 JP S5938195B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
material rod
tio2
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7599281A
Other languages
Japanese (ja)
Other versions
JPS57191298A (en
Inventor
勇 進藤
英典 坂内
俊二 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP7599281A priority Critical patent/JPS5938195B2/en
Publication of JPS57191298A publication Critical patent/JPS57191298A/en
Publication of JPS5938195B2 publication Critical patent/JPS5938195B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は光彩を放つクリソベリル単結晶の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a brilliant chrysoberyl single crystal.

従来、クリソベリル単結晶の製造は、フラックス法及び
フローティングゾーン法によっていた。
Conventionally, chrysoberyl single crystals have been produced by the flux method and the floating zone method.

フラックス法は得られる結晶が双晶となり易く、大型の
単結晶が得難い欠点がめった。
The flux method has the disadvantage that the resulting crystals tend to form twins, making it difficult to obtain large single crystals.

また、フローティングゾーン法は光彩を放つ原因となる
TiO2成分を固溶させることが困難でめった。
Furthermore, the floating zone method was unsuccessful because it was difficult to dissolve the TiO2 component, which causes the shine, into a solid solution.

一般にキャッツアイとして知られている光彩を放つクリ
ソベリル単結晶は、母結晶としてのクリソベリル中に不
純物として入っているTiO2が離溶によって特定の方
向に並んで析出し、これによって光の回折効果が生じ光
彩を放つものである。
The brilliant chrysoberyl single crystal, commonly known as cat's eye, is produced by TiO2 contained as an impurity in the chrysoberyl mother crystal, which is precipitated in a specific direction by dissolution, which causes a light diffraction effect. It is something that shines.

従って、光彩を放つクリソベリル単結晶を製造するため
には、TiO2成分を均質に固溶したクリソヘリル固溶
体単結晶を製造することが先決でるる。
Therefore, in order to produce a brilliant chrysoberyl single crystal, it is first necessary to produce a chrysoheryl solid solution single crystal in which the TiO2 component is homogeneously dissolved.

しかるに従来のフローティングゾーン法では雰囲気とし
て空気を使用していたため、TiO□成分のクリソベリ
ル中への固溶量は高々0.5モル係以下でるり、この固
溶量では十分な光彩発現効果がなく、また原料中に0.
5モル係より多くの量のTiO□成分を加えておいても
、最大固溶量は0.5モル係以下であり、過剰のTiO
2成分は結晶中に分散して不透明となる欠点がめった。
However, since the conventional floating zone method uses air as the atmosphere, the amount of solid solution of the TiO□ component in chrysoberyl is at most 0.5 mol or less, and this amount of solid solution does not have a sufficient effect of producing brilliance. , and 0.
Even if more than 5 mol of TiO□ component is added, the maximum amount of solid solution is less than 0.5 mol,
The two components rarely had the disadvantage of being dispersed in the crystal and becoming opaque.

本発明はフローティングゾーン法によってTiO2成分
の固溶量を多くすると共に均質に固溶させ、光彩を放つ
クリソベリル単結晶を製造する方法を提供するにある。
The object of the present invention is to provide a method for producing a brilliant chrysoberyl single crystal by increasing the amount of TiO2 component dissolved in the solid solution and uniformly dissolving the TiO2 component in the solid solution using the floating zone method.

本発明者は前記目的を達成すべく研究の結果、クリソベ
リル中へのTiO2成分の固溶量は単結晶育成雰囲気の
酸素分圧によって変化し、酸素分圧が低くなるとTiO
2成分の固溶量が増加すると言う新しい知見を得た。
As a result of research to achieve the above object, the present inventor found that the amount of solid solution of TiO2 component in chrysoberyl changes depending on the oxygen partial pressure of the single crystal growth atmosphere, and when the oxygen partial pressure becomes low, TiO2
A new finding was obtained that the amount of solid solution of two components increases.

すなわち、空気雰囲気下ではその固溶量が0.5モル係
以下であったが、雰囲気中の酸素分圧が10−1気圧と
なるとその固溶量が増加し、最大固溶量を3モル%まで
増加し得られる。
In other words, the amount of solid solution was less than 0.5 mol in an air atmosphere, but when the partial pressure of oxygen in the atmosphere became 10-1 atm, the amount of solid solution increased, and the maximum amount of solid solution was 3 mol. %.

また、従ってフローティングゾーン法における育成の雰
囲気を還元雰囲気下、特に10−1気圧以下の還元性雰
囲気下にするときはTiO2成分を容易に固溶し得られ
ることが分った。
Furthermore, it has been found that when the growing atmosphere in the floating zone method is a reducing atmosphere, particularly a reducing atmosphere of 10<-1>atm or less, the TiO2 component can be easily dissolved as a solid solution.

また、このように、TiO2成分を均一に固溶させた単
結晶を育成するためには、固相の析出温度を変えないで
育成を継続させることができる融帯な移動させて試料の
溶解、固相の析出を継続させるトラベリングゾーン法が
適していること、及び得られた単結晶を酸化性雰囲気下
で焼鈍すると、TiO□成分が離溶して析出して光彩を
放つクリソベリル結晶が容易に得られることを究明した
In addition, in order to grow a single crystal in which the TiO2 component is uniformly dissolved in solid solution, it is necessary to melt the sample by moving it in a melting zone that allows the growth to continue without changing the precipitation temperature of the solid phase. The traveling zone method, which allows solid phase precipitation to continue, is suitable, and when the obtained single crystal is annealed in an oxidizing atmosphere, the TiO□ component dissolutes and precipitates to easily form brilliant chrysoberyl crystals. We have determined what can be obtained.

この究明事実に基いて本発明を完成した。The present invention was completed based on this finding.

本発明は原料棒の一端を溶融させ、形成された融帯な移
動させて原料棒の溶解、固相の析出を継続させるフロー
ティングゾーン法による単結晶育成法において、原料棒
として、酸化ベリリウム(Bed)、酸化アルミニウム
(At203)からなるクリソベリル単結晶成分と、二
酸化チタニウム(TiO□)成分とからなるものを使用
し、育成雰囲気として酸素分圧が10−1気圧以下の還
元性雰囲気を使用して単結晶を育成し、得られた単結晶
を酸化性雰囲気下で焼鈍してTiO2成分を離宕析出さ
せる方法を要旨とする。
The present invention uses beryllium oxide (Bed) as the raw material rod in a single crystal growth method using a floating zone method in which one end of the raw material rod is melted and the formed melt zone is moved to continue melting of the raw material rod and precipitation of the solid phase. ), a chrysoberyl single crystal component made of aluminum oxide (At203) and a titanium dioxide (TiO□) component are used, and a reducing atmosphere with an oxygen partial pressure of 10-1 atm or less is used as the growth atmosphere. The gist is a method of growing a single crystal and annealing the obtained single crystal in an oxidizing atmosphere to precipitate the TiO2 component.

本発明に利用するフローティングゾーン法とは、例えば
、原料棒を上に種結晶を下にセットし、両者の間に溶媒
の溶融帯を形成せしめ、これを表面張力で保持する。
In the floating zone method used in the present invention, for example, a raw material rod is set above and a seed crystal is set below, a molten zone of solvent is formed between the two, and this is held by surface tension.

次に溶融帯をゆっくりと上側に移動させると、溶融帯の
上側では原料棒の溶は込みが生じ、下側では結晶の析出
が生ずる。
Next, when the molten zone is slowly moved upward, melt penetration of the raw material rod occurs above the molten zone, and crystal precipitation occurs below the molten zone.

この時原料棒、種結晶にそれぞれ互に逆方向に適当な速
度で回転を与え、溶融帯に攪拌効果を与える。
At this time, the raw material rod and the seed crystal are rotated in opposite directions at appropriate speeds to give a stirring effect to the molten zone.

このようにして溶融帯を仲介として結合せしめ、原料棒
と種結晶以外溶融帯への支持がない状態で、溶融帯をゆ
っくりと移動させて単結晶を育成する方法である。
In this way, the molten zone is used as an intermediary to connect the materials, and the molten zone is slowly moved with no support other than the raw material rod and the seed crystal to grow a single crystal.

原料棒としては、酸化ベリリウム(Bed)、酸化アル
ミニウム(At203)、及び二酸化チタニウム(Ti
O2)の成分割合がモル比でほぼ1:1:0.0005
〜1:1:0.05でろることか好ましい。
Raw material rods include beryllium oxide (Bed), aluminum oxide (At203), and titanium dioxide (Ti
O2) component ratio is approximately 1:1:0.0005 in molar ratio
It is preferable that the ratio is 1:1:0.05.

クリソベリル結晶はBeAt204の化学式で表わされ
るもので、BeOとAt203とはモル比で1:1の化
合物でるり、両者の割合はモル比でほぼ1:1の割合で
ある。
Chrysoberyl crystals are represented by the chemical formula BeAt204, and are a compound in which BeO and At203 have a molar ratio of 1:1, and the ratio of both is approximately 1:1 in molar ratio.

二酸化チタニウムが前記割合より少ないと光彩が5すく
なり、前記割合より多くなると全体がくもり美しくなら
ない。
If titanium dioxide is less than the above ratio, the brilliance will be less than 50%, and if it is more than the above ratio, the whole will be cloudy and not beautiful.

溶媒は酸化ベリリウム(Bed)、酸化アルミニウム(
At203)及び二酸化チタニウム(TiO2)の成分
割合が、モル比でほぼ1:1:0.001〜1:i:o
、iで、その融点が原料棒の融点より低いものを使用す
る。
The solvent was beryllium oxide (Bed), aluminum oxide (
The component ratio of At203) and titanium dioxide (TiO2) is approximately 1:1:0.001 to 1:i:o in molar ratio.
, i, whose melting point is lower than the melting point of the raw material rod.

TiO2成分が多くなるとその融点が低下するので、原
料棒の組成に応じて溶媒中のTiO2量を調整すればよ
い。
As the TiO2 component increases, its melting point decreases, so the amount of TiO2 in the solvent may be adjusted depending on the composition of the raw material rod.

溶媒は使用しなくとも単結晶を析出し得られるが、これ
を使用しないと、最初に生成してくる結晶の組成が目的
としたものよりずれてくるので、妻止りが悪くなる。
Although it is possible to precipitate a single crystal without using a solvent, if it is not used, the composition of the initially formed crystal will deviate from the intended one, resulting in poor retention.

また種結晶がないと、始め多結晶体が生成するので、そ
れだけ無駄になる欠点が生ずる。
Moreover, if there is no seed crystal, polycrystals will initially be produced, which has the disadvantage of being wasted.

原料棒及び溶媒の原料の酸化アルミニウム、酸化ベリリ
ウム、及び二酸化チタニウムは、いずれも通常の試薬特
級程度のものをそのまま使用してもよいが、相互の化学
反応をすみやかに進行せしめるためには、粒径が小さい
程好ましく、l mm以下、特に10μm以下のものが
好ましい。
Aluminum oxide, beryllium oxide, and titanium dioxide, which are the raw materials for the raw material rod and the solvent, can be used as they are at ordinary reagent grade, but in order to allow the mutual chemical reaction to proceed quickly, granular The smaller the diameter is, the more preferable it is, and the diameter is preferably 1 mm or less, particularly 10 μm or less.

これら原料の混合はできるだけ均一に混合することが必
要である。
It is necessary to mix these raw materials as uniformly as possible.

そのためには、アルコール類、アセトン等の有機試薬と
共に十分乳鉢中で混合するか、あるいはボールミル等を
使用して混合すればよい。
For this purpose, it may be sufficiently mixed with an organic reagent such as an alcohol or acetone in a mortar, or by using a ball mill or the like.

この場合、必要に応じて、Fe、 Mg、 Ca。In this case, if necessary, Fe, Mg, Ca.

Ba、 V、 Crp Mn、 Co、 Ni、
Cu、 Zn。
Ba, V, Crp Mn, Co, Ni,
Cu, Zn.

Geまたは希土類元素の微量成分を配合することによっ
て、着色性、加工性等を変えることができる。
Colorability, processability, etc. can be changed by adding a trace amount of Ge or a rare earth element.

これらの混合原料粉末は加圧成形する。These mixed raw material powders are press-molded.

加圧成形は金型な用いた一方向もしくは二方向圧縮によ
る成形法を用いてもよいが、加熱時の曲がりを防ぐため
に1等方的に加圧が行われるラバープレス法を利用する
ことが好ましい。
For pressure forming, a molding method using one or two directions of compression using a mold may be used, but in order to prevent bending during heating, a rubber press method in which pressure is applied isotropically may be used. preferable.

ラバープレス法とは、原料粉末をゴム管に入れ、両端を
密封し、密閉液圧式圧力容器中で高い液圧で加圧する方
法である。
The rubber press method is a method in which raw material powder is placed in a rubber tube, both ends of which are sealed, and the tube is pressurized with high hydraulic pressure in a closed hydraulic pressure vessel.

液圧は500 kg/、:rl、以上ならどんなに高い
圧力でもよいが、安価で手軽に得られる1〜2 ton
/ciが好ましい。
The liquid pressure is 500 kg/:rl, any pressure can be used as long as it is higher than that, but 1 to 2 tons is cheap and easy to obtain.
/ci is preferred.

加圧時間は5秒以上、好ましくは1分間である。The pressurization time is 5 seconds or more, preferably 1 minute.

加圧が充分でない成形物は壊れやすい。Molded products that are not sufficiently pressurized are likely to break.

加圧成形物の形状は細く長いものであればよいが、円柱
状のものが好ましい。
The shape of the pressure-molded product may be long and thin, but a cylindrical shape is preferred.

その大きさは例えば、径1rI1m〜10crn、、長
さIWtm〜50c−好ましくは径3Wtm〜3cfn
、長さ5111n〜30cmである。
Its size is, for example, a diameter of 1rI1m to 10crn, a length of IWtm to 50c, and preferably a diameter of 3Wtm to 3cfn.
, the length is 5111n to 30cm.

加圧成形物は仮焼する。The press-molded product is calcined.

この仮焼は横型の炉の中でルツボに保持して加熱しても
よいが、不純物の混入と仮焼時の曲がりを防ぐために、
竪型の炉中で吊り下げた状態で加熱することが好ましい
This calcination may be heated by holding it in a crucible in a horizontal furnace, but in order to prevent contamination of impurities and bending during calcination,
It is preferable to heat the product in a suspended state in a vertical furnace.

加圧成形物の加熱温度は原料棒の場合は、1400〜1
750℃、溶媒の場合は1300〜1500℃が好まし
い。
The heating temperature of the press-molded product is 1400-1 in the case of raw material rods.
750°C, preferably 1300 to 1500°C in the case of a solvent.

その加熱時間は長い程よい。The longer the heating time, the better.

特に原料棒の場合は、焼結後のかさ密度の80係以上に
なるよう十分に長時間加熱することが好ましい。
In particular, in the case of a raw material rod, it is preferable to heat it for a sufficiently long time so that the bulk density after sintering reaches a factor of 80 or higher.

溶媒は原料棒の下もしくは種結晶の上に融着させておく
のがよい。
The solvent is preferably fused under the raw material rod or on top of the seed crystal.

溶媒の量は原料棒と同じ直径を持つ半球が最も好ましい
The amount of solvent is most preferably a hemisphere having the same diameter as the raw material rod.

種結晶としては、高温に耐え溶媒と化学反応を起こさな
い固形物でろればよいが、原料棒と同じもの、特にクリ
ソベリル単結晶を用いることが好ましい。
The seed crystal may be any solid material that can withstand high temperatures and does not cause a chemical reaction with the solvent, but it is preferable to use the same material as the raw material rod, especially a chrysoberyl single crystal.

フローティングゾーン法による溶媒の融解は、例えば高
温の光源からの光を鏡又はレンズを用いて集光させた集
光加熱方式により、上下3〜30WtrILに亘って融
解温度以上に加熱する。
To melt the solvent by the floating zone method, for example, a condensing heating method in which light from a high-temperature light source is condensed using a mirror or lens is used to heat the solvent to a temperature above the melting temperature over a range of 3 to 30 WtrIL in the upper and lower directions.

結晶の育成速度は原料棒と種結晶の下方への送り速度に
等しく、その送り速度は少なくとも毎時Q、 l mm
に保つことが好ましい。
The crystal growth rate is equal to the downward feeding rate of the raw material rod and the seed crystal, and the feeding rate is at least Q, l mm per hour.
It is preferable to keep it at

特に好ましい速度は毎時1〜10mmである。A particularly preferred speed is 1 to 10 mm per hour.

この結晶育成における雰囲気は酸素分圧が10−1以下
の還元性雰囲気下で行うことが必要である。
The atmosphere for this crystal growth must be a reducing atmosphere with an oxygen partial pressure of 10<-1> or less.

TiO2のクレソベリル単結晶の固溶は2Ti02→T
i2O3+’/、 0□となる還元反応によって生成し
たTi2O3が固溶するので、酸素分圧が大きいと前記
の反応が進まず固溶させることができない。
Solid solution of cresoberyl single crystal of TiO2 is 2Ti02→T
Since Ti2O3 produced by the reduction reaction of i2O3+'/, 0□ is dissolved in solid solution, if the oxygen partial pressure is large, the above reaction will not proceed and it will not be possible to form a solid solution.

例えばCO2、水素を1=5、窒素、水素を10:1の
割合で混合した混合ガスがあげられる。
For example, a mixed gas containing CO2 and hydrogen in a ratio of 1=5 and nitrogen and hydrogen in a ratio of 10:1 can be cited.

得られた単結晶を0.1気圧以上の酸素分圧を有する酸
化性雰囲気下で焼鈍するとTiO□成分が離溶によって
析出し光彩を放つようになる。
When the obtained single crystal is annealed in an oxidizing atmosphere having an oxygen partial pressure of 0.1 atm or more, the TiO□ component precipitates by dissolution and becomes shiny.

また、原料棒として、前記した焼結原料棒に代え、一度
単結晶化したものを使用すると、溶媒への原料の溶は込
みが均一になり、従って種結晶上への晶出も安定し、高
品位のものが得られる。
In addition, if a single crystallized raw material rod is used instead of the sintered raw material rod described above, the raw material will be evenly dissolved into the solvent, and therefore crystallization on the seed crystal will be stable. High quality products can be obtained.

以上のように、本発明の方法によると、還元性雰囲気に
することによって、TiO2成分をクリソベリル中に均
質に固溶させたものが容易に得られ、フローティングゾ
ーン法によるので純度が高く、大型のものが得られ、し
かも、得られた単結晶を酸化性雰囲気の下で焼鈍するこ
とにより、美しい光彩を放つクレソベリル単結晶が得ら
れる優れた効果を有する。
As described above, according to the method of the present invention, by creating a reducing atmosphere, it is possible to easily obtain a homogeneous solid solution of TiO2 component in chrysoberyl. Furthermore, by annealing the obtained single crystal in an oxidizing atmosphere, it has the excellent effect of obtaining a cresoberyl single crystal that emits a beautiful glow.

実施例 1 純[99,9%以上の酸化アルミニウム(At203)
粉末及び酸化べI) IJウム(Bed)粉末と純度9
9.9%以上の二酸化チタニウム(TiO2)粉末とを
、クリソベリル原料については100:100:0.1
5、溶媒原料については100 :100 :0.3に
秤量し、各原料について着色剤として市販特級試薬の酸
化コバル) (Cod)及び二三酸化クロム(Cr20
3)をそれぞれモル比で0.1係及び0.2%添加し、
乳鉢中でエチルアルコールを加えて充分に混合し、平均
粒径1μmの微粉末の二種の混合物を得た。
Example 1 Pure [99.9% or more aluminum oxide (At203)]
Powder and Bed oxide) IJum (Bed) powder and purity 9
9.9% or more titanium dioxide (TiO2) powder and 100:100:0.1 for chrysoberyl raw material.
5. Weighed the solvent raw materials at a ratio of 100:100:0.3, and used the commercially available special reagents cobal oxide (Cod) and chromium ditrioxide (Cr20) as coloring agents for each raw material.
3) were added in a molar ratio of 0.1% and 0.2%, respectively,
Ethyl alcohol was added and thoroughly mixed in a mortar to obtain a mixture of two types of fine powder with an average particle size of 1 μm.

二種の該混合物的121をそれぞれ内径11mmの肉薄
のゴム管中に投入し、両者を密封して内径11、E17
ffの金わくに挿入し、油圧式静水圧発生装置中にて1
ton/lvtの圧力で約1分間加圧、成形した。
The two kinds of mixtures 121 were put into thin rubber tubes with an inner diameter of 11 mm, and both were sealed.
Insert it into the metal frame of ff, and put it in the hydraulic hydrostatic pressure generator.
It was pressed and molded at a pressure of ton/lvt for about 1 minute.

上記操作により得られた外径約9mm、長さ約80mm
の丸棒状試料を、クリソベリル原料の場合は1600℃
に、溶媒原料の場合には1500℃にそれぞれ保持した
竪形の電気炉へ挿入し仮焼した。
Outer diameter of about 9 mm and length of about 80 mm obtained by the above operation
In the case of chrysoberyl raw material, heat the round bar sample to 1600℃.
In the case of solvent raw materials, they were inserted into a vertical electric furnace maintained at 1500° C. and calcined.

炉への挿入、炉からの引出しはそれぞれ1時間費し、急
熱及び急冷による試料の破壊を防いだ。
Inserting the sample into the furnace and removing it from the furnace took 1 hour each to prevent destruction of the sample due to rapid heating and cooling.

雰囲気は空気とした。The atmosphere was airy.

上記操作により得られた外径約7.5朋、長さ約70W
t7+!のクリソベリル原料棒を赤外線集中加熱方式を
採用したフローティングゾーン法単結晶製造装置の上側
試料回転軸に固定し、同様にして得られた外径約8mm
の溶媒棒を長さ約2Qmmに切り。
Outer diameter of about 7.5mm and length of about 70W obtained by the above operation
t7+! A raw material rod of chrysoberyl was fixed to the upper sample rotating shaft of a floating zone method single crystal production device that adopted an infrared concentrated heating method, and an outer diameter of approximately 8 mm was obtained in the same manner.
Cut the solvent stick into a length of about 2Qmm.

上記装置の下側種結晶回転軸に固定し、溶融石英管で外
気と隔離された結晶成長室へチッソと水素の10:1の
混合ガスを雰囲気として導入し、加熱を開始した。
A 10:1 mixed gas of nitrogen and hydrogen was introduced as an atmosphere into the crystal growth chamber, which was fixed to the lower seed crystal rotating shaft of the above apparatus and isolated from the outside air by a fused silica tube, and heating was started.

雰囲気はフローティングゾーン部近傍で線速度毎秒0.
6 cmで供給した。
The atmosphere is at a linear velocity of 0.0 per second near the floating zone.
6 cm.

上記単結晶製造装置中で最も温度が高くなる部分に溶媒
棒の先端がくるように調節し、この先端が加熱により融
解すると同時に加熱を一定にして温度を固定し。
Adjust the tip of the solvent rod so that it is located at the highest temperature point in the single crystal manufacturing apparatus, and at the same time as the tip melts due to heating, the heating is kept constant to fix the temperature.

上側よりクリソベリル原料棒を下方に移動させて溶融部
を仲介として溶媒棒と結合させ、両枠を互いに逆の方向
に毎分50回転の速度で回転させた。
The chrysoberyl raw material rod was moved downward from the upper side and combined with the solvent rod through the molten part, and both frames were rotated in opposite directions at a speed of 50 revolutions per minute.

回転は、結晶育成終了まで続けた。Rotation was continued until the end of crystal growth.

上記溶融部が大きすぎもせず、小さすぎもしない状態を
温度及び両枠相互間の間隔を微細に調節して得た後、両
枠を同一速度で下方へ毎時2. Q mmの速度で移動
させ、溶媒棒上ヘクリソベリルの結晶を析出させた。
After finely adjusting the temperature and the spacing between the two frames to obtain a state in which the molten area is neither too large nor too small, both frames are moved downward at the same speed at 2.5 hours per hour. It was moved at a speed of Q mm to precipitate hechrysoberyl crystals on the solvent bar.

析出結晶は初め多結晶であったが、10〜30rIln
成長した後は単結晶の断面を持つにいたった。
The precipitated crystals were initially polycrystalline, but 10~30rln
After growth, it had a single crystal cross section.

クリソベリル原料棒がほぼ消費しつくされた時、成長し
た単結晶と該原料棒とを切離し、冷却の径径6.5 m
m、長さ45mmの丸棒状のクリソベリル単結晶を得た
When the chrysoberyl raw material rod was almost completely consumed, the grown single crystal and the raw material rod were separated and cooled to a diameter of 6.5 m.
A round rod-shaped chrysoberyl single crystal with a length of 45 mm was obtained.

この単結晶を1350℃に保持した竪形の電気炉に挿入
し、1気圧の酸素雰囲気中で48時間焼鈍した。
This single crystal was inserted into a vertical electric furnace maintained at 1350° C. and annealed in an oxygen atmosphere of 1 atm for 48 hours.

炉への挿入、炉からの引出しはそれぞれ1時間費し、急
熱急冷による結晶の品質の悪化及び試料の破壊を防いだ
Insertion into the furnace and withdrawal from the furnace took one hour each to prevent deterioration of crystal quality and destruction of the sample due to rapid heating and cooling.

上記操作を施した単結晶を切断後、研摩してカボツショ
ンタイプの採石を得た。
After cutting the single crystal subjected to the above operation, it was polished to obtain a cabochon type quarried stone.

該採石は単一光の下で明瞭な光彩を示した。The quarry showed clear glow under single light.

生成結晶中のTie、。成分固溶量は原料中のTiO2
成分量と同じ<1.5モル係でめった。
Tie in the produced crystals. The amount of component solid solution is TiO2 in the raw material.
It was found to be less than 1.5 moles, which is the same as the component amount.

TiO2を多くするとTiO2成分のクリソベリル中へ
の固溶量を3モル%までにすることができる。
By increasing the amount of TiO2, the amount of the TiO2 component dissolved in chrysoberyl can be made up to 3 mol%.

比較例 1 実施例1における雰囲気ガスを通常用いられている空気
とし、他は同一条件で行ったところ。
Comparative Example 1 The experiment was conducted under the same conditions as in Example 1 except that the atmosphere gas was air, which is commonly used.

TiO2は均質に結晶中に固溶せず、白濁した結晶しか
得られなかった。
TiO2 was not homogeneously dissolved in the crystal, and only cloudy crystals were obtained.

Tie2の固溶量は0.5モル係以下でめった。The solid solution amount of Tie2 was determined to be 0.5 molar or less.

実施例 2 実施例1の結晶育成法により得られた単結晶を原料とし
、実施例1の結晶育成法と同様の操作により再結晶化さ
せて、径5.5 mm、長さ45mmの高品質クリソベ
リル原料棒を得た。
Example 2 Using the single crystal obtained by the crystal growth method of Example 1 as a raw material, recrystallization was performed in the same manner as in the crystal growth method of Example 1 to obtain a high quality product with a diameter of 5.5 mm and a length of 45 mm. A chrysoberyl raw material rod was obtained.

この単結晶を実施例1の焼鈍法と同様の操作により焼鈍
した後、切断し、切断片を研摩してカポッションタイプ
の採石を得た。
This single crystal was annealed in the same manner as in Example 1, then cut, and the cut pieces were polished to obtain a capochon type quarried stone.

該採石は単一光の下で明瞭な光彩を示した。The quarry showed clear glow under single light.

又、上記切断面を硫酸水素カリウム(KH8O,)によ
り670℃で1分間処理し、顕微鏡によって異相と食菌
の存在状況を観察した。
Further, the cut surface was treated with potassium hydrogen sulfate (KH8O,) at 670° C. for 1 minute, and the presence of foreign phases and phagocytic bacteria was observed using a microscope.

この結果、この単結晶には異相の存在がみられず、又、
転位に起因すると考えられる食菌の存在密度も17当り
1000個以下であることが確かめられた。
As a result, the presence of different phases was not observed in this single crystal, and
It was confirmed that the density of phagocytic bacteria thought to be caused by translocation was also less than 1,000 per 17 cells.

Claims (1)

【特許請求の範囲】 1 原料棒の一端を溶融袋せ、形成された融帯を移動さ
せて原料棒の溶融、固相の析出を継続させるフローティ
ングゾーン法による単結晶育成法において、原料棒とし
て酸化ベリリウム(Bed)、酸化アルミニウム(At
203)及び二酸化チタニウム(T i 02 )の成
分からなる原料棒を使用し、単結晶育成雰囲気として酸
素分圧が10−1気圧以下の還元性雰囲気を使用して単
結晶を育成し、得られた単結晶を酸化性雰囲気下で焼鈍
してTiO2成分な離溶析出させることを特徴とする光
彩を放つクリソベリル単結晶の製造法。 2 フローティングゾーン法が、原料棒の下に溶媒を、
さらに溶媒の下に種結晶を設け、この溶媒部分を溶解す
るように加熱すると共に融帯を移動させる方法である特
許請求の範囲第1項記載の方法。 3 原料棒が酸化ぺIJ I、)ラム(BeO)、酸化
アルミニウム(AA2 o3)及び二酸化チタニウム(
TiO2)の成分のモル比が、1:1:0.0005〜
1:1:0.05の割合のものからなる特許請求の範囲
第1項記載の方法。 4 原料棒の一端を溶融させ、形成された融帯な移動さ
せて原料棒の溶解、固相の析出を継続させるフローティ
ングゾーン法による単結晶育成法において、原料棒とし
て酸化ベリリウム(BeO)、酸化アルミニウム(At
20 s )及び二酸化チタニウム(TiO2)の成分
からなる原料棒を使用し、単結晶育成雰囲気として酸素
分圧が10−1気圧以下の還元性雰囲気を使用して単結
晶を育成し、得られた単結晶を原料棒として再び同様な
単結晶の育成を繰返し、得られた単結晶を酸化性雰囲気
下で焼鈍してTiO2成分な離溶析出させることを特徴
とする光彩を放つクリソベリル単結晶の製造法。
[Claims] 1. In a single crystal growth method using a floating zone method in which one end of a raw material rod is placed in a melting bag and the formed melt zone is moved to continue melting of the raw material rod and precipitation of a solid phase, the raw material rod is used as a single crystal growth method. Beryllium oxide (Bed), aluminum oxide (At
203) and titanium dioxide (T i 02 ), a single crystal is grown using a reducing atmosphere with an oxygen partial pressure of 10 −1 atm or less as a single crystal growth atmosphere. A method for producing a brilliant chrysoberyl single crystal, which is characterized by annealing a single crystal in an oxidizing atmosphere to precipitate a TiO2 component. 2 The floating zone method places the solvent under the raw material rod,
2. The method according to claim 1, wherein a seed crystal is further provided under the solvent, and the solvent portion is heated to dissolve the solvent and the melting zone is moved. 3 The raw material rods are oxidized aluminum (BeO), aluminum oxide (AA2 o3) and titanium dioxide (
The molar ratio of the components of TiO2) is 1:1:0.0005~
A method according to claim 1 comprising a ratio of 1:1:0.05. 4 In a single crystal growth method using the floating zone method in which one end of the raw material rod is melted and moved through the formed melt zone to continue melting of the raw material rod and precipitation of the solid phase, beryllium oxide (BeO), oxide, etc. are used as the raw material rod. Aluminum (At
20 s) and titanium dioxide (TiO2), a single crystal was grown using a reducing atmosphere with an oxygen partial pressure of 10-1 atm or less as a single crystal growth atmosphere. Production of a brilliant chrysoberyl single crystal characterized by repeating the growth of a similar single crystal using a single crystal as a raw material rod and annealing the obtained single crystal in an oxidizing atmosphere to precipitate a TiO2 component. Law.
JP7599281A 1981-05-20 1981-05-20 Production method of brilliant chrysoberine single crystal Expired JPS5938195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7599281A JPS5938195B2 (en) 1981-05-20 1981-05-20 Production method of brilliant chrysoberine single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7599281A JPS5938195B2 (en) 1981-05-20 1981-05-20 Production method of brilliant chrysoberine single crystal

Publications (2)

Publication Number Publication Date
JPS57191298A JPS57191298A (en) 1982-11-25
JPS5938195B2 true JPS5938195B2 (en) 1984-09-14

Family

ID=13592273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7599281A Expired JPS5938195B2 (en) 1981-05-20 1981-05-20 Production method of brilliant chrysoberine single crystal

Country Status (1)

Country Link
JP (1) JPS5938195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000392A1 (en) * 1983-07-14 1985-01-31 Sumitomo Cement Co., Ltd. Chrysoberyl single crystal showing iridescent effect and process for its preparation

Also Published As

Publication number Publication date
JPS57191298A (en) 1982-11-25

Similar Documents

Publication Publication Date Title
EP0000720B1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
Chu et al. Growth of the high quality and large size paratellurite single crystals
JPS5938195B2 (en) Production method of brilliant chrysoberine single crystal
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JP2005112718A5 (en)
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPS5938194B2 (en) Production method of brilliant chrysoberine single crystal
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JPS6052117B2 (en) Beryl single crystal manufacturing method
EP0148946B1 (en) Method of producing a chrysoberyl single crystal
JPS5841800A (en) Preparation of strontium titanate single crystal imparted with semiconductivity
JPH0253397B2 (en)
JP3548910B2 (en) Method for producing ZnO single crystal
JPH0476349B2 (en)
JPH025720B2 (en)
JP3912959B2 (en) Method and apparatus for producing β-FeSi2 crystal
KR0130403B1 (en) Method for production of mono crystal by travelling zon method
JPH04338191A (en) Production of single crystal
JPH027919B2 (en)
Bletskan Material synthesis and growth of the single crystals of the type AIVBVI and AIVBIV 2
JP2003137691A (en) Method of producing single crystal
Wong-Ng et al. Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review
JPH04243998A (en) Production of barium beta-metaborate single crystal
JPS60138028A (en) Production of nickel-titanium alloy
JPH0471877B2 (en)